Bash pitfalls

From Wiki
Jump to navigation Jump to search

Bash Pitfalls

This page shows common errors that Bash programmers make. These examples are all flawed in some way.

You will save yourself from many of these pitfalls if you simply always use quotes and never use WordSplitting for any reason! Word splitting is a broken legacy misfeature inherited from the Bourne shell that's stuck on by default if you don't quote expansions. The vast majority of pitfalls are in some way related to unquoted expansions, and the ensuing word splitting and globbing that result.



for f in $(ls *.mp3)

One of the most common mistakes BASH programmers make is to write a loop like this:

for f in $(ls *.mp3); do    # Wrong!
    some command $i         # Wrong!

for f in $(ls)              # Wrong!
for f in `ls`               # Wrong!

for f in $(find . -type f)  # Wrong!
for f in `find . -type f`   # Wrong!

files=($(find . -type f))   # Wrong!
for f in ${files[@]}        # Wrong!

Yes, it would be great if you could just treat the output of `ls` or `find` as a list of filenames and iterate over it. But you cannot. This entire approach is fatally flawed, and there is no trick that can make it work. You must use an entirely different approach.

There are at least 6 problems with this:

1. If a filename contains whitespace, it undergoes WordSplitting.  Assuming we have a file named `01 - Don't Eat the Yellow Snow.mp3` in the current directory, the `for` loop will iterate over each word in the resulting file name: 01, -, Don't, Eat, etc.
1. If a filename contains glob characters, it undergoes filename expansion ("globbing").  If `ls` produces any output containing a * character, the word containing it will become recognized as a pattern and substituted with a list of all filenames that match it.
1. If the command substitution returns multiple filenames, there is no way to tell where the first one ends and the second one begins.  Pathnames may contain any character except NUL.  Yes, this includes newlines.
1. The `ls` utility may mangle filenames.  Depending on which platform you're on, which arguments you used (or didn't use), and whether its standard output is pointing to a terminal or not, `ls` may randomly decide to replace certain characters in a filename with "?", or simply not print them at all. Never try to parse the output of ls. `ls` is just plain unnecessary. It's an external command whose output is intended specifically to be read by a human, not parsed by a script.

1. The CommandSubstitution strips all trailing newline characters from its output. That may seem desirable since `ls` adds a newline, but if the last filename in the list ends with a newline,


or `$()` will remove that one also.

1. In the `ls` examples, if the first filename starts with a hyphen, it may lead to pitfall #3.

You can't simply double-quote the substitution either:

for f in "$(ls *.mp3)"; do     # Wrong!

This causes the entire output of `ls` to be treated as a single word. Instead of iterating over each file name, the loop will only execute once, assigning to `f` a string with all the filenames rammed together.

Nor can you simply change IFS to a newline. Filenames can also contain newlines.

Another variation on this theme is abusing word splitting and a `for` loop to (incorrectly) read lines of a file. For example:

for line in $(cat file); do ...     # Wrong!

This doesn't work! Especially if those lines are filenames. Bash (or any other Bourne family shell) just doesn't work this way.

So, what's the right way to do it?

There are several ways, primarily depending on whether you need a recursive expansion or not.

If you don't need recursion, you can use a simple glob. Instead of `ls`:

for file in ./*.mp3; do    # Better! and...
    some command "$file"   # ...always double-quote expansions!

POSIX shells such as Bash have the globbing feature specifically for this purpose -- to allow the shell to expand patterns into a list of matching filenames. There is no need to interpret the results of an external utility. Because globbing is the very last expansion step, each match of the `./*.mp3` pattern correctly expands to a separate word, and isn't subject to the effects of an unquoted expansion.

Question: What happens if there are no *.mp3-files in the current directory? Then the for loop is executed once, with i="./*.mp3", which is not the expected behavior! The workaround is to test whether there is a matching file:

for file in ./*.mp3; do
    [ -e "$file" ] || continue
    some command "$file"

Another solution is to use Bash's `shopt -s nullglob` feature, though this should only be done after reading the documentation and carefully considering the effect of this setting on all other globs in the script.

If you need recursion, the standard solution is `find`. When using find, be sure you use it properly. For POSIX sh portability, use the `-exec` option:

find . -type f -name '*.mp3' -exec some command {} \;

# Or, if the command accepts multiple input filenames:

find . -type f -name '*.mp3' -exec some command {} +

If you're using bash, then you have two additional options. One is to use GNU or BSD `find`'s `-print0` option, together with bash's `read -d ` option and a ProcessSubstitution:

while IFS= read -r -d '' file; do
  some command "$file"
done < <(find . -type f -name '*.mp3' -print0)

The advantage here is that "some command" (indeed, the entire `while` loop body) is executed in the current shell. You can set variables and have them persist after the loop ends.

The other option, available in Bash 4.0 and higher, is `globstar`, which permits a glob to be expanded recursively:

shopt -s globstar
for file in ./**/*.mp3; do
  some command "$file"

Note the double quotes around `$file` in the examples above. This leads to our second pitfall:


cp $file $target

What's wrong with the command shown above? Well, nothing, if you happen to know in advance that `$file` and `$target` have no white space or wildcards in them. However, the results of the expansions are still subject to WordSplitting and pathname expansion. Always double-quote parameter expansions.

cp -- "$file" "$target"

Without the double quotes, you'll get a command like `cp 01 - Don't Eat the Yellow Snow.mp3 /mnt/usb`, which will result in errors like

cp: cannot stat `01': No such file or directory

. If `$file` has wildcards in it (* or ? or [), they will be expanded if there are files that match them. With the double quotes, all's well, unless "$file" happens to start with a `-`, in which case `cp` thinks you're trying to feed it command line options (See pitfall #3 below.)

Even in the somewhat uncommon circumstance that you can guarantee the variable contents, it is conventional and good practice to quote parameter expansions, especially if they contain file names. Experienced script writers will always use quotes except perhaps for a small number of cases in which it is absolutely obvious from the immediate code context that a parameter contains a guaranteed safe value. Experts will most likely consider the `cp` command in the title always wrong. You should too.


Filenames with leading dashes

Filenames with leading dashes can cause many problems. Globs like `*.mp3` are sorted into an expanded list (according to your current locale), and `-` sorts before letters in most locales. The list is then passed to some command, which may incorrectly interpret the `-filename` as an option. There are two major solutions to this.

One solution is to insert `--` between the command (like `cp`) and its arguments. That tells it to stop scanning for options, and all is well:

cp -- "$file" "$target"

There are potential problems with this approach. You have to be sure to insert `--` for every usage of the parameter in a context where it might possibly be interpreted as an option -- which is easy to miss and may involve a lot of redundancy.

Most well-written option parsing libraries understand this, and the programs that use them correctly should inherit that feature for free. However, still be aware that it is ultimately up to the application to recognize end of options. Some programs that manually parse options, or do it incorrectly, or use poor 3rd-party libraries may not recognize it. Standard utilities should, with a few exceptions that are specified by POSIX. `echo` is one example.

