STUDER 970

AUDIO CONSOLE

Prepared and edited by STUDER INTERNATIONAL TECHNICAL DOCUMENTATION
Althardstrasse 10, CH-8105 Regensdorf-Zürich, Switzerland
We reserve the right to make alterations.

Copyright by WILLI STUDER AG

Printed in Switzerland, Order No. 10.27.0803 (Ed. 1090)

1		General Information Dimensions Level Diagram Technical Data
2		Block Diagrams Audio Signalization
3		Alignment Instruction
4		Plug in Units 1.970.... Circuit Diagrams Diagrams for Component Placement Parts Lists
5		Plug in Units 1.913.... Circuit Diagrams Diagrams for Component Placement Parts List
6		Modular Sub-Cards 1.914.... Circuit Diagrams Component Lists Diagrams for Component Placement Parts List
7		```Europe PCB + Power Supply 1.915.../1.916.... Circuit Diagram Diagrams for Component Placement Parts List```
8		Connectors
9		Wiring List
10		Accessories

1. Dimensions 2
1.1 Cut Mixing Console 970 3
2. Level Diagram 5
3. Technical Data 9
3.1 Noise curve 11

1. Mechanische Abmessungen

Die Regiepulte 970 werden wahlweise mit einfach demontierbarem Stahlrohrrahmen für den transportablen Einsatz oder mit Holzkonsole und Kabelschacht zum festen Einbau geliefert.

Die Regiepultbreite richtet sich nach der Anzahl der zusammengefügten mechanischen Grundeinheiten.

1.

Dimensions

The audio console 970 is available with removable metal frame support for $O B$ application as also as a wooden console with integrated cable duct for stationary use.

The console width depends on the number of combined baseframes.

1.1 Querschnitt Regiepult 970 / Cut Mixing Console 970

∇
Messpunkte; siehe Kap. 3. Einmessen
Measuring points for Calibration; c.f. Section 3.
3. Technische Daten

```
Allgemeines:
- Spannungen in dBu beziehen sich immer auf 0,775V.
\[
0 \mathrm{dBu} \cong 0,775 \mathrm{~V}
\]
- Alle Eingangskanal- und Summmen-Flachbahnregler sind in Stellung 0 dB positioniert.
- Leitungsausgänge sind mit \(600 \Omega\) abgeschlossen.
- Externe Quellen haben einen Quellenwiderstand von \(\leq 200 \Omega\).
- Die Angaben gelten im Bereich von 31,5 Hz... 16 kHz .
- PPM-Version, Leitungspegel +6 dBu VU-Version, nominaler Ausgangspegel \(0 \mathrm{VU} \xlongequal{=}+4 \mathrm{dBu}\)
- Einsatzpunkt des Ausgangslimiters \(\widehat{\underline{~ S}}\) pitzen-Ausgangspegel \(+6 \mathrm{VU} \xlongequal{\wedge}+10 \mathrm{dBu}\)
```

Pegel:	- Empfindlichkeit Mikrofoneingang - Empfindlichkeit Leitungseingang - Empfindlichkeit Tape Eingang - Pegel an Einschleifpunkten und Direktausgängen - Ausgangspegel, Einstellbereich - Monitorpegel (symmetrisch, unbelastet)	$\begin{array}{r} -69 . .-9 \mathrm{dBu} \\ -9 \ldots+21 \mathrm{dBu} \\ +4 \ldots+21 \mathrm{dBu} \\ +6 \mathrm{dBu} \\ +6 \ldots+15 \mathrm{dBu} \\ +6 \ldots+15 \mathrm{dBu} \end{array}$
Gleichtaktunterdrückung:	- Mikrofoneingang - Leitungseingang	$\begin{aligned} & 15 \mathrm{kHz} \geq 60 \mathrm{~dB} \\ & 15 \mathrm{kHz} \geq 50 \mathrm{~dB} \end{aligned}$
Impedanzen:	- Mikrofoneingang - Leitungseingang/Tape Eingang - Quellenimpedanz der Leitungsausgänge	$\begin{array}{r} \geq 1,6 \mathrm{k} \Omega \\ \geq 10 \mathrm{k} \Omega \\ \leq 40 \Omega \end{array}$
Frequenzgänge:	- Filter ausgeschaltet 3 dB-Eckpunkte - Filter ausgeschaltet (ausserhalb kontinuierlich abfallend) - Trittschallfilter $12 \mathrm{~dB} /$ Oktave, -3 dB - Höhenregler, 20 kHz - Tiefenregler, 20 Hz - Präsenzfilter - einstellbar von 150 Hz ... 7 kHz	$\begin{array}{r} +0,5 \ldots-1 \mathrm{~dB} \\ \text { ca. } 4,5 \mathrm{~Hz} / 40 \mathrm{kHz} \\ 75 \mathrm{~Hz} \pm 5 \mathrm{~Hz} \\ \pm 15 \mathrm{~dB} \\ \pm 15 \mathrm{~dB} \\ \mathrm{Q}=1 \\ \pm 11 \mathrm{~dB} \end{array}$
Übersteuerungsreserven:	- Mikrofoneingang, Maximalpegel für $K_{3}=1 \% / 31,5 \mathrm{~Hz}$ - Leitungseingang, Maximalpegel für $K_{3}=1 \% / 31,5 \mathrm{~Hz}$ - Vor Kanalregler ($\mathrm{K}_{\mathrm{tot}}=1 \%$) - Vor Summenregler ($K_{\text {tot }}=1 \%$) - Maximalpegel der Leitungsausgänge, $R_{L}=300 \Omega$	$\begin{array}{r} +6 \mathrm{dBu} \\ +24 \mathrm{dBu} \\ 20 \mathrm{~dB} \\ 20 \mathrm{~dB} \\ +24 \mathrm{dBu} \end{array}$

Rauschspannung, unbewertet, MIKROFON:	- nach IEC 468-2 (DIN 45405) Äquivalente EingangsRauschspannung mit einer Rauschbandbreite von 23 kHz , Quellenimpedanz $=200 \Omega$	$\leq-125 \mathrm{dBu}$
Störspannungsabstand:	- PPM-Version, bezogen auf Leitungspegel +6 dBu - VU-Version, bezogen auf Spitzenausgangspegel $+6 \mathrm{VU} \xlongequal{\wedge}+10 \mathrm{dBu}$ - Am Summenausgang, Summenregler geschlossen - Ein Kanal, Eingangs- und Summenregler in Position 0 dB , Verstärkung Eingang $->$ Ausgang $=1$; - ohne Filter - mit Filter, linear - 11 Kanäle, alle Fader in Position 0 dB , Verstärkung Eingang $->$ Ausgang $=1$; - ohne Filter - mit Filter, linear	$\begin{aligned} & \geq 95 \mathrm{~dB} \\ & \geq 93 \mathrm{~dB} \\ & \geq 92 \mathrm{~dB} \\ & \\ & >85 \mathrm{~dB} \\ & >83 \mathrm{~dB} \end{aligned}$

Klirrdämpfung:	- PPM-Version, gemessen mit Leitungspegel +6 dBu . - VU-Version, gemessen mit nominalem Ausgangspegel 0 VU oder Spitzen-Ausgangspegel +6 VU . Verstärkung $=1,31,5 \mathrm{~Hz} . . .16 \mathrm{kHz}$ - alle zulässigen Pegel, gemäss Pegeldiagramm, $60 \mathrm{~Hz} . . .10 \mathrm{kHz}$	$<70 \mathrm{~dB}$ $<60 \mathrm{~dB}$
Übersprechdämpfung:	- von Kanal zu Kanal - ohne Panorama-Potentiometer - mit Panorama-Potentiometer - Kanalanwahlschalter ausgeschaltet - Faderdämpfung - Eingangsregler - Ausgangsregler	$\begin{array}{r} >80 \mathrm{~dB} \\ >70 \mathrm{~dB} \\ >90 \mathrm{~dB} \\ >100 \mathrm{~dB} \\ >90 \mathrm{~dB} \end{array}$

Stromversorgung:

Umgebungstemparatur:

Luftfeuchtigkeit:

- Netzspannungen, umschaltbar
100...240V, $\pm 10 \%$
- Leistungsaufnahme (970/3) ca. 150 VA
- Interne Betriebsspannungen;
- Verstärkerschaltungen $\pm 15 \mathrm{~V}$
- Logik-Schaltkreise -6V
- Mikrofon-Phantomspeisung +48V
- Betriebs-Temperaturbereich
$0^{\circ} \mathrm{C} . .+50^{\circ} \mathrm{C}$
($34^{\circ} \mathrm{F} . . .122^{\circ} \mathrm{F}$)

Sicherheit-Standard:

- gemäss IEC-Empfehlung, Publikation 65, Schutzklasse 1

3. Technical Data

General:	- Voltage specification dBu
	$0 \mathrm{dBu} \cong 0.775 \mathrm{~V}$
	Channel input faders and master faders are set to 0 dB mark. Line outputs are terminated with 600 Ω. External sources have a source impedance of $\leq 200 \Omega$ All data are valid within the frequency band from 31.5 Hz to 16 kHz . PPM version, line level +6 dBu VU version, nominal output level $0 \mathrm{VU} \xlongequal[=]{ }+4 \mathrm{dBu}$ Attack point of output limiter $\widehat{=}$ peak output level $+6 \mathrm{VU} \widehat{=}+10 \mathrm{dBu}$

Levels:	- Microphone input sensitivity - Line input sensitivity - Tape input sensitivity - Level at insertion points and tape inputs - Output level, adjustable within - Monitor level (transformerless, balanced, unloaded)	$\begin{array}{r} -69 \text { to }-9 \mathrm{dBu} \\ -9 \text { to }+21 \mathrm{dBu} \\ +4 \text { to }+21 \mathrm{dBu} \\ +6 \mathrm{dBu} \\ +6 \text { to } 15 \mathrm{dBu} \\ +6 \text { to }+15 \mathrm{dBu} \end{array}$
Common mode rejection:	- Microphone input - Line input	$\begin{aligned} & 15 \mathrm{kHz} \geq 60 \mathrm{~dB} \\ & 15 \mathrm{kHz} \geq 50 \mathrm{~dB} \end{aligned}$
Impedances:	- Impedance of microphone input - Impedance of line input and tape input - Internal impedance of line outputs	$\begin{aligned} & \geq 1.6 \mathrm{k} \Omega \\ & \geq 10 \mathrm{k} \Omega \\ & \leq 40 \Omega \end{aligned}$

Frequency response:	- Filters switched off 3 dB points - filters switched off (continuously decreasing outside this range) - Bass cut $12 \mathrm{~dB} /$ octave, -3 dB - High frequency equalizer, shelving at 20 kHz - Low frequency equalizer, shelving at 20 Hz - Presence equalizer - mid-frequency adjustable from 150 Hz to 7 kHz	$\begin{array}{r} +0.5 \mathrm{to} \mathrm{-1} \mathrm{~dB} \\ \approx 4.5 \mathrm{~Hz} / 40 \mathrm{kHz} \\ 75 \mathrm{~Hz} \pm 5 \mathrm{~Hz} \\ \pm 15 \mathrm{~dB} \\ \pm 15 \mathrm{~dB} \\ Q=1 \\ \pm 11 \mathrm{~dB} \end{array}$
Overload margin:	- Microphone input, max. level for 1% third harmonic at 31.5 Hz - Line input, max. level for 1% third harmonic at 31.5 Hz - Head room before channel fader (1% THD) - Head room before master fader (1% THD) - Max. line output level, $R_{L}=300 \Omega$	$1 \mathrm{Z} \quad \begin{array}{r} +6 \mathrm{dBu} \\ +24 \mathrm{dBu} \\ 20 \mathrm{~dB} \\ 20 \mathrm{~dB} \\ +24 \mathrm{dBu} \end{array}$
Unweighted noise voltage MICROPHONE:	- according to IEC 468-2 (DIN 454005) Equivalent input noise at bandwith $23 \mathrm{kHz}, 200 \Omega$ terminated	$\leq-125 \mathrm{dBu}$

Signal-to-noise ratio:	- PPM version, relative to line level +6 dBu - VU version, relative to peak output level $+6 \mathrm{VU} \xlongequal{\wedge}+10 \mathrm{dBU}$ - On master output master fader closed - One channel Input and master faders at 0 dB mark, unity gain, - filters off - filters on, linear - 11 channels, all faders at 0 dB mark, unity gain, - filters off - filters on, linear	$\begin{aligned} & \geq 95 \mathrm{~dB} \\ & \\ & \geq 93 \mathrm{~dB} \\ & \geq 92 \mathrm{~dB} \\ & >85 \mathrm{~dB} \\ & >83 \mathrm{~dB} \end{aligned}$
Harmonic ratio:	- PPM version, measured with line level +6 dBu - VU version, measured with nominal output level 0 VU or peak output level +6 dBu - unity gain, 31.5 to 16 kHz - All permissible levels according to level diagram, 60 Hz to 10 kHz	$\begin{aligned} & <70 \mathrm{~dB} \\ & <60 \mathrm{~dB} \end{aligned}$
Cross-talk attenuation:	- channel to channel, - without panorama potentiometer - with panorama potentiometer - Channel bus selector switched off - Fader attenuation input - Fader attenuation master	$\begin{array}{r} >80 \mathrm{~dB} \\ >70 \mathrm{~dB} \\ >90 \mathrm{~dB} \\ >100 \mathrm{~dB} \\ >90 \mathrm{~dB} \end{array}$

Power supply:	- Electrical power mains, switchable - Power consumption (STUDER 970/3) - Internal supply voltages; - Amplifiers - Logic circuits - Microphone phantom powering	$\begin{aligned} & 100 \text { to } 240 \mathrm{~V}, \pm 10 \% \\ & \approx 150 \mathrm{VA} \\ & \pm 15 \mathrm{~V} \\ &-6 \mathrm{~V} \\ &+48 \mathrm{~V} \end{aligned}$
Ambient temperature:	- Operating temperature range	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} \\ \left(34^{\circ} \mathrm{F} \text { to } 122^{\circ} \mathrm{F}\right) \end{gathered}$

Humidity:
. according to DIN 40040, category F

Safety standard:

- Mains input according to IEC standard, publication 65, apparatur class 1

3.1 Rauschkurve, typisch / Noise curve, typical

2 Blockschaltbilder

i. Âudio Biockschaitibiid 1
2. Signalisation und Fernsteuerung 3
2.1 Blockschaltbild: Signalisation und Fernsteuerung 3
2 Block diagrams

1. Audio Block Diagram 1
2. Signalization and Remote Control 3
2.1 Block diagram: Signalization and Remote Control 3
1.970 .350

Das Mischpult 970 ist mit drei Signalisations- und Fernsteuersystemen ausgerüstet.