Another option is to ensure that your filenames always begin with a directory by using relative or absolute pathnames.

for i in ./*.mp3; do
    cp "$i" /target

In this case, even if we have a file whose name begins with `-`, the glob will ensure that the variable always contains something like `./-foo.mp3`, which is perfectly safe as far as `cp` is concerned.

Finally, if you can guarantee that all results will have the same prefix, and are only using the variable a few times within a loop body, you can simply concatenate the prefix with the expansion. This gives a theoretical savings in generating and storing a few extra characters for each word.

for i in *.mp3; do
    cp "./$i" /target


[ $foo = "bar" ]

This is very similar to the issue in pitfall #2, but I repeat it because it's so important. In the example above, the quotes are in the wrong place. You do not need to quote a string literal in bash (unless it contains metacharacters or pattern characters). But you should quote your variables if you aren't sure whether they could contain white space or wildcards.

This example can break for several reasons:

* If a variable referenced in `[` doesn't exist, or is blank, then the `[` command would end up looking like:


[ = "bar" ] # Wrong!
. ...and will throw the error: `unary operator expected`. (The `=` operator is binary, not unary, so the `[` command is rather shocked to see it there.)
* If the variable contains internal whitespace, then it gets split into separate words before the `[` command sees it. Thus:


[ multiple words here = "bar" ]
. While that may look OK to you, it's a syntax error as far as `[` is concerned. The correct way to write this is:


[ "$foo" = bar ] # Right!
. This works fine on POSIX-conformant implementations even if `$foo` begins with a `-`, because POSIX `[` determines its action depending on the number of arguments passed to it. Only very ancient shells have a problem with this, and you shouldn't worry about them when writing new code (see the `x"$foo"` workaround below).

In Bash and many other ksh-like shells, there is a superior alternative which uses the [[BashFAQ/031|keyword.

# Bash / Ksh
[[ $foo == bar ]] # Right!

You don't need to quote variable references on the left-hand side of `=` in `[[ ]]` because they don't undergo word splitting or globbing, and even blank variables will be handled correctly. On the other hand, quoting them won't hurt anything either. Unlike `[` and `test`, you may also use the identical `==`. Do note however that comparisons using `[[` perform pattern matching against the string on the right hand side, not just a plain string comparison. To make the string on the right literal, you must quote it if any characters that have special meaning in pattern matching contexts are used.

# Bash / Ksh
[[ $foo == "$match" ]] # Good! Unquoted would also match against the pattern b*r.

You may have seen code like this:

# POSIX / Bourne
[ x"$foo" = xbar ] # Ok, but usually unnecessary.

The `x"$foo"` hack is required for code that must run on very ancient shells which lack [[BashFAQ/031|[[]], and have a more primitive `[`, which gets confused if `$foo` begins with a `-`. On said older systems, `[` still doesn't care whether the token on the right hand side of the `=` begins with a `-`. It just uses it literally. It's just the left-hand side that needs extra caution.

Note that shells that require this workaround are not POSIX-conforming. Even the Heirloom Bourne shell doesn't require this (probably the non-POSIX Bourne shell clone that's still most widely in use as a system shell). Such extreme portability is rarely a requirement and makes your code less readable (and uglier).


cd $(dirname "$f")

This is yet another quoting error. As with a variable expansion, the result of a CommandSubstitution undergoes WordSplitting and pathname expansion. So you should quote it:

cd -P -- "$(dirname -- "$f")"

What's not obvious here is how the quotes nest. A C programmer reading this would expect the first and second double-quotes to be grouped together; and then the third and fourth. But that's not the case in Bash. Bash treats the double-quotes inside the command substitution as one pair, and the double-quotes outside the substitution as another pair.

Another way of writing this: the parser treats the command substitution as a "nesting level", and the quotes inside it are separate from the quotes outside it.


[ "$foo" = bar && "$bar" = foo ]

You can't use `&&` inside the old test (or [) command. The Bash parser sees `&&` outside of `[[ ]]` or `(( ))` and breaks your command into two commands, before and after the `&&`. Use one of these instead:

[ bar = "$foo" ] && [ foo = "$bar" ] # Right! (POSIX)
[[ $foo = bar && $bar = foo ]]       # Also right! (Bash / Ksh)

(Note that we reversed the constant and the variable inside `[` for the legacy reasons discussed in pitfall #4. We could also have reversed the `[[` case, but the expansions would require quoting to prevent interpretation as a pattern.) The same thing applies to `||`. Either use `[[` instead, or use two `[` commands.

Avoid this:

[ bar = "$foo" -a foo = "$bar" ] # Not portable.

The binary `-a` and `-o`, and `(` / `)` (grouping) operators are XSI extensions to the POSIX standard. All are marked as obsolescent in POSIX-2008. They should not be used in new code. One of the practical problems with `[ A = B -a C = D ]` (or `-o`) is that [does not specify] the results of a `test` or `[` command with more than 4 arguments. It probably works in most shells, but you can't count on it. If you have to write for POSIX shells, then you should use two `test` or `[` commands separated by a `&&` operator instead.


[[ $foo > 7 ]]

There are multiple issues here. First, the [[BashFAQ/031|command should not be used solely for evaluating arithmetic expressions. It should be used for test expressions involving one of the supported test operators. Though technically you can do math using some of `[[`'s operators, it only makes sense to do so in conjunction with one of the non-math test operators somewhere in the expression. If you just want to do a numeric comparison (or any other shell arithmetic), it is much better to just use `(( ))` instead:

# Bash / Ksh
((foo > 7))     # Right!
[[ foo -gt 7 ]] # Works, but is pointless. Most will consider it wrong. Use ((...)) or let instead.

If you use the `>` operator inside `[[ ]]`, it's treated as a string comparison (test for collation order by locale), not an integer comparison. This may work sometimes, but it will fail when you least expect it. If you use `>` inside `[ ]`, it's even worse: it's an output redirection. You'll get a file named `7` in your directory, and the test will succeed as long as `$foo` is not empty.

If strict POSIX-conformance is a requirement, and `((` is not available, then the correct alternative using old-style `[` is

[ "$foo" -gt 7 ]       # Also right!
[ $((foo > 7)) -ne 0 ] # POSIX-compatible equivalent to ((, for more general math operations.

Note that the `test ... -gt` command will fail in interesting ways if `$foo` is not an integer. Therefore, there's not much point in quoting it properly other than for performance and to confine the arguments to a single word to reduce the likelihood of obscure side-effects possible in some shells.

If the input to any arithmetic context (including `((` or `let`), or `[` test expression involving numeric comparisons can't be guaranteed then you must always validate your input before evaluating the expression.

case $foo in
        printf '$foo expanded to a non-digit: %s\n' "$foo" >&2
        exit 1
        [ $foo -gt 7 ]


grep foo bar | while read -r; do ((count++)); done

The code above looks OK at first glance, doesn't it? Sure, it's just a poor implementation of `grep -c`, but it's intended as a simplistic example. Changes to `count` won't propagate outside the `while` loop because each command in a pipeline is executed in a separate SubShell. This surprises almost every Bash beginner at some point.

POSIX doesn't specify whether or not the last element of a pipeline is evaluated in a subshell. Some shells such as ksh93 and Bash >= 4.2 with `shopt -s lastpipe` enabled will run the `while` loop in this example in the original shell process, allowing any side-effects within to take effect. Therefore, portable scripts must be written in such a way as to not depend upon either behavior.

For workarounds for this and similar issues, please see Bash FAQ #24. It's a bit too long to fit here.


if [grep foo myfile]

Many beginners have an incorrect intuition about `if` statements brought about by seeing the very common pattern of an `if` keyword followed immediately by a `[` or `[[`. This convinces people that the `[` is somehow part of the `if` statement's syntax, just like parentheses used in C's `if` statement.

This is not the case! `if` takes a command. `[` is a command, not a syntax marker for the `if` statement. It's equivalent to the `test` command, except that the final argument must be a `]`. For example:

if [ false ]; then echo "HELP"; fi
if test false; then echo "HELP"; fi

are equivalent -- both checking that the argument "false" is non-empty. In both cases HELP will always be printed, to the surprise of programmers from other languages guessing about shell syntax.

The syntax of an `if` statement is:

elif <COMMANDS> # optional
else <COMMANDS> # optional
fi # required

Once again, `[` is a command. It takes arguments like any other regular simple command. `if` is a compound command which contains other commands -- and there is no [ in its syntax!

While bash has a builtin command `[` and thus `knows` about `[` it has nothing special to do with `]`. Bash only passes `]` as argument to the `[` command, which requires `]` to be the last argument only to make scripts look better.

There may be zero or more optional `elif` sections, and one optional `else` section.

The `if` compound command is made up of two or more sections containing lists of commands, each delimited by a `then`, `elif`, or `else` keyword, and is terminated by the `fi` keyword. The exit status of the final command of the first section and each subsequent `elif` section determines whether each corresponding `then` section is evaluated. Another `elif` is evaluated until one of the `then` sections is executed. If no `then` section is evaluated, then the `else` branch is taken, or if no `else` is given, the `if` block is complete and the overall `if` command returns 0 (true).

If you want to make a decision based on the output of a `grep` command, you do not want to enclose it in parentheses, brackets, backticks, or any other syntax! Just use `grep` as the `COMMANDS` after the `if`, like this:

if grep -q fooregex myfile; then

If the `grep` matches a line from `myfile`, then the exit code will be 0 (true), and the `then` part will be executed. Otherwise, if there are no matches, `grep` will return non-zero and the overall `if` command will be zero.

See also:

* BashGuide/TestsAndConditionals


if [bar="$foo"]; then ...

[bar="$foo"]   # Wrong!
[ bar="$foo" ] # Still wrong!

As explained in the previous example, `[` is a command (which can be proven with `type -t [` or `whence -v [`). Just like with any other simple command, Bash expects the command to be followed by a space, then the first argument, then another space, etc. You can't just run things all together without putting the spaces in! Here is the correct way:

if [ bar = "$foo" ]; then ...

Each of `bar`, `=`, the expansion of `"$foo"`, and `]` is a separate argument to the `[` command. There must be whitespace between each pair of arguments, so the shell knows where each argument begins and ends.


if [ [ a = b ] && [ c = d ] ]; then ...

Here we go again. `[` is a command. It is not a syntactic marker that sits between `if` and some sort of C-like "condition". Nor is it used for grouping. You cannot take C-like `if` commands and translate them into Bash commands just by replacing parentheses with square brackets!

If you want to express a compound conditional, do this:

if [ a = b ] && [ c = d ]; then ...

Note that here we have two commands after the `if`, joined by an `&&` (logical AND, shortcut evaluation) operator. It's precisely the same as:

if test a = b && test c = d; then ...

If the first `test` command returns false, the body of the `if` statement is not entered. If it returns true, then the second `test` command is run; and if that also one returns true, then the body of the `if` statement will be entered. (C programmers are already familiar with `&&`. Bash uses the same short-circuit evaluation. Likewise `||` does short-circuit evaluation for the OR operation.)

The [[BashFAQ/031|keyword does permit the use of `&&`, so it could also be written this way:

if [[ a = b && c = d ]]; then ...

See pitfall #6 for a pitfall related to tests combined with conditional operators.


read $foo

You don't use a `$` before the variable name in a `read` command. If you want to put data into the variable named `foo`, you do it like this:


 read foo

Or more safely:


 IFS= read -r foo

`read $foo` would read a line of input and put it in the variable(s) whose name(s) are in `$foo`. This might be useful if you actually intended `foo` to be a reference to some other variable; but in the majority of cases, this is simply a bug.


cat file | sed s/foo/bar/ > file

You cannot read from a file and write to it in the same pipeline. Depending on what your pipeline does, the file may be clobbered (to 0 bytes, or possibly to a number of bytes equal to the size of your operating system's pipeline buffer), or it may grow until it fills the available disk space, or reaches your operating system's file size limitation, or your quota, etc.

If you want to make a change to a file safely, other than appending to the end of it, use a text editor.


 printf %s\\n ',s/foo/bar/g' w q | ed -s file

If you are doing something that cannot be done with a text editor there must be a temporary file created at some point(*). For example, the following is completely portable:


 sed 's/foo/bar/g' file > tmpfile && mv tmpfile file

The following will only work on GNU sed 4.x:


 sed -i 's/foo/bar/g' file(s)

Note that this also creates a temporary file, and does the same sort of renaming trickery -- it just handles it transparently.

And the following equivalent command requires perl 5.x (which is probably more widely available than GNU sed 4.x):


 perl -pi -e 's/foo/bar/g' file(s)

For more details on replacing contents of files, please see Bash FAQ #21.

(*) `sponge` from [[1]] uses this example in its manual:


 sed '...' file | grep '...' | sponge file

Rather than using a temporary file plus an atomic `mv`, this version "soaks up" (the actual description in the manual!) all the data, before opening and writing to the `file`. This version will cause data loss if the program or system crashes during the write operation, because there's no copy of the original file on disk at that point.