Reglerstart mit galvanisch getrennten Relaiskontakten für jede Eingangseinheit.

- Studio Signalisation mit Rot-, Grün-, und Gelblicht.
- Fernsteuermöglichkeit der Kanalstummschaltung (Mute-Funktion) zum Einsatz als Räuspertaste oder "Video follow audio" Durchschaltung.
Mit der Funktion Restart wird die Stopuhr automatisch zurückgesetzt und neu gestartet, wenn der Flachbahiregler einer beliebigen Eingangseinheit geöffnet wird.

The STUDER audio console 970 is equipped with three controlling systems:

- Faderstart with physically separated relay contacts per input unit.
- Studio signaling system with red, green and yellow lights.
- Remote control facility for the mute function. (cough button/"vicleo follows audio")
The restart function roseis and restarts the stop watch at the opening of any input fader.

3
 Alignment

1. General 6
1.1 Level Definitions 6
1.2 Prerequisites 7
1.3 Demagnetizing the Microphone Input Transformers 8
1.4 Required Measuring Instruments and Aids 9
1.5 Measuring Principles 9
1.6 Measuring Setup 10
2. Alignment Instruction for Level Meters 13
2.1 Mono Input Unit 1.970.741 13
2.2 Stereo HL-Input Unit 1.970.753/754 14
2.3 Master Unit 1.970.841 19
2.4 AUX Master / Studio Monitor 1.970.901 20
2.5 Control Room Monitor Unit 1.970 .920 24
3. Alignment Instruction for plug in Units 29
3.1 VU Meter 1.913.230/231 29
3.2 Peak Program Meter (PPM) 1.913.220/221 30
3.3 Correlater 2CH/4CH 1.913.210/211 31

3 Einmessen

1. Allgemeines

1.1 Pegel-Definition

- Relative Pegelangaben in dBu
$00 \mathrm{dBu} \cong 0,775 \mathrm{~V}_{\text {eff. }}$

Nennpegelangaben in dBu basieren ausschliesslich auf einem festgelegten Spannungswert als Bezugsgrösse:

Die Bezugsgrösse $0,775 \mathrm{~V}$ des relativen Spannungspegels in dBu wurde von der Wertdefinition des absoluten Spannungspegels in dBm übernommen; jedoch ohne Bindung an die Definition ($600 \Omega / 1 \mathrm{~mW}$).

- Nennpegel in dBu

Nennpegel $=$ Studiopegel bei Vollaussteuerung

Der Nennpegel (auch Leitungspegel) entspricht dem Studiopegel bei Vollaussteuerung.

Typische Nennpegel sind:

+	6 dBu	$\widehat{=} 1,55 \mathrm{~V}_{\text {eff. }}$
+	10 dBu	$\widehat{=} 2,45 \mathrm{~V}_{\text {eff }}$
+	15 dBu	$\widehat{=} 4,36 \mathrm{~V}_{\text {eff. }}$

- Aussteuerungspegel

| | 0 dB PPM $=$ Nennpegel
 $0 \mathrm{VU}=$ Nennpegel minus 6 dB |
| :--- | :--- | :--- | :--- | :--- | :--- |
| entspricht einem
 VU-Instrumentes. | verbreiteten Wert für den Vorlauf (Lead) des |

- Verstärkungs-/Dämpfungsmasse in dB

Relative Pegelangaben in dB geben Auskunft über das Verstärkungs/Dämpfungsmass einer aktiven (z.B. Verstärkerstufe), resp. passiven (z.B. Flachbahnregler) Schaltungskomponente, innerhalb eines Schaltkreises.

Einige Beziehungen (approximative Faktoren):

dB	0	1	2	3	6	10	15	20
Faktor $(\approx$ Verstärkung	1	1,1	1,2	1,4	2	3,2	5,6	10
Dämpfung	1	0,9	0,8	0,7	0,5	0,3	0,2	0,1

1.2 Voraussetzungen

Hinweise: Jedes ab Herstellerwerk ausgelieferte Mischpult verfügt über ein Prüfprotokoll, in dem die Daten der Endprüfung eingetragen sind, wie:

- Abgleich auf kundenspezifischen Nennpegel
- Frequenzgang, Klirrfaktor, Geräuschabstand, Rauschspannung und Übersprechdämpfung.

Das Einmessen des Mischpultes ist bei Änderungen der Betriebsbedingungen (Nennpegel) am Einsatzort oder nach Modifikationen am Mischpult erforderlich. Eine turnusgemässe Wartungs-Einmessung wird bei dieser Generation von Mischpulten nicht mehr beansprucht.

Einzige Wartungsmassnahme bildet das nachfolgend beschriebene Entmagnetisieren der Eingangsübertrager.

1.3 Entmagnetisieren von Mikrofon- Eingangsübertragern

Unerlaubtes Anschliessen asymmetrischer Eingangsquellen oder unbeabsichtigter Masseschluss der a/b-Tonadern von Mikrofon-Eingängen mit zugeschalteter Phantomspeisung treiben die Eingangsübertrager in die Sättigung und bewirken deren permanente Magnetisierung (Remanenz).

Diese äussert sich nachteilig durch den sogenannten Mikrofonie-Effekt: Leichte mechanische Einwirkungen auf das Mischpult, z.B. das Antippen von Einschüben, bewirken eine hörbare Modulation über die Lautsprecher, auch bei nicht belegten Mikrofon-Eingängen.

Auch kann sich Remanenz in den Übertragern im Laufe längerer Betriebsdauer kumulieren.

Es empfielt sich deshalb, alle Mikrofon-Eingänge periodisch, und vor Einmessvorgängen, zu entmagnetisieren:

Vorgehen: . Mischpult ausschalten (zum Schutze angeschlossener Lautsprecher).

- NF-Generator an Mikrofon-Eingang anschliessen.

Dieser muss ein gleichspannungsfreies Signal einspeisen, um eine unerwünschte Magnetisierung des Übertragers zu vermeiden.

Fig. 1

- Kondensator $\mathrm{C}=1000 \mu \mathrm{~F} / 10 \mathrm{~V}$ sperrt Gleichstrom-Anteile.
- Widerstand R600』 dient der Entladung des Kondensators von GleichstromAnteilen.
- Frequenz $\leq 32 \mathrm{~Hz}$ sukzessive auf Einspeispegel von OV...3V erhöhen.
- Einspeispegel langsam auf OV zurückregeln.

1.4 Benötigte Messgeräte und Hilfsmittel

- Tonfrequenz-Generator 1 kHz Sinus / Rs $\leq 200 \Omega$
- NF-Voltmeter, $\mathrm{Rz}_{\mathrm{in}} \leq 10 \mathrm{k} \Omega$
- 2 Kanal Kathodenstrahl Oszillograph
- Abgleich-Schraubenzieher, Grösse 2
- Sammelschienen-Adapter zur Kontaktierung ausgebauter Einschübe mit der Sammelschiene. Es werden benötigt:
- 3 Adapter mit 32 pol. Kontaktierung Best.-Nr. 1.228.322
- 1 Adapter mit 64 pol. Kontaktierung Best.-Nr. 1.228.327
- Schaumstoffmatte, Abmessung ca. $400 \times 250 \mathrm{~mm}$, als Unterlage für ausgebaute, über den Adapter mit der Sammelschiene kontaktierte Einschübe (werden mit Vorteil auf das Bedienungsfeld des Mischpultes gelegt).

1.5 Messgrundlagen

Hinweis: Ab Herstellerwerk ausgelieferte (Ersatz-) Einschübe sind werkseitig abgeglichen und können direkt in das einzumessende Mischpult eingesetzt werden.

- Das Einmessen des Mischpultes erfolgt bei erreichter Betriebstemperatur (ca. 15 Minuten nach Einschalten).
- Einschleifpunkte (INSERTs), Monitor-, Vorhör- und Kommando- (TB-) Ausgänge sind nicht zu belasten.
- Leitungsausgänge sind mit 600Ω Last abzuschliessen.

Prüfsignal: $1 \mathrm{kHz} /$ Sinus
Pegelreferenz: $\quad 0 \mathrm{dBu} \xlongequal{ } 0,775 \mathrm{~V}_{\text {eff. }}$

1.6 Messaufbau

NF-Millivoltmeter und NF-Generator müssen grundsätzlich über symmetrische Ein- resp. Ausgänge verfügen. Asymmetrischen Messgeräten ist ein Symmetrier-Übertrager vorzuschalten.

Hinweis: Stehen keine Messgeräte mit symmetrischen Ein- resp. Ausgängen zur Verfügung, können asymmetrische Messgeräte wie folgt (behelfsmässig) beschaltet werden:
b-Leitung (3) mit Audiomasse (1) verbunden, bilden mit der a-Leitung (2) einen asymmetrischen Messpunkt. Diese Schaltung ist jedoch nicht für Messungen höherer Aussteuerungen anwendbar (Clipping-Effekt bei den transformatorlosen INSERT's).

Beim Umpegeln oder Einmessen des Mischpultes ist die aufgeführte
Kapitelfolge einzuhalten!
(manche Abgleiche bilden die Grundlage für nachfolgende Abgleichabläufe).

Fig. 2

3 Alignment

1. General

1.1 Level Definitions

- Relative level specification in dBu

```
0 dBu}\cong0,775 \mp@subsup{V}{\mathrm{ eff.}}{
```

The nominal levels specified in dBu are strictly based on a defined voltage as the reference quantity:

The reference quantity $0,775 \mathrm{~V}$ of the relative voltage level in dBu has been taken from the value definition of the absolute voltage level in dBm; however the definition $(600 \Omega / 1 \mathrm{~mW})$ has not been adopted.

- Nominal level in dBu
\square

The nominal level (also line level) corresponds to the studio peak level.
Typical nominal levels are:

+	6 dBu	$\hat{=} 1,55 \mathrm{~V}_{\text {eff }}$
+	10 dBu	$\hat{=} 2,45 \mathrm{~V}_{\text {eff }}$
+	15 dBu	$\hat{=} 4,36 \mathrm{~V}_{\text {eff. }}$

- Modulation level

> 0 dB PPM $=$ Nominal level $0 \mathrm{VU}=$ Nominal level less 6 dB *

* Corresponds to a widely used value for VU instrument lead.
- Gain/attenuation in dB

Relative level specifications in dB give information on the gain/attenuation of an active (e.g. amplifier stage) or passive (e.g. linear fader) component within a circuit.

Some relationships (approximative factors):

dB	0	1	2	3	6	10	15	20
Ratio (\approx Gain	1	1,1	1,2	1,4	2	3,2	5,6	10
Attenuation	1	0,9	0,8	0,7	0,5	0,3	0,2	0,1

1.2 Prerequisites

General Information: A test report is bypacked to each factory-shipped mixing console in which the data of a detailed test are recorded such as:

- Alignment to the nominal level specified by the customer
- Data from measurements concerning frequency response, distortion, S / N ratio, noise voltage and cross talk.

The mixing console needs to be recalibrated if the operating conditions (nominal level) at the place of service change or if modifications are made to the mixing console. Periodic recalibration is no longer required in this generation of mixing consoles.

The only maintenance required is the subsequently described demagnetization of the input transformers.

1.3 Demagnetizing the Microphone Input Transformers

Inadmissible connection of unbalanced input sources or unintentional ground connection of the a / b audio (leads of microphone inputs to a connected phantom supply drive the input transformers into saturation and cause permanent magnetization (remanence).

This detrimental effect is manifested through so-called microphonic noise: (light metallic vibrations of the mixing console, e.g. tapping against plug-in modules, produce audible modulations via the speakers, even if the microphone inputs are not connected.

The residual magnetism in the transformers can also accumulate over extended operating times.

We therefore recommend to demagnetize all microphone inputs periodically and before calibration work:

Procedure: 【 Switch mixing console off (to protect the connected speakers).

- Connect audio generator to the microphone input.

The generator should supply a signal without DC content in order to prevent unwanted magnetization of the transformer.

Fig. 1

- Capacitor $C=1000 \mu \mathrm{~F} / 10 \mathrm{~V}$ blocks the DC components.
- Resistor R600 removes DC components from the capacitors.
- Slowly increase $\leq 32 \mathrm{~Hz}$ frequency to supply level from 0V...3V.
- Slowly decrease supply level to OV.