Using a temporary file + `mv` still incurs a slight risk of data loss in case of a system crash / power loss; to be 100% certain that either the old or the new file will survive a power loss, you must use `sync` before the `mv`.


echo $foo

This relatively innocent-looking command causes massive confusion. Because the `$foo` isn't quoted, it will not only be subject to WordSplitting, but also file globbing. This misleads Bash programmers into thinking their variables contain the wrong values, when in fact the variables are OK -- it's just the word splitting or filename expansion that's messing up their view of what's happening.


 msg="Please enter a file name of the form *.zip"
 echo $msg

This message is split into words and any globs are expanded, such as the *.zip. What will your users think when they see this message:


 Please enter a file name of the form

To demonstrate:


 var="*.zip"   # var contains an asterisk, a period, and the word "zip"
 echo "$var"   # writes *.zip
 echo $var     # writes the list of files which end with .zip

In fact, the `echo` command cannot be used with absolute safety here. If the variable contains `-n` for example, `echo` will consider that an option, rather than data to be printed. The only absolutely sure way to print the value of a variable is using `printf`:


 printf "%s\n" "$foo"



No, you don't assign a variable by putting a `$` in front of the variable name. This isn't perl.


foo = bar

No, you can't put spaces around the `=` when assigning to a variable. This isn't C. When you write `foo = bar` the shell splits it into three words. The first word, `foo`, is taken as the command name. The second and third become the arguments to that command.

Likewise, the following are also wrong:


 foo= bar    # WRONG!
 foo =bar    # WRONG!
 $foo = bar; # COMPLETELY WRONG!

 foo=bar     # Right.
 foo="bar"   # More Right.


echo <<EOF

A here document is a useful tool for embedding large blocks of textual data in a script. It causes a redirection of the lines of text in the script to the standard input of a command. Unfortunately, `echo` is not a command which reads from stdin.


  # This is wrong:
  echo <<EOF
  Hello world
  How's it going?

  # This is what you were trying to do:
  cat <<EOF
  Hello world
  How's it going?

  # Or, use quotes which can span multiple lines (efficient, echo is built-in):
  echo "Hello world
  How's it going?"

Using quotes like that is fine -- it works great, in all shells -- but it doesn't let you just drop a block of lines into the script. There's syntactic markup on the first and last line. If you want to have your lines untouched by shell syntax, and don't want to spawn a `cat` command, here's another alternative:


  # Or use printf (also efficient, printf is built-in):
  printf %s "\
  Hello world
  How's it going?

In the `printf` example, the `\` on the first line prevents an extra newline at the beginning of the text block. There's a literal newline at the end (because the final quote is on a new line). The lack of `\n` in the printf format argument prevents `printf` adding an extra newline at the end. The `\` trick won't work in single quotes. If you need/want single quotes around the block of text, you have two choices, both of which necessitate shell syntax "contaminating" your data:


  printf %s \
  'Hello world

  printf %s 'Hello world


su -c 'some command'

This syntax is almost correct. The problem is, on many platforms, `su` takes a `-c` argument, but it's not the one you want. For example, on OpenBSD:


 $ su -c 'echo hello'
 su: only the superuser may specify a login class

You want to pass `-c 'some command'` to a shell, which means you need a username before the `-c`.


 su root -c 'some command' # Now it's right.

`su` assumes a username of root when you omit one, but this falls on its face when you want to pass a command to the shell afterward. You must supply the username in this case.


cd /foo; bar

If you don't check for errors from the `cd` command, you might end up executing `bar` in the wrong place. This could be a major disaster, if for example `bar` happens to be `rm -f *`.

You must always check for errors from a `cd` command. The simplest way to do that is:


 cd /foo && bar

If there's more than just one command after the `cd`, you might prefer this:


 cd /foo || exit 1
 bat ... # Lots of commands.

`cd` will report the failure to change directories, with a stderr message such as "bash: cd: /foo: No such file or directory". If you want to add your own message in stdout, however, you could use command grouping:


 cd /net || { echo >&2 "Can't read /net. Make sure you've logged in to the Samba network, and try again."; exit 1; }

Note there's a required space between `{` and `echo`, and a required `;` before the closing `}`. You could also write a `die` function, if you prefer.

Some people also like to enable set -e to make their scripts abort on any command that returns non-zero, but this can be rather tricky to use correctly (since many common commands may return a non-zero for a warning condition, which you may not want to treat as fatal).

By the way, if you're changing directories a lot in a Bash script, be sure to read the Bash help on `pushd`, `popd`, and `dirs`. Perhaps all that code you wrote to manage `cd`'s and `pwd`'s is completely unnecessary.

Speaking of which, compare this:


 find ... -type d -print0 | while IFS= read -r -d '' subdir; do
   cd "$subdir" && whatever && ...
   cd "$here"

With this:


 find ... -type d -print0 | while IFS= read -r -d '' subdir; do
   (cd "$subdir" || exit; whatever; ...)

Forcing a SubShell here causes the `cd` to occur only in the subshell; for the next iteration of the loop, we're back to our normal location, regardless of whether the `cd` succeeded or failed. We don't have to change back manually, and we aren't stuck in a neverending string of `... && ...` logic preventing the use of other conditionals. The subshell version is simpler and cleaner (albeit a tiny bit slower).

Another approach is to `cd` unconditionally to where we're supposed to be, at the start of each loop iteration:


 find ... -type d -print0 | while IFS= read -r -d '' subdir; do
    cd "$here" || continue
    cd "$subdir" || continue

At least this way, we can `continue` to the next loop iteration and don't have to string an indefinite series of `&&` together to ensure that we reach the `cd` at the end of the loop body.


[ bar == "$foo" ]

The `==` operator is not valid for the POSIX `[` command. Use `=` or the [[BashFAQ/031|keyword instead.


 [ bar = "$foo" ] && echo yes
 [[ bar == $foo ]] && echo yes

In Bash, `[ "$x" == y ]` is accepted as an extension, which often leads Bash programmers to think it's the correct syntax. It's not; it's a Bashism. If you're going to use Bashisms, you might as well just use `[[` instead.


for i in {1..10}; do ./something &; done

You cannot put a `;` immediately after an `&`. Just remove the extraneous `;` entirely.


 for i in {1..10}; do ./something & done



 for i in {1..10}; do
   ./something &

`&` already functions as a command terminator, just like `;` does. And you cannot mix the two.

In general, a `;` can be replaced by a newline, but not all newlines can be replaced by `;`.


cmd1 && cmd2 || cmd3

Some people try to use `&&` and `||` as a shortcut syntax for `if ... then ... else ... fi`, perhaps because they think they are being clever. For instance,


 [[ -s $errorlog ]] && echo "Uh oh, there were some errors." || echo "Successful."

However, this construct is not completely equivalent to `if ... fi` in the general case. The command that comes after the `&&` also generates an exit status, and if that exit status isn't "true" (0), then the command that comes after the `||` will also be invoked. For example:


 true && ((i++)) || ((i--))  # WRONG!
 echo "$i"                   # Prints 0

What happened here? It looks like `i` should be 1, but it ends up 0. Why? Because both the `i++` and the `i--` were executed. The `((i++))` command has an exit status, and that exit status is derived from a C-like evaluation of the expression inside the parentheses. That expression's value happens to be 0 (the initial value of `i`), and in C, an expression with an integer value of 0 is considered false. So `((i++))` (when `i` is 0) has an exit status of 1 (false), and therefore the `((i--))` command is executed as well.