1.4 Required Measuring Instruments and Aids

- AF generator 1 kHz sine-wave / Rs $\leq 200 \Omega$
- AF-voltmeter, $R z_{\text {in }} \leq 10 \mathrm{k} \Omega$
- 2 channel cathode-ray oscillograph
- Alignment screwdriver size 2
- Bus Adapter for connecting removed modules to the bus. The following are required:
- 3 Adapter with 32 pin. Connector Order-No. 1.228.322
- 1 Adapter with 64 pin. Connector Order-No. 1.228.327
- Foam rubber pad, approx. $400 \times 250 \mathrm{~mm}$ as a soft surface for removed modules that are connected to the bus via the adapter (the pads are preferably placed on the operating panel of the mixing console).

1.5 Measuring Principles

Note: The factory-shipped (replacement) modules are already aligned and can be installed directly in the mixing console to be calibrated.

- The mixing console should only be calibrated when the operating temperature has been attained (15 minutes after power ON).
- Insertion points, monitor, prelistening, and talk-back outputs should not be loaded.
- The line outputs are to be terminated with 600Ω.

Test Signal: $1 \mathrm{kHz} /$ sine-wave
Level Reference: $\quad 0 \mathrm{dBu} \xlongequal{\wedge} 0,775 \mathrm{~V}_{\text {eff }}$

1.6 Measuring Setup

The AF millivoltmeter and AF generator must feature balanced inputs and outputs. A balancing unit is to be connected to the input of unbalanced measuring instruments.

Note: If no measuring instruments with balanced inputs and outputs are availabel, unbalanced measuring instruments can be connected (by way of expedient) in the following way:
b-line (3) connected to audio ground (1) together with the a-line (2) forms an unbalanced measuring point. However, this circuit is not suited for measuring higher levels (clipping effect on the transformerless INSERT's).

The specified sequence of the steps is to be followed for realigning the level or recalibrating the mixer!
(certain alignments from the basis for subsequent alignment operations).

Fig. 2

2. Einmess - Anleitung der Einschub-Module

2.1 Mono Eingänge

TABELLE / TABLE	Status						
Bedienungselement / oper. element	\square				Q.		\square
Feinabgleich / fine adjust			X				
Filter off	X						
Phasenschalter / phase switch ϕ off	x						
Equalizer off	x						
Σ Anwahl / bus select off	X						
Panpot off						X	
ON-Taste / ON-key		X					

Line Input

Fader Aufholverstärkung

- Eingangswahlschalter auf obere Stellung LINE positionieren.
- Status der Bedienungselemente gemäss Tabelle erstellen.
- NF Generator am LINE INPUT anschliessen.
- Leitungspegel / 1 kHz einspeisen.
- NF Voltmeter am INSERT SEND anschliessen.
- Kontrolle: Soll-Ausgangspegel am INSERT SEND = Leitungspegel.
- Korrektur: Feinabgleich am zentralen Potentiometer R64.
- Eingangswahlschalter auf obere Stellung LINE positionieren.
- Status der Bedienungselemente gemäss Tabelle erstellen.
- $\Sigma 1$ anwählen.
- Eingangsfader auf Pos. 0 dB .
- NF Generator am LINE INPUT anschliessen.
- Leitungspegel / 1 kHz einspeisen.
- NF Voltmeter am $\Sigma 1$ INSERT SEND anschliessen.
- Kontrolle: Soll-Ausgangspegel am $\Sigma 1$ INSERT SEND = Leitungspegel.
- Korrektur: am Trimmpotentiometer R164.

TABELLE / TABLE	STATUS						
Bedienungselement / oper. element	\square					\square	\square
Feinabgleich / fine adjust (Gain)				X			
Equalizer off	X						
Σ / GR Anwahl / bus select off	X						
Balance off						X	
ON-Taste / ON-key		X					

Line Input L

Line Input R

Fader Aufholverstärkung L

- Status der Bedienungselemente gemäss Tabelle erstellen.
- $\quad \Sigma 1$ anwählen.
- Eingangsfader auf 0 dB . positionieren.
- NF Generator am LINE INPUT L anschliessen.
- Leitungspegel / 1 kHz einspeisen.
- NF Voltmeter am $\Sigma 1$ INSERT SEND anschliessen.
- Kontrolle: Soll-Ausgangspegel am $\Sigma 1$ INSERT SEND = Leitungspegel.
- Korrektur: am Trimmpotentiometer R182.

Fader Aufholverstärkung R - Status der Bedienungselemente gemäss Tabelle erstellen.

- $\quad \Sigma 2$ anwählen.
- Eingangsfader auf 0 dB . positionieren.
- NF Generator am LINE INPUT R anschliessen.
- Leitungspegel / 1 kHz einspeisen.
- NF Voltmeter am $\Sigma 2$ INSERT SEND anschliessen.
- Kontrolle: Soll-Ausgangspegel am $\Sigma 2$ INSERT SEND = Leitungspegel.
- Korrektur: am Trimmpotentiometer R282.

2. Alignment Instruction for Level Meters

2.1 Mono Input

TABELLE / TABLE	STATUS						
Bedienungselement / oper. element	\square				Q		\square
Feinabgleich / fine adjust			X				
Filter off	X						
Phasenschalter / phase switch ϕ off	x						
Equalizer off	X						
\sum Anwahl / bus select off	X						
Panpot off						X	
ON-Taste / ON-key		X					

[^0]| TABELLE / TABLE | STATUS | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bedienungselement / oper. element. | \square | [| | | | \square | \square |
| Feinabgleich / fine adjust (Gain) | | | | X | | | |
| Equalizer off | X | | | | | | |
| Σ / GR Anwahl / bus select off | X | | | | | | |
| Balance off | | | | | | X | |
| ON-Taste / ON-key | | X | | | | | |

Line Input L - set controls to the states specified in table.

- connect audio generator to LINE INPUT L.
- feed line level / 1 kHz.
- connect audio voltmeter to INSERT SEND L.
- check: desired output level on INSERT SEND L = line level.
- correction: with trimmer R111.

Line Input R - set controls to the states specified in table.

- connect audio generator to LINE INPUT R.
- feed line level / 1 kHz .
- connect audio voltmeter to INSERT SEND R.
- check: desired output level on INSERT SEND R = line level.
- correction: with trimmer R211.

Fader Booster Gain L - set controls to the states specified in table.

- select $\Sigma 1$ bus.
- input fader to 0 dB position.
- connect audio generator to LINE INPUT L.
- feed line level / 1 kHz.
- connect audio voltmeter to $\Sigma 1$ INSERT SEND.
- check: desired output level on $\Sigma 1$ INSERT SEND $=$ line level.
- correction: with trimmer R182.
- set controls to the states specified in table.
- select $\sum 2$ bus.
- input fader to 0 dB position.
- connect audio generator to LINE INPUT R
- feed line level / 1 kHz.
- connect audio voltmeter to $\Sigma 2$ INSERT SEND.
- check: desired output level on $\Sigma 2$ INSERT SEND $=$ line level.
- correction: with trimmer R282.

HL Input	- Status der Bedienungselemente gemäss Tabelle erstellen. - NF Generator am HL INPUT anschliessen. - Leitungspegel / 1 kHz einspeisen. - NF Voltmeter am $\Sigma 1$ INSERT SEND anschliessen. - Kontrolle: Soll-Ausgangspegel am $\Sigma 1$ INSERT SEND = Leitungspegel +10 dB . - Korrektur: am Trimmpotentiometer R9.
Summen Ausgang	- Status der Bedienungselemente gemäss Tabelle erstellen. - NF Generator am LINE INPUT 1 anschliessen. - Leitungspegel / 1 kHz einspeisen. - NF Voltmeter am INSERT SEND anschliessen. - Kontrolle: Soll-Ausgangspegel = Leitungspegel. - NF Voltmeter am Σ OUT anschliessen, (mit 600 Last). - Summenfader auf 0 dB Position. - Zu messende Σ anwählen.
A) Limiter überbrückt	- Kontrolle: Soll-Ausgangspegel am Σ OUT = Leitungspegel. - Korrektur: am Trimmpotentiometer R104.
B) Limiter eingeschaltet	- Generatorpegel um 20 dB reduzieren: Leitungspegel -20 dB. - Kontrolle: Soll-Ausgangspegel am Σ OUT = Leitungspegel. - Korrektur: am Trimmpotentiometer R7 (PDM VCA Print). Abgleichschritte wechselweise wiederholen bis optimale Einstellung erreicht ist.
Limiter Einsatzschwelle	- Status der Bedienungselemente gemäss Tabelle erstellen. - NF Generator am LINE INPUT 1 anschliessen. - Leitungspegel / 1 kHz einspeisen. - NF Voltmeter am INSERT SEND anschliessen. - Kontrolle: Soll-Ausgangspegel = Leitungspegel. - NF Voltmeter am Σ OUT anschliessen, (mit 600 Last). - Zu messende Σ anwählen. - Flachbahnregler auf +10 dB positionieren.
A) Limiter überbrückt	- Kontrolle: Soll-Ausgangspegel $=$ Leitungspegel +10 dB . - Korrektur: am Input Gain.
B) Limiter eingeschaltet	- Kontrolle: Soll-Ausgangspegel $=$ Leitungspegel $+0,2 \mathrm{~dB}$. - Korrektur: am Trimmpotentiometer R189.

AUX Ausgang	- NF Generator am LINE INPUT 1 anschliessen. - Leitungspegel / 1 kHz einspeisen. - Eingangswahlschalter auf obere Stellung LiNE. - NF Voltmeter am INSERT SEND anschliessen. - Kontrolle: INSERT SEND = Leitungspegel. - Korrektur: mit Feinabgleich einstellen bis INSERT SEND = Leitungspegel. - AUX 1/AUX 2 Regler auf Eingangseinheit 1 ziehen. (Stellung PF) und au Rechtsanschlag drehen. - Ausgangsregler AUX Master 1+2 auf Rechtanschlag drehen.
AUX Ausgang 1	- NF Voltmeter am AUX AUSGANG 1 anschliessen, (mit 600Ω Last). - Ausgangspegel am Ausgangsregler AUX 1 um 15 dB reduzieren. (Übersteuerungsreserve). - Ausgangspegel am Trimmpotentiometer R36 auf Leitungspegel abgleichen.
AUX Ausgang 2	- NF Voltmeter am AUX AUSGANG 2 anschliessen, (mit 600 Last). - Ausgangspegel am Ausgangsregler AUX 2 um 15 dB reduzieren. (Übersteuerungsreserve). - Ausgangspegel am Trimmpotentiometer R62 auf Leitungspegel abgleichen.
TB Mikrofon	SLATE (TB auf Σ Sammelschiene). - NF Generator anstelle vom TB Mic anschliessen. - $-40 \mathrm{dBu} / 1 \mathrm{kHz}$ einspeisen. - NF Voltmeter am MASTER INSERT anschliessen. - Beide Tasten SLATE drücken. - Kontrolle: Soll-Ausgangspegel = Leitungspegel. - Korrektur: am Trimmpotentiometer R89.
TB AUX	TB AUX (TB auf AUX). - NF Voltmeter am AUX 1 OUTPUT anschliessen (mit 600 2 Last). - Taste TB AUX drücken. - Kontrolle: Soll-Ausgangspegel = Leitungspegel. - Korrektur: an Trimmpotentiometer R91.

HL Input

Master Output

A) Limiter Bypassed
B) Limiter Switched In:

Limiter Attack Threshold
A) Limiter Bypassed
B) Limiter Switched On

TABELLE / TABLE	STATUS						
Bedienungselement / oper. element	$\underline{\square}$						\square
Limiter / Compressor 'In' off	X						
Gain				X			
Σ	X						
Release					X		
Ratio					X		
HL Input					X		
Σ Anwahl / Σ select	X						
Panpot off						X	
Mute off	X						

- set controls to the states specified in table.
- connect audio generator to HL INPUT.
- feed line level / 1 kHz.
- connect audio voltmeter to $\Sigma 1$ INSERT SEND.
- check: desired output level on $\Sigma 1$ INSERT SEND $=$ line level +10 dB .
- correction: with trimmer R9.
- set controls to the states specified in table.
- connect audio generator to LINE INPUT 1.
- feed line level / 1 kHz.
- connect audio voltmeter to INSERT SEND.
- check: desired output level = line level.
- connect audio voltmeter to Σ OUT, (with 600Ω load).
- set group / Σ fader to 0 dB position.
- press corresponding group selection key.
- check: desired output level on Σ OUT $=$ line level.
- correction: with trimmer potentiometer R104.
- decrease generator level by 20 dB : line level -20 dB.
- check: desired output level on Σ OUT $=$ line level -20 dB .
- correction: with trimmer potentiometer R7 (on PDM VCA).

Alternatively repeat alignment steps A and B until optimal alignment is attained.

- set controls to the states specified in table.
- connect audio generator to LINE INPUT 1 fader to 0 dB position.
- feed line level / 1 kHz.
- connect audio voltmeter to INSERT SEND 1.
- check: desired output level = line level.
- select measured group / Σ.
- connect audio voltmeter to Σ OUT, (with 600Ω load).
- set group / Σ fader to the +10 dB position.
- check: desired output level $=$ line level +10 dB .
- correction: with Input Gain.
- check: desired output level on $\Sigma /$ GROUP OUT $=$ line level $+0,2 d B$.
- correction: with trimmer potentiometer R189.

AUX Output	- connect audio generator to LINE INPUT 1. - feed line level / 1 kHz . - turn the input selector to the upper LINE position. - connect audio voltmeter to INSERT SEND. - check: INSERT SEND = line level. - correction: on input selector within the LINE range, and fine adjustment potentiometer. - pull the AUX 1/AUX 2 potentiometers (PF position) and turn them to the righthand limit position. - turn AUX 1+2 SEND potentiometers to the right-hand limit position.
AUX 1 Out	- connect audio voltmeter to AUX 1 OUT (with 600Ω load). - decrease output level with potentiometer AUX 1 by 15 dB (headroom). - align output level to line level with trimmer potentiometer R36.
AUX 2 Out	- connect audio voltmeter to AUX 2 OUT (with 600 Ω load). - decrease output level with potentiometer AUX 2 by 15 dB (headroom). - align output level to line level with trimmer potentiometer R62.
TB Microphone	SLATE (TB on Σ bus). - connect audio generator instead of TB Mic. - feed $-40 \mathrm{dBu} / 1 \mathrm{kHz}$. - connect audio voltmeter to MASTER INSERT. - press both SLATE buttons. - check: desired output level on Σ INSERT $=$ line level. - correction: with trimmer potentiometer R89.
TB AUX	TB AUX (TB on AUX OUTPUT 1..4). - connect audio voltmeter to AUX 1 OUTPUT (with 600Ω load). - press TB button (AUX 1). - check: desired output level on AUX OUT 1 (with 600Ω load) $=$ line level. - correction: with trimmer potentiometer R91.

Master Unit
1.970 .841 .81

Voraussetzung:

Für die PFL Meter Einstellung muss zuerst das Anzeigeinstrument eingestellt sein.

Vgl. 3. Einmessanleitung der Anzeigeninstrumente.

TABELLE / TABLE	STATUS							
Bedienungselement / oper. element						\times	\square	\square
Aussteuerungsanzeige METER Σ	X							
Automatik PFL TO MONITOR	X							
Volume CR MONITOR			X					
Balance BAL				X				
Monoschaltung MONO	X							

Vorhörkanal PFL

- NF Generator am LINE INPUT 1 anschliessen.
- Status der Bedienungselemente gemäss Tabelle erstellen.
- Eingangswahischalter auf obere Stellung LINE positionieren.
- Leitungspegel / 1 kHz einspeisen.
- NF Voltmeter am INSERT SEND anschliessen.
- Kontrolle: Soll-Ausgangspegel am INSERT SEND = PPM Pulte > Leitungspegel.
VU Pulte > Leitungspegel minus Meter Lead (+4 dBu Standard).
- PFL Taste am Input Unit 1 drücken.
- PFL Taste am C.R. Monitor drücken.
- Meterwahlschalter auf Stellung Monitor.
- Kontrolle: Soll-Anzeige am Aussteuerungsmessinstrument $=0 \mathrm{~dB}$.
- Korrektur: am Trimmpotentiometer R156 für linken Kanal, R161 für rechten Kanal.

Note:

For PFL adjustment the meter adjustment has to be done first.

Refer to 3. Alignment Instruction for Level Meters.

TABELLE / TABLE	STATUS								
Bedienungselement / oper. element								\square	\square
Output meter METER Σ	X								
Automatic mode PFL TO MONITOR	X								
Volume CR MONITOR			X						
Balance BAL				X					
Mono circuit MONO	X								

Prefader Listening Channel PFL

- connect audio generator to LINE INPUT.
- set controls to the states specified in the table.
- turn the input selector to the upper LINE position.
- feed line level / 1 kHz .
- connect audio voltmeter to INSERT SEND.
- check: desired output level on INSERT SEND = PPM consoles line level.
VU consoles line level minus meter lead (+4 dBu standard).
- depress PFL button on INPUT UNIT 1.
- depress PFL button on C.R. MONITOR UNIT.
- depress METER button on the C.R. MONITOR's meter section (PFL level is shown on meters).
- check: meter indication, desired indication 0 dB .
- correction: with trimmer potentiometer R156 for PFL left channel, R161 for right channel.

3. Einmess - Anleitung der Anzeigeinstrumente

3.1
 VU-Meter

1.913.230/231

TP1: Variabel ($0,1 \mathrm{~V}$... $0,35 \mathrm{~V}_{\text {eff. }}$)
TP2: $1 V_{\text {eff }}$
TP3: $\quad-3,6 \mathrm{~V}$ p Vollweg-Gleichrichtung
Mit R4 kann die Referenzanzeige (0 VU) für Eingangssignale zwischen 0 dBu und +10 dBu eingestellt werden.

1. Summen-Ausgang auf Leitungspegel $(1 \mathrm{kHz})$ einstellen.
2. Mit R4 (Fig. 4) am summenzugehörigen Instrument Zeigerausschlag auf 0 dB einstellen. $(+3,5 \mathrm{~V}$ an TP2)

Hinweis: Die Trimmpotentiometer R23, R28 und R34 dienen dem werkseitigen Skalenabgleich.

R28: OdB - Anzeige am Instrument
R34: -30 dB - Anzeige am Instrument
R23: -40dB - Anzeige am Instrument
Die mechanische Nullstellung des Messwerkes liegt bei Referenzanzeige OdB. Für Pegel, deren Anzeige $0 \ldots+6 \mathrm{~dB}$ ergibt, wechselt die Polarität der Ausgangsspannung am Verstärker.

1. An beiden Eingängen wird ein gleichphasiges 1 kHz -Signal mit Leitungspegel eingespiesen.

R4 bzw. R13 so einstellen, dass an den Messpunkten TP1 bzw. TP2 ein Pegel von 100 mV AC gegen \perp (Masse) erscheint.
2. Eingangspegel um 50 dB verringern. KO an den Ausgang 6 oder 9 von IC3 gegen Masse \perp anschliessen. Die Amplituden beider Halbwellen mit R29 auf gleiche Höhe einstellen.
3. Eingangspegel wieder auf Leitungspegel einstellen. Mit R26 den Zeiger des Anzeigeinstrumentes auf +1 einstellen.
4. Einen der beiden Eingänge umpolen. Das Messinstrument soll -1 anzeigen.
5. Anzeigen gemäss Tabelle kontrollieren.

EINGANG	30 Hz	1 kHz	15 kHz
Leitungspegel = A	0,95	1	0,95
A + 20 dB	~ 1	~ 1	0,5
A - 20 dB	0,6	~ 1	0,5

3. Alignment Instruction for plug in Units

3.1 VU Meter

TP1: Variable ($0,1 \mathrm{~V} \ldots 0,35 \mathrm{~V}_{\text {eff. }}$)
TP2: $1 V_{\text {eff }}$
TP3: $-3,6 \vee p$ full-wave rectification
The reference indication (0 VU) for input signals between 0 dBu and +10 dBu can be adjusted with R4.

1. Line-level $+6 \ldots+15 \mathrm{~dB} 1 \mathrm{kHz}$ at input.
2. $+3,5 \mathrm{~V}$ at TP2 adjust with R4 (level PPM)

Note: The variable resistors R23, R28 and R34 are used for factory adjustment of the indicating scale.

R28 adjustment of 0 dB indication.
R34 adjustment of -30 dB indication.
R23 adjustment of -40 dB indication.
The mechanical zero position of the instrument corresponds to the reference indication 0 dB . For levels which give a deflection of $0 . .+6 \mathrm{~dB}$ on the scale, the amplifier 4.2 changes the polarity of the output voltage.

1. Feed both inputs with an in-phase signal (1 kHz , line level).

Adjust R4 and R13 in such a manner that 100 mV ACCorrelation appear at both test points TP1 or TP2, against ground.
2. Reduce the input level by 50 dB . Connect oscilloscope to pin 6 or 9 of IC3 to ground. With R29 adjust the amplitudes of both halfwaves to equal height.
3. Restore input level to line level. With R26 adjust the pointer of the meter to +1 .
4. Reverse the polarity of one of the inputs. The meter should indicate -1 .
5. Check meter readings according to the following table.

Input	30 Hz	1 kHz	15 kHz
Line level =A	0,95	1	0,95
$\mathrm{~A}+20 \mathrm{~dB}$	~ 1	~ 1	
$\mathrm{~A}-20 \mathrm{~dB}$	0,6	~ 1	0,5

1. Eingangseinheit Mono 1.970.741 1
1.1 Bedienungselemente. 1
1.2 Blockschaltbild 2
1.3 Steuertasten 3
1.4 Entzerrer 9
1.5 Einschleifpunkt 10
1.6 Signalisation und Faderstart 10
1.7 Schemateil 21
1.8 Switch Unit 1.970 .790 34
1.9 Extension Unit 1.970 .792 35
2. Stereo Hochpegeleinheit ohne Entzerrer 1.970.753 37
Stereo Hochpegeleinheit mit Entzerrer 1.970.754
2.1 Bedienungselemente 37
2.2 Blockschaltbild 38
2.3 Steuertasten 39
2.4 Entzerrer 45
2.5 Einschleifpunkt 46
2.6 Signalisation und Faderstart 46
2.7 Schemateil 57
3. Master Unit 1.970 .841 71
3.1 Bedienungselemente 71
3.2 Limiter / Kompressor. 72
3.3 Blockschaltbild 75
3.4 Schemateil 77
4. Studio Monitor, Aux Master- und Kommandoeinheit $\quad 1.970 .901$ 85
4.1 Bedienungselemente. 85
4.2 Blockschaltbild 87
4.3 Schemateil 89
5. Kontrollraum (CR) Monitoreinheit 1.970 .920 95
5.1 Bedienungselemente. 95
5.2 Option 96
5.3 Blockschaltbild 99
5.4 Schemateil 101
6. Monitorerweiterung 1.970.952 107
6.1 Blockschaltbild 109
6.2 Schemateil. 111
7. Input Unit Mono 1.970.741 11
1.1 Operating Elements 11
1.2 Block Diagram 12
1.3 Control Keys 13
1.4 Equalizer 19
1.5 Insertion Point 20
1.6 Signalization and Fader Start 20
1.7 Circuit Diagrams 21
1.8 Switch Unit 1.970 .790 34
1.9 Extension Unit 1.970 .792 35
8. Stereo High-Level Unit without Equalizer 1.970.753 47
Stereo High-Level Unit with Equalizer 1.970.754
2.1 Operating Elements 47
2.2 Block Diagram 48
2.3 Control Keys 49
2.4 Equalizer 55
2.5 Insertion Point 56
2.6 Signalization and Fader Start 56
2.7 Circuit Diagrams 57
9. Master Unit 1.970.841 73
3.1 Operating Elements 73
3.2 Limiter / Compressor 74
3.3 Block Diagram 75
3.4 Circuit Diagrams 77
10. Studio Monitor, Aux Master and Talk-back Unit 1.970.901 86
4.1 Operating Elements 86
4.2 Block Diagram 87
4.3 Circuit Diagrams 89
11. Control Room Monitor Unit 1.970 .920 97
5.1 Operating Elements 97
5.2 Option 98
5.3 Block Diagram 99
5.4 Circuit Diagrams 101
12. Monitor Expansion Unit 1.970.952 108
6.1 Block Diagram 109
6.1 Circuit Diagrams 111

4 Plug in Units

1.970....

1. Eingangseinheit Mono
1.970 .741

1.1 Bedienungselemente

| OVERLOAD: | Die mit Overload bezeichnete LED leuchtet auf, sobald
 der maximal zulässige Pegel vor oder nach dem
 Flachbahnregler überschritten wird. |
| :--- | :--- | :--- |
| EINGANGSTEIL: | MIC: |

FLACHBAHNREGLER:

STEUERTASTEN:

Der Flachbahnregler ist mit einer Widerstandsschicht aus leitendem Kunststoff ausgerüstet.

Die drei grossen Drucktasten sind unter Punkt 1.3 beschrieben.

1.3 Steuertasten

Vor dem Flachbahnregler sind drei geräuscharme Drucktasten mit Signallampen angebracht. Die Funktionen können im Einschub durch umstecken von Miniatur-Brückensteckern verändert werden.

Es sind 3 Grundversionen vorgesehen:

Version 1 (Fig.1)

PFL

- Das Vorhörsignal PFL (Pre fader listening) wird zum Vorhörlautsprecher und zum Kopfhörer durchgeschaltet. Ein weiterer Tastendruck unterbricht dieses Signal wieder.
- Gleichzeitig wird die Signallampe ein- oder ausgeschaltet.

ON

- Schaltet den Modulationsweg durch, sofern Sammelschiene angewählt und Flachbahnregler geöffnet sind.
- ON-Lampe leuchtet.
- PFL wird unterbrochen, wobei aber die PFL-Lampe weiterleuchtet um den vorher angewählten Zustand anzuzeigen.
- Signalisation resp. Faderstart-Relais wird durchgeschaltet, sofern die übrigen Kriterien erfüllt sind (siehe 1.6, Signalisation und Faderstart).
- Automatische Stoppuhr wird zurückgesetzt. (Option)

OFF

- Modulation wird unterbrochen.
- Signalisation und Faderstart-Relais fallen ab.
- Falls die PFL-Taste angewählt war, wird nun das Vorhören wieder durchgeschaltet.
- ON-Lampe erlöscht.

OFF-Lampe: Wird von Extern aktiviert und kann den Bereitschaftszustand der Quelle signalisieren.

Fernsteuerung:

- Alle Tasten und Lampensignale sind auch auf einem fünfzehnpoligen DType Stecker verfügbar. Obige Funktionen können also auch ferngesteuert werden.

Fig. 1

Version 2

- Gleiche Funktion wie in Version 1, mit der Ausnahme, dass anstelle des Vorhörsignales vor Flachbahnregler, dasjenige nach Regler (APL) durchgeschaltet wird.

Version 3

```
AUDITION
```

- Schaltet den Kanal durch und wählt die Summen $\Sigma 3+\Sigma 4$ an (Eingangseinheiten dieser Version sind nicht mit Sammelschienenwahltasten ausgerüstet).
- AUDITION-Lampe wird eingeschaltet.
- Signalisation wird aktiviert.
- Timer Restart.