Another clever person thinks that we can fix it by using the pre-increment operator, since the exit status from `++i` (with `i` initially 0) is true:


 true && (( ++i )) || (( --i ))  # STILL WRONG!
 echo "$i"                       # Prints 1 by dumb luck

But that's missing the point of the example. It just happens to work by coincidence, and you cannot rely on `x && y || z` if `y` has any chance of failure! (This example still fails if we initialize `i` to -1 instead of 0.)

If you need safety, or if you simply aren't sure how this works, or if anything in the preceding paragraphs wasn't completely clear, please just use the simple `if ... fi` syntax in your programs.


 if true; then
 echo "$i"    # Prints 1

This section also applies to Bourne shell, here is the code that illustrates it:


 true && { echo true; false; } || { echo false; true; }

Output is two lines "true" and "false", instead the single line "true".


echo "Hello World!"

The problem here is that, in an interactive Bash shell (in versions prior to 4.3), you'll see an error like:


 bash: !": event not found

This is because, in the default settings for an interactive shell, Bash performs csh-style history expansion using the exclamation point. This is not a problem in shell scripts; only in interactive shells.

Unfortunately, the obvious attempt to "fix" this won't work:


 $ echo "hi\!"

The easiest solution is unsetting the `histexpand` option: this can be done with `set +H` or `set +o histexpand`

. Question: Why is playing with `histexpand` more apropriate than single quotes?
 . I personally ran into this issue when I was manipulating song files, using commands like
mp3info -t "Don't Let It Show" ...
mp3info -t "Ah! Leah!" ...
 Using single quotes is extremely inconvenient because of all the songs with apostrophes in their titles. Using double quotes ran into the history expansion issue. (And imagine a file that has both in its name. The quoting would be atrocious.) Since I never actually use history expansion, my personal preference was to turn it off in `~/.bashrc`. -- GreyCat

These solutions will work:


 echo 'Hello World!'



 set +H
 echo "Hello World!"




Many people simply choose to put `set +H` or `set +o histexpand` in their `~/.bashrc` to deactivate history expansion permanently. This is a personal preference, though, and you should choose whatever works best for you.

Another solution is:


 echo "Hello, world$exmark"

In Bash 4.3 and newer, a double quote following `!` no longer triggers history expansion, but history expansion is still performed within double quotes, so while `echo "Hello World!"` is OK, these will still be a problem:


 echo "Hello, World!(and the rest of the Universe)"
 echo "foo!'bar'"


for arg in $*

Bash (like all Bourne shells) has a special syntax for referring to the list of positional parameters one at a time, and `$*` isn't it. Neither is `$@`. Both of those expand to the list of words in your script's parameters, not to each parameter as a separate word.

The correct syntax is:


 for arg in "$@"

 # Or simply:
 for arg

Since looping over the positional parameters is such a common thing to do in scripts, `for arg` defaults to `for arg in "$@"`. The double-quoted `"$@"` is special magic that causes each parameter to be used as a single word (or a single loop iteration). It's what you should be using at least 99% of the time.

Here's an example:


 # Incorrect version
 for x in $*; do
   echo "parameter: '$x'"

 $ ./myscript 'arg 1' arg2 arg3
 parameter: 'arg'
 parameter: '1'
 parameter: 'arg2'
 parameter: 'arg3'

It should have been written:


 # Correct version
 for x in "$@"; do
   echo "parameter: '$x'"
# or better:
 for x do
   echo "parameter: '$x'"

 $ ./myscript 'arg 1' arg2 arg3
 parameter: 'arg 1'
 parameter: 'arg2'
 parameter: 'arg3'


function foo()

This works in some shells, but not in others. You should never combine the keyword `function` with the parentheses `()` when defining a function.

Bash (at least some versions) will allow you to mix the two. Most of the shells won't accept that (zsh 4.x and perhaps above will - for example). Some shells will accept `function foo`, but for maximum portability, you should always use:


 foo() {


echo "~"

Tilde expansion only applies when '~' is unquoted. In this example echo writes '~' to stdout, rather than the path of the user's home directory.

Quoting path parameters that are expressed relative to a user's home directory should be done using $HOME rather than '~'. For instance consider the situation where $HOME is "/home/my photos".


 "~/dir with spaces" # expands to "~/dir with spaces"
 ~"/dir with spaces" # expands to "~/dir with spaces"
 ~/"dir with spaces" # expands to "/home/my photos/dir with spaces"
 "$HOME/dir with spaces" # expands to "/home/my photos/dir with spaces"


local varname=$(command)

When declaring a local variable in a function, the `local` acts as a command in its own right. This can sometimes interact oddly with the rest of the line -- for example, if you wanted to capture the exit status (`$?`) of the CommandSubstitution, you can't do it. `local`'s exit status masks it.

It's best to use separate commands for this:


 local varname

This is also true of `export`, which will similarly mask the exit status.

The next pitfall describes another issue with this syntax:


export foo=~/bar

Tilde expansion (with or without a username) is only guaranteed to occur when the tilde appears at the beginning of a word, either by itself or followed by a slash. It is also guaranteed to occur when the tilde appears immediately after the `=` in an assignment.

However, the `export` and `local` commands do not constitute an assignment. So, in some shells (like Bash), `export foo=~/bar` will undergo tilde expansion; in others (like dash), it will not.


 foo=~/bar; export foo    # Right!
 export foo="$HOME/bar"   # Right!


sed 's/$foo/good bye/'

In single quotes, bash parameter expansions like `$foo` do not get expanded. That is the purpose of single quotes, to protect characters like `$` from the shell.

Change the quotes to double quotes:


 foo="hello"; sed "s/$foo/good bye/"

But keep in mind, if you use double quotes you might need to use more escapes. See the Quotes page.


tr [A-Z] [a-z]

There are (at least) three things wrong here. The first problem is that `[A-Z]` and `[a-z]` are seen as globs by the shell. If you don't have any single-lettered filenames in your current directory, it'll seem like the command is correct; but if you do, things will go wrong. Probably at 0300 hours on a weekend.

The second problem is that this is not really the correct notation for `tr`. What this actually does is translate '[' into '['; anything in the range A-Z into a-z; and ']' into ']'. So you don't even need those brackets, and the first problem goes away.

The third problem is that depending on the locale, A-Z or a-z may not give you the 26 ASCII characters you were expecting. In fact, in some locales z is in the middle of the alphabet! The solution to this depends on what you want to happen:


 # Use this if you want to change the case of the 26 latin letters
 LC_COLLATE=C tr A-Z a-z

 # Use this if you want the case conversion to depend upon the locale, which might be more like what a user is expecting
 tr '[:upper:]' '[:lower:]'

The quotes are required on the second command, to avoid globbing.


ps ax | grep gedit

The fundamental problem here is that the name of a running process is inherently unreliable. There could be more than one legitimate gedit process. There could be something else disguising itself as gedit (changing the reported name of an executed command is trivial). For real answers to this, see ProcessManagement.