ON AIR

- Schaltet den Kanal durch und wählt die Summen $\Sigma 1+\Sigma 2$ an.
- Die ON AIR Lampe wird eingeschaltet.
- Signalisation wird aktiviert
- Timer Restart.

OFF

- Setzt sowohl AUDITION- als auch ON AIR-Taste zurück.
- Signalisation wird inaktiv.

Codierung für externe ON- und OFF-Lampensteuerung

Version 1 (STANDARD)
Version 2
Version 3

[^1]
Optionen

Ort	Jumper	Funktionen
JS1	gesetzt frei	OFF Lampe leuchtet, wenn ON-Taste ausgeschaltet ist. Keine Funktion
JS1 und JS2	gesetzt frei	OFF Lampe leuchtet, wenn ON-Taste und PFL/APL-Taste ausgeschaltet sind. Keine Funktion
JS3	gesetzt frei	PFL/APL-Taste nur einschaltend PFL/APL-Taste selbstauslösend (Toggle switch)
JS4	gesetzt frei	gesetzt frei
ON-Taste nur einschaltend		
JS5	gesetzt frei	OFF-Taste setzt die PFL/APL-Taste zurück Keine Funktion
JS6	gesetzt	APL (After Pan Listening) Version 2 PFL (Pre Fader Listening) Version 1 STANDARD
frei	ON AIR-Taste schaltet $\Sigma 1+2$ durch. AUDITION-Taste schaltet $\Sigma 3+4$ durch. Version 3 Keine Funktion	
JS9	gesetzt frei	PFL/APL-Taste steuert direkt das Line Relay an. Nur für Version 1+2! Keine Funktion
JS19	gesetzt frei	Timer-Restart Funktion ist ausgeschaltet. Timer-Restart Funktion ist eingeschaltet.

Der Entzerrerteil ist mit der Drucktaste EQ IN überbrückbar. Die Tiefensperre ist davon nicht betroffen.
Fächerentzerrer für Höhen und Tiefen.
Bereich $\pm 15 \mathrm{~dB}$ bei $20 \mathrm{~Hz} / 20 \mathrm{kHz}$.

Parametrisches Glockenkurven-Filter mit einstellbarer Mittenfrequenz von $150 \mathrm{~Hz} . . .7 \mathrm{kHz} .(\mathrm{Q}=1)$
Anhebung/Abschwächung $\pm 11 \mathrm{~dB}$

MONO INPUT UNIT

1.5 Einschleifpunkt

Vor dem Flachbahnregler wird das Tonsignal elektronisch symmetriert und über zwei auf der Pultrückseite befindliche Bantam Jack Buchsen geführt. Der Einschleifpegel beträgt +6 dBu .

1.6 Signalisation und Faderstart

Steht der Eingangswahlschalter in MIC-Position, dann wird auf der Signalisationssammelschiene ein logisches Signal gegeben, sobald folgende Kriterien erfüllt sind:

- Kanalregler geöffnet
- Summenregler geöffnet
- Summenwahltaste betätigt
- Mute Funktion nicht aktiv
- Kanal mit ON-Taste eingeschaltet

Das summierte Signal wird in der Monitoreinheit zur Steuerung der Studiosignalisierung weiterverwendet.

Steht der Eingangswahlschalter unter gleichen Bedingungen in Stellung LINE, so wird das im Eingangskanal eingebaute Fernsteuerrelais aktiviert. Der auf dem fünfzehnpoligen D-Type Stecker (REM-CONTR) greifbare Arbeitskontakt des Relais kann zur Fernsteuerung von Plattenspielern oder Tonbandgeräten eingesetzt werden.

1.1 Operating Elements

OVERLOAD:

INPUT MIC: Balanced, floating Microphone input. Sensitivity SECTION:

The LED labelled "overload" turns on as soon as the maximum level before or after the fader has been exceeded. $-70 . .10 \mathrm{dBu}$, switchable in four 15 dB steps, continuously variable between steps from $0 . . .15 \mathrm{~dB}$ by means of potentiometer. The maximum input must not exceed +6 dB .

PHANTOM: Switchable 48 V supply voltage.
LINE: High-level input, balanced and floating input. Input sensitivity $-10 \ldots+20 \mathrm{dBu}$, switchable in two 15 dB steps, continuosly variable between steps from $0 . . .15 \mathrm{~dB}$.

GEN: Tone generator input, supplied via bus from the built-in tone generator
\varnothing : Phase inversion switch, influence all inputs.
FILTER: Switchable bass cut with $12 \mathrm{~dB} /$ oct., cut off frequency of 75 Hz .

EQUALIZER:

See 1.4

AUXILIARY OUTPUTS AUX 1 and AUX 2:	Two separately adjustable auxiliary outputs can be connected before or after the linear fader by means of the push-pull switches on each potentiometer.		
PAN. POT AND:	The panorama potentiometer can be activated with the push-bull switch.		
MASTER SELECTION:			Stereo and 2CH mixers are equiped with two push
:---			
buttons for individual selection of master $\Sigma 1$ and $\Sigma 2$.			
$4 C H$ mixers are equiped with four push buttons			
$\Sigma 1 \ldots \Sigma 4$.			

1.3 Control Keys

Three low-noise keys with signal lamps are located before the fader. The functions of the keys can be altered by changing the position of the minijumpers on this unit.

Three basic versions are available:

Version 1 (Fig.1)

PFL

- The prefader listening signal (PFL) is connected to the prelistening speaker and to the headphones. The signal is interrupted when this key is pressed a second time.
- At the same time the signal lamp is turned on or off.

ON

- Trough-connects the modulation path, provided the bus is selected and the fader is opened.
- ON lamp is turned on.
- PFL is interrupted, however the PFL lamp remains switched on to signal the previously selected state.
- Signalization or fader start relay is through-connected, provided the other criteria are satisfied. (see 1.6, signalization and fader start)
- Automatic stopwatch is reset (option)

OFF

- Modulation is interrupted.
- Signalization and fader start relay droped out.
- If the PFL-key was selected, prelistening is again through-connected.
- ON lamp turns off.

OFF-Lamp: Is activated externally and can signal the ready state of the source.
Remote Control: All key and lamp signals are available on a 15-pin D-type connector. The above functions can also be remote-controlled.

Fig. 1

Version 2

- Same function as version 1, except that the prelistening signal after the panorama potentiometer (APL) is connected rather than the signal before the fader.

Version 3

AUDITION

- Through-connects the channel and selects master $\Sigma 3+\Sigma 4$ (the input units of this version are not equiped with bus selection buttons).
- AUDITION lamp is turned on.
- Signalization is enabled.
- Timer restart.

ON AIR

- Trough-connects the channel and selects the master $\Sigma 1+\Sigma 2$.
- The ON AIR lamp is turned on.
- Signalization is enabled.
- Timer restart.

OFF

- Resets not only the AUDITION but also the ON AIR key.
- Signalization is disabled.

MONO INPUT UNIT

Coding for external OFF lamp control
(Standard)

Coding for external ON and OFF lamp control

$x=$ Jumper gesetzt $x=$ Jumper set

Options

Location	Jumper	Function
JS1	Set Not	OFF lamp is light when the ON keys switched off. No function
JS1 und JS2	Set Not set	OFF lamp is light when the ON key and the PFL/APL key are switched off. No function
SS3	Sot set	SFL/APL key only on-switching PFL/APL key self-releasing (toggle switch)
JS4	Set Not set	ON key only on-switching ON key self-releasing (toggle switch)
JS5	Set Not set	OFF key resets the PFL/APL key No function
JS6	Set Not set	PFL (after pan listening) version 2 ON AIR key enables $\Sigma 1+2$. AUDITION key enables $\Sigma 3+4$. Version 3 No function
JS7	Set Not set	PFL/APL key directly controls the line relay. Only for version 1+2! No function
JS9	Set Not set	Timer restart, function is disabled. Timer restart, function is enabled.
JS19		

1.4

 EqualizerThe entire equalizer section is only enabled if the EQUALIZER IN key is pressed. The bass cut filter is not affected by this.
Shelving equalizer for treble and bass. Pange at $20 \mathrm{~Hz} / 20 \mathrm{kHz}: \pm 15 \mathrm{~dB}$.

Parametric filter with adjustable center frequenzy: $150 \mathrm{~Hz} . . .7 \mathrm{kHz}(\mathrm{Q}=1)$ Emphasis / de-emphasis: $\pm 11 \mathrm{~dB}$

MONO INPUT UNIT

1.5 Insertion Point

Before the linear fader the audio signal is electronically balanced and taken to two rearpanel bantam jack sockets. The insertion level is +6 dBu .

1.6 Signalization and Fader Start

When the input selector switch is in the MIC position, a logical signal is applied to the signalization bus as soon as the following criteria are satisfied:

- Channel fader open
- Master fader open
- Master selection key pressed
- Mute function not active
- Channel enabled with ON key.

The aggregate signal is used in the monitor unit for controlling the studio signalization.

If under the same conditions the input selector is in the LINE position, the remote control relay built into the input channel is activated. The relay make contact available on the 15-pin D-type REM-CONTR connector can be used for the remote control of turntables or tape recorders.

EDTION: 5. OKtober 1990

* version not auailable I only for infurmation

P NO NANE	REMARK (EURO It-P)		NE MAME	REMARK (C-TYPE 15-P)

			come		
			coseme		
			cin		
			coly		
$\stackrel{(}{417}$					

BOTTOM VIEW

(0) 27.7 .89	O		1	10			\bigcirc
- ${ }^{\text {27, }}$							
STUDER	MONO	InPut	UNIT		SC		. 97

Mono-Input-Unit 970

Mono-Input-Unit 970

1.970 .710 .81

\qquad

INPUT UNITS

2.	Stereo Hochpegeleinheit ohne Entzerrer
Stereo Hochpegeleinheit mit Entzerrer	1.970 .753
	1.970 .754

2.1 Bedienungselemente

OVERLOAD:	Die mit Overload bezeichnete LED leuchtet auf, sobald der maximal zulässige Pegel vor oder nach dem Flachbahnregler überschritten wird.
EINGANGSTEIL:	Stereophonischer Hochpegeleingang, symmetrisch und erdfrei. Eingangsempfindlichkeit wird auf kundenspezi- fischen Nennpegel abgeglichen. Eine Verstärkungsän- derung um ± 10 dB ist am Gain-Potentiometer möglich.
ENTZERRER:	Siehe 2.4
HILFSAUSGÄNGE	Zwei getrennt regelbare Hilfsausgänge sind über die an den Potentiometer angebauten Zug-Druckschaltern vor oder nach Flachbahnregler schaltbar.
PAN. POT.	Das Panorama Potentiometer kann mit dem
SUMMENWAHL:	Zug-Druckschalter aktiviert werden.
Stereo und 2 Kanal-Pulte sind mit einer Taste zur	
gemeinsamen Anwahl der Sammelschienen $\Sigma 1$ und $\Sigma 2$	
bestückt. 4-Kanal Pulte sind mit zwei Tasten zur	
getrennten Anwahl der Sammelschiene $\Sigma 1+\Sigma 2$ und	

STEREO HL INPUT UNIT
(ANPUTS

2.3 Steuertasten

Vor dem Flachbahnregler sind drei geräuscharme Drucktasten mit Signallampen angebracht. Die Funktionen dieser Tasten können im Einschub durch Umstecken von Miniatur-Brückensteckern verändert werden.

Es sind 3 Grundversionen vorgesehen:

Version 1 (Fig.1)

PFL

- Das Vorhörsignal PFL (Pre fader listening) wird zum Vorhörlautsprecher und zum Kopfhörer durchgeschaltet. Ein weiterer Tastendruck unterbricht dieses Signal wieder.
- Gleichzeitig wird die Signallampe ein- oder ausgeschaltet.

ON

- Schaltet den Modulationsweg durch, sofern eine Summe angewählt und der Flachbahnregler geöffnet ist.
- ON-Lampe leuchtet.
- PFL wird unterbrochen, wobei aber die PFL-Lampe weiterleuchtet um den vorher angewählten Zustand anzuzeigen.
- Signalisation resp. Faderstart-Relais wird durchgeschaltet, sofern die übrigen Kriterien erfüllt sind (siehe 2.6 Sign. und Faderstart).
- Automatische Stoppuhr wird zurückgesetzt. (Option)

OFF

- Modulation wird unterbrochen.
- Signalisation und Faderstart-Relais fallen ab.
- Falls die PFL-Taste angewählt war, wird nun das Vorhören wieder durchgeschaltet.
- ON-Lampe erlöscht.

OFF-Lampe: Wird von Extern aktiviert und kann den Bereitschaftzustand der Quelle signalisieren.

Fernsteuerung: . Alle Tasten- und Lampensignale sind auch auf einem fünfzehnpoligen DType Stecker verfügbar. Obige Funktionen können also auch ferngesteuert werden.

Version 2

- Gleiche Funktionen wie in Version 1, mit der Ausnahme, dass anstelle des Vorhörsignales vor Flachbahnregler, dasjenige nach Regler (APL) durchgeschaltet wird.

Version 3

AUDITION

- Schaltet den Kanal durch und wählt die Summen 3+4 an. (Eingangseinheiten dieser Version sind nicht mit Sammelschienenwahltasten ausgerüstet).
- AUDITION-Lampe wird eingeschaltet.
- Signalisation wird aktiviert.
- Timer Restart.

ON AIR

- Schaltet den Kanal durch und wählt die Summenwahlschienen 1+2 an.
- ON AIR-Lampe wird eingeschaltet.
- Signalisation wird aktiviert.
- Timer Restart.

OFF

- Setzt sowohl AUDITION- als auch ON AIR-Taste zurück.
- Signalisation wird inaktiv.

Fig. 1

Codierung für externe ON- und OFF-Lampensteuerung

Version 1 (STANDARD)
Version 2
Version 3
$x=$ Jumper gesetzt $x=$ Jumper set

Optionen

Ort	Jumper	Funktionen
JS1	gesetzt frei	OFF Lampe leuchtet, wenn ON-Taste ausgeschaltet ist. Keine Funktion
JS1 und JS2	gesetzt frei	OFF Lampe leuchtet, wenn ON-Taste und PFL/APL-Taste ausgeschaltet sind. Keine Funktion
JS3	gesetzt frei	PFL/APL-Taste nur einschaltend PFL/APL-Taste selbstauslösend (Toggle switch)
JS4	gesetzt frei	ON-Taste nur einschaltend ON-Taste selbstauslösend (Toggle switch)
frei	gesetzt frei	OFF-Taste setzt die PFL/APL-Taste zurück Keine Funktion
JS6	APL (After Pan Listening) Version 2 PFL (Pre Fader Listening) Version 1 STANDARD	
JS7	gesetzt frei frei	ON AIR-Taste schaltet $\Sigma 1+2$ durch. AUDITION-Taste schaltet $53+4$ durch. Version 3
JS7 und JS8	AUDITION-Taste steuert die Signalisation des HL-Einganges an. Nur Version 3 Keine Funktion Keine Funktion	
JS19	gesetzt frei	PFL/APL-Taste steuert direkt das Line Relay an. Nur für Version 1+2! Keine Funktion
frei	gesetzt frei	Time Delay justierbar mit R16 zwischen 0 ... 1 sec. Keine Verzögerung

Diese Funktion ist nur für die Hochpegel Eingangseinheit 1.970.753/754.81 verfügbar.

Extension unit 1.970.792.00

Zwischen dem Faderstart und dem Durchschalten des Audiosignals kann eine Verzögerungszeit von $0 . .1 \mathrm{sec}$. mit R16 (PCB 1.970.792) eingestellt werden. Der Jumper J 10 muss wie oben dargestellt gesetzt sein (=Zeit-Verzögerung aktiv).

2.4
 Entzerrer

Der ganze Entzerrer ist mit der Drucktaste EQUALIZER IN überbrückbar. Fächerentzerrer für Höhen und Tiefen.
Bereich $\pm 15 \mathrm{~dB}$.

Parametrisches Glockenkurven-Filter mit einstellbarer Mittenfrequenz von $150 \mathrm{~Hz} . .7 \mathrm{kHz}(Q=1)$
Anhebung / Abschwächung $\pm 11 \mathrm{~dB}$.
Beide Kanäle werden gemeinsam beeinflusst.

2.5 Einschleifpunkt

Vor dem Flachbahnregler werden die Tonsignale elektronisch symmetriert und über je zwei auf der Pultrückseite befindliche Bantam Jack Buchsen geführt. Der Einschleifpegel beträgt +6 dBu.

2.6 Signalisation und Faderstart

Das im Einschub untergebrachte Fernsteuerrelais wird aktiviert, sobald folgende Kriterien erfüllt sind:

- Kanalregler geöffnet
- Summenregler geöffnet
- Summenwahltaste betätigt
- Mute Funktion nicht aktiv
- Kanal mit ON-Taste eingeschaltet

Der auf dem 15 poligen D-Type Stecker (REM-CONTR.) greifbare Arbeitskontakt des Relais kann zur Fernsteuerung von Plattenspielern oder Tonbandgeräten eingesetzt werden.
Stereo High-Level Unit without EqualizerStereo High-Level Unit with Equalizer

2.1 Operating Elements

STEREO HL INPUT UNIT

2.3 Control Keys

Three low-noise push keys with signal lamps are located before the fader. The functions of the keys can be altered by changing the position of the minijumpers on this unit.

Three basic versions are available:

Version 1 (Fig.1)

PFL

- The prefader listening signal (PFL) is connected to the prelistening speaker and to the headphones. The signal is interrupted when this key is pressed a second time.
- At the same time the signal lamp is switched on or off.

```
ON
```

- Through-connects the modulation path, provided the bus is selected and the fader opened.
- ON lamp is turns on.
- PFL is interrupted, however the PFL lamp remains switched on to signal the previously selected state.
- Signalization or fader start relay is through-connected, provided the other criteria are satisfied. (see 2.6, signalization and fader start).
- Automatic stopwatch is reset (option).

OFF

- Modulation is interrupted.
- Signalization and fader start relays drop out.
- If the PFL-key was activated, prelistening is again through-connected, if the PFL key has been actuated.
- ON lamp turns off.

OFF-Lamp: Is activated externally and can signal the ready state of the source.
Remote control:

- All key and lamp signals are available on a 15-pin D-type connector. The above functions can also be remote-controlled.

Version 2

- Same function as version 1, except that the prelistening signal after the panorama potentiometer (APL) is connected rather than the signal before the fader.

Version 3

AUDITION

- Through-connects the channel and selects master buses $3+4$ (the input units of this version are not equiped with bus selection buttons).
- AUDITION lamp is turned on.
- Signalization is enabled.
- Timer restart.

ON AIR

- Through-connects the channel and selects master buses $1+2$.
- ON AIR lamp is turned on.
- Signalization is enabled.
- Timer restart.

OFF

- Resets not only the AUDITION but also the ON AIR key.
- Signalization is disabled.

Fig. 1

Coding for external ON and OFF lamp control

Options

Location	Jumper	Functionen
JS1	Set Not set	OFF lamp is light when the ON keys switched off. No function
JS1 und JS2	Set Not set	OFF lamp is light when the ON key and the PFL/APL key are switched off. No function
JS3	Set Not set	Set Not set PFL/APL key only on-switching self-releasing (toggle switch)
JS4	Set Not set	ON key only on-switching ON key self-releasing (toggle switch)
JS5	Set Not set No function	
JS6	Set Not set	APL (after pan listening) version 2 PFL (prefader listening) version 1 STANDARD
JS7	ON AIR key enables $\Sigma 1+2$. AUDITION key enables $\Sigma 3+4$. Version 3 3 No function	
JS7 and JS8	Set Not set	AUDITION key controls the signalization of the HL input (ONLY version 3) No function
JS9	Set Not set	PFL/APL key directly controls the line relay. (Version 1+2) No function
JS10	Set Not set	Time delay adjustable with R16 batween 0...1 sec. No delay

This function is only available for HL input unit 1.970.753/754.81

Extension unit 1.970.792.00

The time delay between the faderstart and the switching on of the audio signal is adjustable between $0 . .1$ sec. with R16 (PCB 1.970.792)
Jumper 10 must be set as shown! (Time delay = activ)

2.4

 EqualizerThe entire equalizer section is only enabled if the EQUALIZER IN key is pressed. Shelving equalizer for treble and bass.
Range at $20 \mathrm{~Hz} / 20 \mathrm{kHz}: \pm 15 \mathrm{~dB}$.

Parametric filter with adjustable center frequenzy: $150 \mathrm{~Hz} . .7 \mathrm{kHz}(\mathrm{Q}=1)$. Emphasis / de-emphasis: $\pm 11 \mathrm{~dB}$.
Both channels are jointly influenced.

STEREO HL INPUT UNIT

2.5 Insertion Point

The audio signals are electronically balanced before the stereo fader and taken to two bantam jack sockets each, located on the rear panel of the unit. The insertion level is +6 dBu .

2.6 Signalization and Fader Start

The remote control relay of this module is activated as soon as the following criteria are satisfied:

- Channel fader open
- Master fader open
- Master selection button actuated
- Mute function not active
- Channel enabled with ON key.

The relay make contact available on the 15-pin D-type REM-CONTR connector can be used for the remote control of turntables or tape recorders.

2.7 Schemateil / Circuit Diagrams

EDTION: 5. OKtober 1990

Stereo HL Input Unit 970

Stereo HL Input Unit 970

EDITION: 23. Oktober 1990
1.970.751.81

$C E=$ Ceramic, $C F=$ Carbon Film, EL=Electrolytic, MF=Metal Film, $C E=$ Ceramic, $C F=$ Carbon $F 1 m, E L=E$ ectrolytic,
$P E=$ Polyester, $P P=$ Polypropylen, $P S=P o l y s t y r o l$

MANUFACTURER: Bu=Burndy, Ex=Exar, $\mathrm{Fc}=\mathrm{Fairchild}$, GI=General Instrument
HP=Hewlett Packard, ITT=Intermetall, Mot=Motorola, Nat=Nationa
\{Matsushita\}, NS=National Semiconductors, Ph=Philips,
Ra=Raytheon, Sig=Signetics, Six=Siliconix, St=Studer,
$\mathrm{TI}=$ Texas Instrument
1.970.751.81 STEREO HL INPUT UNIT 970 TA89/10/1700

3.1 Bedienungselemente

LIMITER/ KOMPRESSOR: Ratio: Release: Gain:	Die Summen-Einheit vereinigt drei Funktionsblöcke: - Summenteil - Limiter/Kompressor-Stufe mit eigenem Einschleifpfad - Hochpegeleingang Über Potentiometer sind folgende Parameter einstellbar: Kompressionsverhältnis: 1:1.5...1:20 (Limiter) Rücklaufzeit programmabhängig beeinflussbar am Potentiometer. Der Limiter/Kompressor-Einschleifpfad verfügt am Eingang über eine eigene, an Potentiometer GAIN einstellbare Kanalverstärkung. Bei ausgeschaltetem Limiter/Kompressor kann dieser Verstärker für beliebige Pegelanpassungen verwendet werden. Der Regelteil des Kompressor / Limiters arbeitet auf dem Puls-Dauer-Modulations (PDM) Prinzip. Ein- und Ausgang sind elektronisch symmetriert. Der Nennpegel beträgt +6 dBu . Funktionsbeschreibung unter Punkt 3.2.
HL INPUT:	Jeder Summenkanal ist mit einem zusätzlichen $\mathrm{HOCH}-$ PEGELEINGANG ausgerüstet. Eine PFL-Taste erlaubt das Vorhören des Eingangssignales. Zur Lautstärkeregulierung ist ein Potentiometer eingesetzt. Analog zu den Eingangseinheiten sind zwei Hilfsausgänge AUX 1 und AUX 2 vorhanden. Nebst Sammelschienenanwahl und Panoramasteller verfügt der Eingang auch über eine MUTE-Taste zur Stummschaltung.

SUMMENTEIL: An einem Null-Ohm-Verstärker wird das Sammelschienensignal summiert und auf den elektronisch symmetrierten Einschleifpunkt (BantamJack Buchsen) gebracht. Das zurückkommende Signal gelangt auf die Vorhörtaste und auf den Summenregler. Über den Schalter zum Einschleifen des Limiters gelangt das Signal auf den Ausgangsverstärker mit symmetrischem, erdfreiem Ausgang.

PFL Master: Das unabhängig von der Flachbahnregler-Stellung abgegriffene Vorhörsignal wird mittels Tastendruck auf beide PFL-Sammelschienen geleitet. Dies ermöglicht ein Abhören des Summenkanals, auch bei geschlossenem Flachbahnregler.

3.2 Limiter / Kompressor

Die Limiter / Kompressorstufe, mittels Taste IN zuschaltbar, wird zur Pegel- (Limiter) und Dynamik(Kompressor) Begrenzung eingesetzt. Sie kann wahlweise dem Summenkanal zugeschaltet, oder für externe Anwendungen in den separaten LIMITER/ COMPR-Einschleifpfad eingeschaltet werden (Taste $\Sigma /(N S E R T):$

STEREOKOPPLUNG LINK Über die eingerastete Taste LINK werden die LimiterRegelkreise der Summeneinheiten, über welche ein Signal verarbeitet wird, miteinander gekoppelt. Dies bewirkt eine Verstärkungsregelung, bei der die Regelgrösse vom Kanal mit dem jeweils höheren Pegel bestimmt wird.

SUMMENKANAL Σ Die ausgerastete Vorwahltaste (Position Σ) schaltet den Limiterteil in den Summenkanal (LED LIMITER leuchtet) und dient der Pegelbegrenzung, zum Schutze der Ausgangsleitung vor Übersteuerung. Der RATIO- und der GAIN-Regler sind bei dieser Anwendung nicht wirksam. Der Pegelgrenzwert liegt bei +6 dBu und lässt sich schaltungsintern abgleichen.

[^2]
3.1 Operating Elements

LIMITER/ COMPRESSOR:

The master unit comprises three functional blocks:

- Master section
- Limiter/compressor stage with separate insertion path
- High-level input

The following parameters can be adjusted via potentiometers:
Ratio: Compression ratio: 1:1.5...1:20 (LIMITER)
Release: Program dependent release time, adjustable with the potentiometer.
Gain: The gain of the limiter/compressor insertion path can be varied on the input with the GAIN potentiometer. This amplifier is also available for any other application when the limiter/compressor is switched off.

The control section of the compressor/limiter employs the pulse duration modulation (PDM) principle. The input and the output are electronically balanced. The nominal level is +6 dBu .

HIGH-LEVEL INPUT: Each master channel is equiped with an additional high-level input. A PFL button is available for prelistening the input signal. The volume can be controlled with a potentiometer. Two auxiliary output units AUX 1 and AUX 2 are available, analogously to the input units. The buses are selected in the same way as on the input units and differ in the arrangement and design of the selection keys.