The following is the quick and dirty stuff.

Searching for the PID of (for example) gedit, many people start with

$ ps ax | grep gedit
10530 ?        S      6:23 gedit
32118 pts/0    R+     0:00 grep gedit

which, depending on a RaceCondition, often yields grep itself as a result. To filter grep out:

ps ax | grep -v grep | grep gedit   # will work, but ugly

An alternative to this is to use:

ps ax | grep '[g]edit'              # quote to avoid shell GLOB

This will ignore the grep itself in the process table as that is [g]edit and grep is looking for gedit once evaluated.

On GNU/Linux, the parameter -C can be used instead to filter by commandname:

$ ps -C gedit
  PID TTY          TIME CMD
10530 ?        00:06:23 gedit

But why bother when you could just use pgrep instead?

$ pgrep gedit

Now in a second step the PID is often extracted by awk or cut:

$ ps -C gedit | awk '{print $1}' | tail -n1

but even that can be handled by some of the trillions of parameters for ps:

$ ps -C gedit -opid=

If you're stuck in 1992 and aren't using pgrep, you could use the ancient, obsolete, deprecated pidof (GNU/Linux only) instead:

$ pidof gedit

and if you need the PID to kill the process, pkill might be interesting for you. Note however that, for example, `pgrep/pkill ssh` would also find processes named sshd, and you wouldn't want to kill those.

Unfortunately some programs aren't started with their name, for example firefox is often started as firefox-bin, which you would need to find out with - well - ps ax | grep firefox. :) Or, you can stick with pgrep by adding some parameters:

$ pgrep -fl firefox
3128 /usr/lib/firefox/firefox
7120 /usr/lib/firefox/plugin-container /usr/lib/flashplugin-installer/ -greomni /usr/lib/firefox/omni.ja 3128 true plugin

Please read ProcessManagement. Seriously.


printf "$foo"

This isn't wrong because of quotes, but because of a format string exploit. If `$foo` is not strictly under your control, then any `\` or `%` characters in the variable may cause undesired behavior.

Always supply your own format string:

printf %s "$foo"
printf '%s\n' "$foo"


for i in {1..$n}

The BashParser performs BraceExpansion before any other expansions or substitutions. So the brace expansion code sees the literal `$n`, which is not numeric, and therefore it doesn't expand the curly braces into a list of numbers. This makes it nearly impossible to use brace expansion to create lists whose size is only known at run-time.

Do this instead:

for ((i=1; i<=n; i++)); do

In the case of simple iteration over integers, an arithmetic `for` loop should almost always be preferred over brace expansion to begin with, because brace expansion pre-expands every argument which can be slower and unnecessarily consumes memory.


if $foo = $bar (depending on intent)

When the right-hand side of an `=` operator inside [[BashFAQ/031|[[]] is not quoted, bash does pattern matching against it, instead of treating it as a string. So, in the code above, if `bar` contains `*`, the result will always be true. If you want to check for equality of strings, the right-hand side should be quoted:

if [[ $foo = "$bar" ]]

If you want to do pattern matching, it might be wise to choose variable names that indicate the right-hand side contains a pattern. Or use comments.

It's also worth pointing out that if you quote the right-hand side of `=~` it also forces a simple string comparison, rather than a regular expression matching. This leads us to:


if $foo =~ 'some RE'

The quotes around the right-hand side of the `=~` operator cause it to become a string, rather than a RegularExpression. If you want to use a long or complicated regular expression and avoid lots of backslash escaping, put it in a variable:

re='some RE'
if [[ $foo =~ $re ]]

This also works around the difference in how `=~` works across different versions of bash. Using a variable avoids some nasty and subtle problems.

The same problem occurs with pattern matching inside `[[`:

[[ $foo = "*.glob" ]]      # Wrong! *.glob is treated as a literal string.
[[ $foo = *.glob ]]        # Correct. *.glob is treated as a glob-style pattern.


[ -n $foo ] or [ -z $foo ]

When using the `[` command, you must quote each substitution that you give it. Otherwise, `$foo` could expand to 0 words, or 42 words, or any number of words that isn't 1, which breaks the syntax.

[ -n "$foo" ]
[ -z "$foo" ]
[ -n "$(some command with a "$file" in it)" ]

# [[ doesn't perform word-splitting or glob expansion, so you could also use:
[[ -n $foo ]]
[[ -z $foo ]]


-e "$broken_symlink" returns 1 even though $broken_symlink exists

Test follows symlinks, therefore if a symlink is broken, i.e. it points to a file that doesn't exists or is in a directory you don't have access to, test -e returns 1 for it even though it exists.

In order to work around it (and prepare against it) you should use:

# bash/ksh/zsh
[[ -e "$broken_symlink" || -L "$broken_symlink" ]]

# POSIX sh+test
[ -e "$broken_symlink" ] || [ -L "$broken_symlink" ]


ed file <<<"g/d\{0,3\}/s//e/g" fails

The problem caused because ed doesn't accept 0 for \{0,3\}.

You can check that the following do work:

ed file <<<"g/d\{1,3\}/s//e/g"

Note that this happens even though POSIX states that BRE (which is the Regular Expression flavor used by ed) [accept 0 as the minimum number of occurrences (see section 5)].


expr sub-string fails for "match"

This works reasonably well

most of the time

expr "$word" : ".\(.*\)"

But WILL fail for the word "match"

expr "$word" : ".\(.*\)"

The problem is "match" is a keyword. Solution (GNU only) is prefix with a '+'

expr + "$word" : ".\(.*\)"

Or, y'know, stop using `expr`. You can do everything `expr` does by using Parameter Expansion. What's that thing up there trying to do? Remove the first letter of a word? That can be done in POSIX shells using PE or Substring Expansion:

$ word=match
$ echo "${word#?}"    # PE
$ echo "${word:1}"    # SE

Seriously, there's no excuse for using `expr` unless you're on Solaris with its non-POSIX-conforming `/bin/sh`. It's an external process, so it's much slower than in-process string manipulation. And since nobody uses it, nobody understands what it's doing, so your code is obfuscated and hard to maintain.


On UTF-8 and Byte-Order Marks (BOM)

In general: Unix UTF-8 text does not use BOM. The encoding of plain text is determined by the locale or by mime types or other metadata. While the presence of a BOM would not normally damage a UTF-8 document meant only for reading by humans, it is problematic (often syntactically illegal) in any text file meant to be interpreted by automated processes such as scripts, source code, configuration files, and so on. Files starting with BOM should be considered equally foreign as those with MS-DOS linebreaks.

In shell scripting: 'Where UTF-8 is used transparently in 8-bit environments, the use of a BOM will interfere with any protocol or file format that expects specific ASCII characters at the beginning, such as the use of "#!" of at the beginning of Unix shell scripts.'



There isn't anything wrong with this expression, but you should be aware that command substitutions (all forms:


, `$(...)`, `$(<file)`,


, and `${ ...; }` (ksh)) remove any trailing newlines. This is often inconsequential or even desirable, but if you must preserve the literal output including any possible trailing newlines, it gets tricky because you have no way of knowing whether the output had them or how many. One ugly but usable workaround is to add a postfix inside the command substitution and remove it on the outside:

absolute_dir_path_x=$(readlink -fn -- "$dir_path"; printf x)

A less portable but arguably prettier solution is to use `read` with an empty delimiter.

# Ksh (or bash 4.2+ with lastpipe enabled)
readlink -fn -- "$dir_path" | IFS= read -rd '' absolute_dir_path

The downside to this method is that the `read` will always return false unless the command outputs a NUL byte causing only part of the stream to be read. The only way to get the exit status of the command is through `PIPESTATUS`. You could also intentionally output a NUL byte to force `read` to return true, and use `pipefail`.

set -o pipefail
{ readlink -fn -- "$dir_path"; printf '\0x'; } | IFS= read -rd '' absolute_dir_path

This is somewhat of a portability mess, as Bash supports both `pipefail` and `PIPESTATUS`, ksh93 supports `pipefail` only, and only recent versions of mksh support `pipefail`, while earlier versions supported `PIPESTATUS` only. Additionally, a bleeding-edge ksh93 version is required in order for `read` to stop at the NUL byte.


for file in ./* ; do if $file != *.*

One way to prevent programs from interpreting filenames passed to them as options is to use pathnames (see pitfall #3 above). For files under the current directory, names may be prefixed with a relative pathname `./`.

In the case of a pattern like `*.*` however, problems can arise because it matches a string of the form `./filename`. In a simple case, you can just use the glob directly to generate the desired matches. If however a separate pattern-matching step is required (e.g. the results have been preprocessed and stored in an array, and need to be filtered), it could be solved by taking the prefix into account in the pattern: `$file != ./*.* `, or by stripping the pattern from the match.

# Bash
shopt -s nullglob
for path in ./*; do
    [[ ${path##*/} != *.* ]] && rm "$path"

# Or even better
for file in *; do
    [[ $file != *.* ]] && rm "./$file"

# Or better still
for file in *.*; do
    rm "./$file"

Another possibility is to signal the end of options with a `--` argument. (Again, covered in #pf3).

shopt -s nullglob
for file in *; do
    [[ $file != *.* ]] && rm -- "$file"


somecmd 2>&1 >>logfile

This is by far the most common mistake involving redirections, typically performed by someone wanting to direct both stdout and stderr to a file or pipe will try this and not understand why stderr is still showing up on their terminal. If you're perplexed by this, you probably don't understand how [[2]] or possibly file descriptors work to begin with. Redirections are evaluated left-to-right before the command is executed. This semantically incorrect code essentially means: "first redirect standard error to where standard out is currently pointing (the tty), then redirect standard out to logfile". This is backwards. Standard error is already going to the tty. Use the following instead:

somecmd >>logfile 2>&1

See a more in-depth explanation, [descriptor explained], and BashGuide - redirection.


cmd; (( ! $? )) || die

`$?` is only required if you need to retrieve the exact status of the previous command. If you only need to test for success or failure (any non-zero status), just test the command directly. e.g.:

if cmd; then

Checking an exit status against a list of alternatives might follow a pattern like this:

case $status in
        echo success >&2
        echo 'Must supply a parameter, exiting.' >&2
        exit 1
        echo "Unknown error $status, exiting." >&2
        exit "$status"


y=$(( array[$x] ))

Due to [POSIX wording] of arithmetic expansion (which calls for expansion of command substitutions after parameter expansion), expansion of an array subscript inside an arithmetic expansion can lead to code injection exploits.

Yeah, that's a lot of big, confusing words. Here's how it breaks:

$ x='$(date >&2)'        # redirection is just so we can see everything happen
$ y=$((array[$x]))       # array doesn't even have to exist
Mon Jun  2 10:49:08 EDT 2014

Quoting `"$x"` won't help, either:

$ y=$((array["$x"]))
Mon Jun  2 10:51:03 EDT 2014

The two tricks that do work are:

# 1. Escape the $x so it isn't expanded prematurely.
$ y=$((array[\$x]))

# 2. Use the full ${array[$x]} syntax.
$ y=$((${array[$x]}))


read num; echo $((num+1))

Always validate your input (see BashFAQ/054) before using num in an arithmetic context as it allows code injection.

$ echo 'a[$(echo injection >&2)]' | bash -c 'read num; echo $((num+1))'


IFS=, read -ra fields <<< "$csv_line"

Unbelievable as it may seem, POSIX requires the treatment of IFS as a field terminator, rather than a field separator. What this means in our example is that if there's an empty field at the end of the input line, it will be discarded:

$ IFS=, read -ra fields <<< "a,b,"
$ declare -p fields
declare -a fields='([0]="a" [1]="b")'

Where did the empty field go? It was eaten for historical reasons ("because it's always been that way"). This behavior is not unique to bash; all conformant shells do it. A non-empty field is properly scanned:

$ IFS=, read -ra fields <<< "a,b,c"
$ declare -p fields
declare -a fields='([0]="a" [1]="b" [2]="c")'

So, how do we work around this nonsense? As it turns out, appending an IFS character to the end of the input string will force the scanning to work. If there was a trailing empty field, the extra IFS character "terminates" it so that it gets scanned. If there was a trailing non-empty field, the IFS character creates a new, empty field that gets dropped.

$ input="a,b,"
$ IFS=, read -ra fields <<< "$input,"
$ declare -p fields
declare -a fields='([0]="a" [1]="b" [2]="")'


export CDPATH=.:~/myProject

Do not export CDPATH.

Setting CDPATH in .bashrc is not an issue, but exporting it will cause any bash or sh script you run, that happen to use `cd`, to potentially change behaviour.

There are two problems. A script that does the following:

cd some/dir || exit
cmd to be run in some/dir

may change directory to `~/myProject/some/dir` instead of `./some/dir`, depending on what directories exist at the time. So the `cd` may succeed and take the script to the wrong directory, with potentially harmful effects of the following commands which now run in a different directory than intended.

The second problem is when `cd` is run in a context where the output is captured:

output=$(cd some/dir && some command)

As a side-effect when CDPATH is set, `cd` will output something like `/home/user/some/dir` to stdout to indicate that it found a directory through CDPATH, which in turn will end up in the output variable along with the intended output of `some command`.

A script can make itself immune to a CDPATH inherited from the environment by always prepending `./` to relative paths, or run `unset CDPATH` at the start of the script, but don't assume every scripter has taken this pitfall into account, so don't export CDPATH.