MASTER SECTION: The bus signal is added by a zero-ohm amplifier and taken to the electronically balanced insertion point (bantam jack socket). The return signal is taken to the prelistening key and to the master fader. Via the limiter insertion switch the signal is taken to the output amplifier which has a balanced and floating output.

PFL Master: The PFL signal which is tapped independently of the fader setting can be connected to the two PFL buses by pressing button which means that the master channel can also be prelistened when the linear fader is closed.

The limiter/compressor stage which can be brought into the circuit with the IN button, is used for limiting the level (limiter) and the dynamic range (compressor). For external applications it can be connected to the separate LIMITER/COMPR insertion path (with button Σ /INSERT):

STEREO COUPLING LINK When the LINK button is engaged, the limiter control circuits of the master unit processing a signal are coupled. This results in a gain control in which the controlled variable is determined by the channel on which the higher control voltage is available.

MASTER CHANNEL Σ When the preselection button is released (position Σ), the limiter section connects the master channel (LIMITER LED is on) and serves as a level limiter for protecting the output line from overloads. The RATIO and the GAIN controls are disabled in this application. The level limit is +6 dBu and can be aligned internally.

LIMITER/COMPRESSOR
 -INSERTION PATH

INSERT When the preselection button is engaged (INSERT position), the limiter/compressor circuit is available on the balanced jack sockets [C] for insertion into the PF insertion path of any input or master module.
The following parameters of the limiter/compressor function can be altered:

3.3 Blockschaltbild / Block Diagram

Master Unit 970

(1) change of PDM-VCA part number
(2) click suppresion : IC1 MC33078
(3) change of transistor part number
(4) IC1, 50090117 replaced by 101005150

4.1 Bedienungselemente

TESTGENERATOR:	Der eingebaute Testgenerator wird über eine Sammelschiene allen Mono Eingangseinheiten zugeführt. Fünf Frequenzen können eingestellt werden $(31.5 \mathrm{~Hz}, 100 \mathrm{~Hz}, 1 \mathrm{kHz}, 10 \mathrm{kHz}$ und 15 kHz).
KOMMANDO:	Dem Talk Back Mikrofon folgt ein Mikrofonverstärker mit integriertem Limiter. Über Drucktasten kann auf die beiden Hilfsausgänge, (TB Aux1; TB Aux2) die Summensammelschienen TB SLATE und auf den Studiolautsprecher TB STUDIO gesprochen werden.
HILFSSUMMEN AUX 1 und AUX 2:	Zwei Null-Ohm Verstärker summieren die Signale der AUX Sammelschienen. Der Ausgangspegel kann an zwei Potentiometern eingestellt werden. Zwei TB Drucktasten erlauben Kommandogabe auf die Hilfsausgänge. Die Ausgänge der Hilfssummen sind symmetrisch und erdfrei.
TB RETURN:	An den eingebauten TB Return Verstärker kann ein im Studio plaziertes Gegensprechmikrofon angeschlossen werden. Ein externes Steuersignal schaltet den Gegensprechweg auf den Vorhörlautsprecher.
STUDIO MONITOR:	Der Monitor Selector erlaubt die Anwahl folgender Quellen:
	Bei Stereopulten: - Summen $\Sigma 1+2$ C.R. Monitor $-\quad$ den Hilfseinschub AUX Monitor \square 2 Externe Quellen
	Bei 4 Kanal Pulten: Summen $\Sigma 1+2$ Summen $\Sigma 3+4$ C.R. Monitor den Hilfseinschub AUX Monitor 1 Externe Quelle
STUDIO CUT:	Nach dem Lautstärkepotentiometer folgt ein MUTE Schalter der das Studioabhören unterbricht, sobald ein Mikrofonkanal geöffnet wird. Die RE IN Taste erlaubt das Einspielen bei offenem Mikrofonkanal. Das Ausgangssignal wird elektronisch symmetriert.

4.1 Operating Elements

STUDIO CUT: The volume potentiometer is followed by a MUTE switch that interrupts studio monitoring as soon as a microphone channel is opened. Insertion with open microphone channel is possible with the RE IN button.

The output signal is electronically balanced.

AUX, TB, STUDIO MON.

Aux/Studio Master Unit Part 1

5.1 Bedienungselemente

REGIEABHÖREN: Über gegenseitig auslösende Drucktasten können 9 verschiedene Abhörquellen angewählt werden.

CR Monitor Die Lautstärke der Abhörlautsprecher kann an einem Potentiometer eingestellt werden. Das auf der gleichen Achse untergebrachte Balance Potentiometer erlaubt es, allfällige durch den Raum oder die Lautsprecher hervorgerufene Lautstärkeunsymmetrien auszugleichen.

Meter Mit der METER TO MONITOR Taste können die Aussteuerungsmesser 1 und 2 wahlweise an die Summenausgänge $\Sigma 1+2$ oder parallel zu den Abhörlautsprechern geschaltet werden.

PFL to Monitor Bei eingeschalteter PFL-TO-MONITOR-Funktion wird automatisch das PFL-Signal auf den Monitor geschaltet, sobald eine PFL/APL-Taste gedrückt wird. Die laufende Aufnahme oder Sendung wird dabei nicht beeinflusst. Sobald alle PFL/APL Tasten wieder ausgeschaltet sind, wird das angewählte Monitorprogramm wieder hörbar.

Die MONO-Taste erlaubt das abhören von StereoquelIen in Mono.

Während der Kommandogabe über das eingebaute Mikrofon wird der Abhörpegel um 20 dB gedämpft.

SIGNALISATION: Drei Drucktasten sind zur Signalgabe ins Studio vorgesehen. Der Signalisationszustand wird an drei LED auf dem Instrumentenpanel des Regiepultes angezeigt.

CALL Der Arbeitskontakt der Impulstaste kann ein Warnsignal (Gelb) im Studio steuern. Die gelbe LED im Instrumentenpanel von aussen (Taste im Studio) aktiviert werden.

READY Über den Arbeitskontakt der haltenden Drucktaste kann ein Achtung-Signal im Studio gesteuert werden. (Grün)

STUDIO ON Diese Taste aktiviert das Studio Rotlicht, wenn gleichzeitig wenigstens ein Mikrofonkanal geöffnet ist. Zur Rotlichtsteuerung steht ein Relaisarbeitskontakt zur Verfügung.

KOPFHÖRER: Über einen dreiteiligen Tastenschalter kann entweder das am Monitor Selector angewählte Signal (MON) oder das Vorhörsignal (PFL) abgehört werden. In der dritten Stellung ist das Monitorsignal solange hörbar, als keine PFL Taste angewählt ist (MON PFL). Nach dem Betätigen einer PFL Taste wird die Monomischung des Monitorsignales in der einen Hörmuschel und das PFL Signal in der anderen Muschel hörbar.

Wird in der oberen Kopfhörerbuchse kein Jack eingesteckt, so wird das Signal auch über den eingebauten Vorhörlautsprecher hörbar.

STEUERTASTEN: Im Vorderteil des Einschubes können auf Kundenwunsch bis zu drei Steuertasten eingebaut werden.

5.2 Option

Brücke I einlöten wie in Zeichnung A :
Bei DJ Betrieb wird das Abhörsignal automatisch unterbrochen, wenn an einer Eingangseinheit der Eingangswahlschalter auf MIC steht und der Flachbahnregler geöffnet ist.

Brücke I einlöten wie in Zeichnung B:
STUDIO ON Taste muss gedrückt werden, dann gleiche Funktion wie vorher beschrieben.

5.1 Operating Elements

CONTROL ROOM MONITORING:

Nine different monitoring sources can be selected by means of interlocking push buttons.

CR Monitor The volume of the monitor speakers can be set with a potentiometer. Possible volume imbalances caused by the room characteristics or by the speakers can be compensated with the coaxial balance potentiometer. Stereo sources can be monitored in mono mode by pressing the MONO button.

Meter With the METER TO MONITOR button output meters 1 and 2 can be selectively connected to the master outputs $\Sigma 1+2$ or in parallel to the monitor speakers.

PFL to Monitor With the PFL TO MONITOR button, monitoring is interrupted and the selected PFL signal is connected to the monitor speakers as soon as one or more PFL or APL keys are pressed. The current recording or broadcast is not influenced. As soon as all PFL/APL keys are switched off again, the selected monitor program can be heard again.

The monitoring level is attenuated by 20 dB , while commands are given trough the built-in microphone.

SIGNALIZATION: Three push buttons are available for transmitting signals to the studio. The signalization status is indicated by three LEDs on the instrument panel of the audio mixer.

CALL The make contact of the momentaryaction push button can control a warning signal in the studio (yellow light). The yellow LED in the instrument panel can be activated externally (push button in the studio).

READY An attention signal in the studio can be controlled via the make contact of the self-holding push button. (green light)

STUDIO ON This key activates the red on-air light when at least one microphone channel is open. A relay make contact is available for controlling the red light.

CR MONITOR

HEADPHONES: By means of 3 interlocking push button switches either the signal available from the monitor selector (MON) or the prefader listening signal (PFL) can be monitored. In the third position (MON PFL) the monitor signal can be heard as long as no PFL key is active. After a PFL key has been actuated, the mono mix of the monitor signal becomes audible in one earpiece and the PFL signal in the other earpiece.

If no Jack is inserted in the upper headphones socket, the signal can also be heard via the built-in monitor speaker.

CONTROL KEYS: Up to three control keys can be installed on the front of the module according to the customer's specifications.

5.2 Option

Solder in jumper I as shown in diagram A:
In DJ mode the monitoring signal is automatically interrupted when the input selector of an input module is in the MIC position and the fader is open.

Solder in jumper I as shown in diagram B:
STUDIO ON key must be pressed, otherwise same function as described above.

6. Monitorerweiterung

Erweiterung für CR Monitor	1.970 .920
und Studio Monitor	1.970 .901

QUELLENANWAHL: Je ein Tastensatz von neun, sich gegenseitig auslösenden Quellenwahltasten ergänzen den CR MONITOR resp. den STUDIO MONITOR um neun Pro-gramm-Eingänge.
Neun Eingänge führen parallel auf die zwei Tastensätze für den CR- und Studio Monitor.

EINGANGSSCHALTUNG: (Beschrieben wird ein Kanal, der zwei möglichen Eingangsstufen).
Die Eingangsstufe ist als symmetrisch, erdfreier Knotenpunktverstärker ausgelegt. Die angewählte Signalquelle führt über die entsprechenden Koppelwiderstände (R1...36) und (R37/38) an den Eingansübertrager (T1). C1... 4 leiten hochfrequente Störsignale auf Massenpotential ab. Das RC-Glied (R39-C5) unterstützt das Rechteckverhalten des Eingangssignals. Das sekundärseitig ausgekoppelte asymmetrische NF-Signal führt zum invertierenden Eingang des OpAmp (IC1.1). Die Widerstände (R42/43) kompensieren, zwecks Optimierung des Klirrabstandes, den Kupferwiderstand der sekundärseitigen Transformatorwicklung.

ANKOPPLUNG AN CR-STUDIO MONITOR:

Über P4 führt das NF-Signal auf den reservierten Eingang des CR-, resp. STUDIO-Monitors. Dieser erfährt, bei erweiterter Monitoreinheit, eine Änderung; Siehe entsprechendes Schema:

CR/MONITOR $\quad 1.970 .920$
STUDIO MONITOR 1.970.901
Durch das Setzen der Drahtbrücken (*) werden die "b"Signaladern auf OV geführt, was eine asymmetrische Signalverarbeitung über Eingangsübertrager, und eine Signalverstärkung durch den nachfolgenden OpAmp, von den zugeführten +0 dBu auf Nennpegel +6 dBu zur Folge hat.
6. Monitor Expansion Unit 1.970 .952

	Monitor expansion for CR Monitor and for Studio Monitor	1.970 .920
SOURCE SELECTION:	On set of nine interlocked source selection buttons	
	each expand the CR MONITOR or the STUDIO	
	MONITOR respectively by nine program inputs.	
	The nine inputs are taken in parallel to both sets of	
	correspondingly arranged selector buttons.	

INPUT CIRCUIT: (Described is one channel of the two possible input stages)
the input stage is designed as an unbalanced and floating nodal point amplifier. The selected signal source is taken via the corresponding coupling resistor (R1...36) and (R37/38) to the input transformer (T1). C1... 4 discharge high-frequency noise signals to ground potential. The RC element (R39-C9) supports the square-wave behavior of the input signal. The unbalanced audio signal decoupled on the secondary side is taken to the inverting input of opamp (IC1.1). The resistors (R42/43) compensate the copper resistance of the secondary transformer winding in order to optimize the distortion factor.

COUPLING TO CR/ The audio signal is taken via P4 to the reserved input STUDIO MONITOR: of the CR or STUDIO monitor. The latter is modified when the monitor module is expanded;
refer to corresponding diagram.

CR/MONITOR
 1.970.920
 STUDIO MONITOR 1.970.901

Wehn the two jumpers (*) are set, the b-signal conductors are connected to 0 V with the result that the signals are processed unbalanced via input transformers and the signals are amplified by the subsequent opamp from the available 0.3 dBu to the nominal level of +6 dBu .