OIFS="$IFS"; ...; IFS="$OIFS"

Directly assigning a variable's value to a temporary variable isn't alone enough to restore its state. The assignment will always result in a set but empty temporary variable even if the initial variable was unset. This is a particular problem for IFS because an empty IFS has a completely different meaning from an unset IFS, and setting IFS to a temporary value for a command or two is a common requirement.

An easy workaround is to designate a prefix to distinguish set from unset vars, then strip it when finished.

# oIFS is unset or null implies IFS is null.

typeset oIFS=${IFS+_${IFS}}
IFS=/; echo "${array[*]}"
${oIFS:+'false'} unset -v IFS || IFS=${oIFS#_}

A local variable is usually preferable when possible.

f() {
  local IFS
  IFS=/; echo "${array[*]}"

Subshells are another possibility.

( IFS=/; echo "${array[*]}" )


hosts=( $(aws ...) )

It is not safe to populate an array with a raw `$(...)` CommandSubstitution. The output of the command undergoes word splitting (on all whitespace, even ones that are inside quotes) and then globbing. If there's a word like `*` or `eh?` or `[abc]` in the result, it will be expanded based on filenames in the current working directory.

To select a replacement, you need to know whether the command writes its output on a single line, or multiple lines. If it's a single line:

read -ra hosts < <(aws ...)

If it's multiple lines (and you're targeting bash 4.0 or later):

readarray -t hosts < <(aws ...)

If it's multiple lines (and you want compatibility with bash 3.x, or want your command's exit status to be reflected in success or failure of the `read` operation without depending on behavior only available in bash 4.4 and newer):

IFS=$'\n' read -r -d '' -a hosts < <(aws ... && printf '\0')

This will prevent globbing. It still won't help you if you needed to avoid splitting on quoted whitespace, but unfortunately nothing bash can do handles that case. For generalized CSV (comma-separated value) file handling, you really need to switch to a language that has a dedicated CSV input library.


Non-atomic writes with xargs -P

GNU `xargs` supports running multiple jobs in parallel. `-P n` where n is the number of jobs to run in parallel.

seq 100 | xargs -n1 -P10 echo "$a" | grep 5
seq 100 | xargs -n1 -P10 echo "$a" > myoutput.txt

This will work fine for many situations but has a deceptive flaw: If `$a` contains more than ~1000 characters, the `echo` may not be atomic (it may be split into multiple `write()` calls), and there is a risk that two lines will be mixed.

$ perl -e 'print "a"x2000, "\n"' > foo
$ strace -e write bash -c 'read -r foo < foo; echo "$foo"' >/dev/null
write(1, "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"..., 1008) = 1008
write(1, "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"..., 993) = 993
+++ exited with 0 +++

Obviously the same issue arises if there are multiple calls to `echo` or `printf`:

slowprint() {
  printf 'Start-%s ' "$1"
  sleep "$1"
  printf '%s-End\n' "$1"
export -f slowprint
seq 10 | xargs -n1 -I {} -P4 bash -c "slowprint {}"
# Compare to no parallelization
seq 10 | xargs -n1 -I {} bash -c "slowprint {}"
# Be sure to see the warnings in the next Pitfall!

Outputs from the parallel jobs are mixed together, because each job consists of two (or more) separate `write()` calls.

If you need the outputs unmixed, it is therefore recommended to use a tool that guarantees output will be serialized (such as GNU Parallel).

For further details see [demonstration of the mixing problem].


find . -exec sh -c 'echo {}' \;

This command contains a CodeInjection vulnerability. The filename that is found by `find` is injected into a shell command and parsed by `sh`. If the filename contains shell metacharacters like `;` or `$( ... )` then the filename may be executed as code by `sh'.

The "slowprint" example in the previous Pitfall would have been a CodeInjection bug if the input weren't guaranteed to be integers.

To be more precise, [find] does not specify whether an argument which contains more than just `{}` is expanded. GNU `find` allows this CodeInjection to occur. Other implementations choose a safer path:

# uname -a
HP-UX imadev B.10.20 A 9000/785 2008897791 two-user license
# find /dev/null -exec sh -c 'echo {}' \;

The correct approach is to separate the filename argument from the script argument:

find . -exec sh -c 'echo "$1"' x {} \;


sudo mycmd > /myfile

Redirection is done before the command is executed. Usually that doesn't matter, but with `sudo` we have a command being executed as a different user than the redirection.

If the redirection must be executed with `sudo`-granted privileges, then you need a wrapper:

sudo sh -c 'mycmd > /myfile'


sudo ls /foo/*

This is very similar to the previous pitfall. Globbing is also done before the command is executed. If the directory isn't readable by your normal user privileges, then you may need the globbing to be done in a shell that has the `sudo`-granted privileges:

sudo sh -c 'ls /foo/*'


myprogram 2>&-

Do not close stdin, stdout or stderr as a "shorthand" for redirecting to `/dev/null`. Write it out correctly.

myprogram 2>/dev/null

Why? Consider what happens when your program tries to write an error message to stderr. If stderr has been redirected to `/dev/null`, the write succeeds, and your program is free to carry on, secure in the knowledge that it has diligently reported the error condition.

But if stderr has been closed, then the write will fail. At that point, your program may do something unpredictable. It may carry on and ignore the failure, or it may immediately exit, considering the execution environment so broken that it cannot safely continue. Or whatever else the programmer decided the program should do when its world has become a dystopian hell.

All programs are assured that stdin, stdout and stderr will exist and will be readable/writable in an appropriate and reasonable manner. By closing one of them, you have violated your promise to this program. This is not acceptable.

Of course, an even better solution would be to actually log the errors somewhere, so you can go back and read them and figure out what's wrong.


Using xargs without -0

`xargs` splits on whitespace. This is unfortunate because whitespace is allowed in filenames and commonly used by GUI users. `xargs` also treats `'` and `"` specially, which can also lead to problems:

touch Dad\'s\ \"famous\"\ 1\'\ pizza.txt
touch Dad\'s\ 12\"\ records.txt
touch 2\"x1\'\ wood.txt
touch 2\"x4\"\ wood.txt

Here `xargs` warns:

# Do not do this
$ find . -type f | xargs wc
xargs: unmatched single quote; by default quotes are special to xargs unless you use the -0 option

Here `xargs` does not warn at all:

# Do not do this
echo * | xargs wc
find *famous* -type f | xargs wc
find *4* -type f | xargs wc

Instead use `xargs -0`:

# Do this instead
printf '%s\0' * | xargs -0 wc
find . -type f -name '*famous*' -print0 | xargs -0 wc
find . -type f -name '*4*' -exec wc {} +

If using `-0` is not simple, an alternative is to use GNU Parallel, which splits on \n. And while \n is also allowed in filenames they never occur unless your users are malicious. In any case: If you use `xargs` without `-0` put a comment in your code explaining why that is safe in your particular situation.

CategoryShell CategoryBashguide