6.1 Blockschaltbild / Block Diagram

Aux Monitor

DATE:	11.5 .87					
SIGN:	ak					PAGE 10F1
STUDEER REGENSOORF ZURICH	AUX MONITOR					

AUX / Control Room / Studio Monitor
 \qquad

Ad ..Pos... ...ref.No... Desccipriel
...... manmacatuer

CER = ceranic, EL = electrolytic, PE = polyester, $p=$ = polypropylen
 1.970.952.00 AuX CR/Stuorio monition WY 86/08/2200

1. Telephone Hybrid Remote Control 1.913.194.................................. 1
2. Korrelator 1.913.210/211.. 3
2.1 Anwendungen, die einen Korrelator erfordern .. 3
2.2 Blockschaltbild ... 3
2.3 Technische Daten ... 4
3. Peak Program Meter (PPM) 1.913.220/221...................................... 9
3.1 Blockschaltbild .. 9
3.2 Technische Daten .. 10
4. VU-Meter 1.913.230/231... 15
4.1 Blockschaltbild ... 15
4.2 Technische Daten ... 16
5. PFL/SIGN. Indicator Unit 1.913.301.. 21
6. Stop Watch Unit 1.913.310 ... 23
$5 \quad$ Plug in Units
1.913....
7. Telephone Hybrid Remote Control 1.913.194................................. 1
8. Correlator 1.913.210/211.. 5
2.1 Applications which require a Correlator.. 5
2.2 Block Diagram ... 5
2.3 Specifications ... 6
9. Peak Program Meter (PPM) 1.913.220/221 11
3.1 Block Diagram .. 11
3.2 Specifications .. 12
10. VU-Meter 1.913.230/231.. 17
4.1 Block Diagram... 17
4.2 Specifications ... 18
11. PFL/SIGN. Indicator Unit 1.913.301... 21
12. Stop Watch Unit 1.913.310 ... 23

Tel. Hybrid Remote Control Mix Minus
1.913.194.00
Ad ..pos.. ...ReF.Vo... oescription...............................anweacture

1.913.194.00 TeL.Hver.en. Cowre./MIX.MINS SiB37/12/0770

Der Korrelator zeigt die Phasenkorrelation einer Stereoaufnahme an.
Die Phasenkorrelation ist die gegenseitige Beziehung der Phasen beider Kanäle.
Wenn die Signale beider Kanäle gleichphasig sind, z.B. bei Monoaufnahmen, zeigt das Korrelationsinstrument +1 an; wenn sie gegenphasig ($\pm 180^{\circ}$) sind, zeigt das Instrument -1 an. Bei einem Stereoprogramm wird ein Mittelwert von gleich- und gegenphasigen Signalen angezeigt.

Stereoprogramme weisen normalerweise einen positiven Korrelationswert auf, vorzugsweise um $+0,5$. Negative Werte zeigen eine Phasenvertauschung im System an.

2.1 Anwendungen, die einen Korrelator erfordern:

Monokompatibilität von Stereoprogrammen

Tiefe Frequenzen auf Stereo-Schallplatten

Modulation von
FM-Stereosendern

Damit eine stereophone Aufnahme auch monophon abgehört werden kann, muss die Korrelation überwacht werden.

Gegenphasige Anteile führen zu partiellen Auslöschungen.
Die Abtastfähigkeit eines Abtastsystems ist für vertikale Auslenkung viel geringer als für horizontale Auslenkung.

Gegenphasige Signale mit hohem Pegel und tiefen Frequenzen weisen eine grosse vertikale Auslenkung auf und müssen deshalb vermieden werden.

Die FM-Strecke Sender-Empfänger ist sehr empfindlich auf übermässig hohe Frequenzdifferenz-Signale. Es entstehen dabei unzulässige Verzerrungen.

2.2 Blockschaltbild

Korrelation

2.3 Technische Daten

Eingang:	symmetrisch und erdfrei Eingangsimpedanz $20 \mathrm{~Hz} \ldots 20 \mathrm{kHz}:>10 \mathrm{kOhm}$ Eingangspegel, einstellbar: $+6 \ldots+15 \mathrm{dBu}$
Filter:	Hochpass $6 \mathrm{~dB} /$ Oktave: $f_{u^{\prime}}$ ca. 340 Hz Tiefpass $12 \mathrm{~dB} /$ Oktave: f_{o}. ca. $3,4 \mathrm{kHz}$
Ausgang:	Ausgangstrom für Instrumente, einstellbar $\pm 300 \mu \mathrm{~A}$
Temperatureinfluss:	Fehler bei $0^{\circ} \mathrm{C} \ldots 50^{\circ} \mathrm{C}$, bezüglich Raumtemperatur: +3 ... -1\%
	Stromaufnahme bei $\pm 15 \mathrm{~V}$: ca. 15 mA
Abmessung Frontplatte:	$170 \times 180 \mathrm{~mm}$
Tiefe:	135 mm
Gewicht:	390 gr

The correlator indicates the phase correlation of a stereo program.
The phase correlation is the mutual relation of the phases on both channels.
If the signals of both channels are in phase, e.g. in a mono production, the correlation instrument indicates +1 , if they are phased inversely ($\pm 180^{\circ}$) the instrument indicates -1. The correlator always indicates the average of in-phase and antiphase signals of a stereo production.

Stereo programs normally shown a positive correlation value, preferably around $+0,5$. Negative values indicate that the phase in the system is inversed.

2.1 Application which require a Correlator

Mono compatibility of stereo programs

Low frequencies on stereo records

Modulation from

 FM stereo transmittersTo ensure that a stereo recording can also be reproduced in mono mode it is necessary to monitor the correlation.

No phased-inversed components are allowed because they partially cancel during monophonic reproduction.

The tracking capability of a cartridge is much lower for vertical excursion than for horizontal excursion.

Antiphase signals with high levels and low frequencies result in high vertical excursion and should, therefore, be avoided.

The FM path from the transmitter to the receiver is very sensitive to excessively high frequency-difference signals. They produce inacceptable distortion.

2.2 Block Diagram

Correlation

2.3 Specifications

Input: Balanced and floating Input impedance $20 \mathrm{~Hz} . .20 \mathrm{kHz}:>10 \mathrm{kOhm}$ Input level, variable: $+6 \ldots+15 \mathrm{dBu}$

Filter: High-pass 6 dB /octave: f_{1}. ca. 340 Hz Low-pass 12 dB /octave: f_{u}. ca. $3,4 \mathrm{kHz}$

Output: Output current for instruments, variable $\pm 300 \mu \mathrm{~A}$
Influence of temperature: Error at $0^{\circ} \mathrm{C} \ldots 50^{\circ} \mathrm{C}$, relative to room temperature: $+3 \ldots-1 \%$
Connected load at $\pm 15 \mathrm{~V}$: approx. 15 mA
Dimensions of front panel: $170 \times 180 \mathrm{~mm}$
Depth: 135 mm
Weight: $\quad 390 \mathrm{~g}$

Aussteuerungsmesser mit symmetrisch, erdfreiem Eingang. Dynamisches Verhalten gemäss IEC/DIN Normen.

3.1 Blockschaltbild

3.2 Technische Daten

Eingangsempfindlichkeit	für Referenzanzeige $(0 \mathrm{~dB})$	$+6 \mathrm{dBu} \ldots+15 \mathrm{dBu}$
Eingangsimpedanz		$>10 \mathrm{kOhm}$
Anzeigebereich		$-40 \mathrm{~dB} \ldots+6 \mathrm{~dB}$
Genauigkeit	bei $20^{\circ} \mathrm{C}, 1 \mathrm{kHz},-40 \mathrm{~dB} \ldots+6 \mathrm{~dB}$	$\pm 0,5 \mathrm{~dB}$
Frequenzgang	bei Referenzanzeige $0^{\circ} \mathrm{C} \ldots 50^{\circ} \mathrm{C}, 31,5 \mathrm{~Hz} \ldots 15 \mathrm{kHz}$	$\pm 0,5 \mathrm{~dB}$
Temperatureinfluss	bei Referenzanzeige, $1 \mathrm{kHz}, 0^{\circ} \mathrm{C} \ldots 50^{\circ} \mathrm{C}$	Fehler $<0,5 \mathrm{~dB}$

Dynamisches Verhalten
$\left.\begin{array}{rll}\text { Überschwingen } & & \leq 1 \mathrm{~dB} \\ \text { Ansprechzeit } & \text { auf }-1 \mathrm{~dB} \pm 0,5 \mathrm{~dB} \\ & \text { auf }-4 \mathrm{~dB} \pm 1 \mathrm{~dB}\end{array}\right)$

Mechanische Daten

Abmessung Frontplatte: $170 \times 80 \mathrm{~mm}$
Tiefe: 135 mm
Gewicht: 360 gr

Level indicator with balanced and floating input. Dynamic response according to IEC/DIN standards.

3.1 Block Diagram

3.2 Specifications

Input sensitivity	for reference indication $(0 \mathrm{~dB})$	$+6 \mathrm{dBu} \ldots+15 \mathrm{dBu}$
Input impedance		$>10 \mathrm{kOhm}$
Indicating range		$-40 \mathrm{~dB} \ldots+6 \mathrm{~dB}$
Accuracy	at $20^{\circ} \mathrm{C}, 1 \mathrm{kHz},-40 \mathrm{~dB} \ldots+6 \mathrm{~dB}$	$\pm 0,5 \mathrm{~dB}$
Frequency response	at reference indication $0^{\circ} \mathrm{C} \ldots 50^{\circ} \mathrm{C}, 31,5 \mathrm{~Hz} \ldots 15 \mathrm{kHz}$	$\pm 0,5 \mathrm{~dB}$
Influence of temperature	at reference indication, $1 \mathrm{kHz}, 0^{\circ} \mathrm{C} \ldots 50^{\circ} \mathrm{C}$	error $<\mathbf{0 , 5 \mathrm { dB }}$

Dynamic response

Overswing		$\leq 1 \mathrm{~dB}$
Attack time	$\begin{aligned} & -1 \mathrm{~dB} \pm 0,5 \mathrm{~dB} \\ & -4 \mathrm{~dB} \pm 1 \mathrm{~dB} \end{aligned}$	10 ms 3 ms
Return time $0 . . .-20 \mathrm{~dB}$		$1,7 \mathrm{~s} \pm 0,3 \mathrm{~s}$
Connected load at $\pm 15 \mathrm{~V}$		ca 15 mA

Physical Data

Dimensions of front panel: $170 \times 80 \mathrm{~mm}$
Depth: 135 mm
Weight: 360 gr

4.

VU-Meter mit symmetrisch, erdfreiem und hoch-ohmigem Eingang. Dynamische Daten gemäss IEC.

4.1 Blockschaltbild

4.2 Technische Daten

Eingangsempfindlichkeit	für Referenzanzeige (0 VU)	$0 \mathrm{dBu} . . .+10 \mathrm{dBu}$
Eingangsimpedanz		$>10 \mathrm{kOhm}$
Anzeigebereich		$-20 \mathrm{VU} . . .+3 \mathrm{VU}$
Genauigkeit	bei $20^{\circ} \mathrm{C}, 1 \mathrm{kHz},-10 \mathrm{VU} \ldots+3 \mathrm{VU}$	$\pm 0,5 \mathrm{VU}$
Frequenzgang	für Referenzanzeige $0^{\circ} \mathrm{C} . . .50^{\circ} \mathrm{C}, 31,5 \mathrm{~Hz} . . .15 \mathrm{kHz}$	$\pm 0,5 \mathrm{VU}$
Ansprechzeit	auf - 1 VU	$207 \mathrm{~ms} \pm 30 \mathrm{~ms}$
Speisung		$\begin{aligned} & +15 \mathrm{~V} / 10 \mathrm{~mA} \\ & -15 \mathrm{~V} / 10 \mathrm{~mA} \\ & -\quad 6 \mathrm{~V} / 60 \mathrm{~mA}(90 \mathrm{~mA}) \end{aligned}$
Abmessungen Frontplatte:		$170 \times 80 \mathrm{~mm}$
Tiefe:		135 mm
Gewicht:		310 gr

VU-meter with balanced, floating and high-impedance input. Dynamic response according to IEC.

4.1 Block Diagram

4.2 Specifications

Input sensitivity	for reference indication (0 VU)	$0 \mathrm{dBu} \ldots+10 \mathrm{dBu}$
Input impedance		$>10 \mathrm{kOhm}$
Indicating range		- $20 \mathrm{VU} . . .+3 \mathrm{VU}$
Accuracy	at $20^{\circ} \mathrm{C}, 1 \mathrm{kHz},-10 \mathrm{VU} . . .+3 \mathrm{VU}$	$\pm 0,5 \mathrm{VU}$
Frequency response	for reference $0^{\circ} \mathrm{C} \ldots 50^{\circ} \mathrm{C}, 31,5 \mathrm{~Hz} . . .15 \mathrm{kHz}$	$\pm 0,5 \mathrm{VU}$
Attack time	to -1 VU	$207 \mathrm{~ms} \pm 30 \mathrm{~ms}$
Supply		$\begin{aligned} & +15 \mathrm{~V} 10 \mathrm{~mA} \\ & -15 \mathrm{~V} 10 \mathrm{~mA} \\ & -\quad 6 \mathrm{~V} 60 \mathrm{~mA} \end{aligned}$
Dimensions of front panel:		$170 \times 80 \mathrm{~mm}$
Depth:		135 mm
Weight:		310 gr

PFL/SIGN7AUX INDICATION UNIT 1.913 .301 .81

6. Stop Watch Unit
1.913.310.81

Stop watch Unit
1.913.310.81

Stop Watch

1.913 .310 .81

(01) faster rise time for optocoupler
$\mathrm{CE}=$ Ceramic, $\mathrm{CF}=$ Carbon Fi1m, $\mathrm{EL}=$ Electrolytic, $\mathrm{MF}=$ Metal Fi 1 m , $P E=$ Polyester, $P P=$ Polypropylen, $P S=$ Polystyrol
MANUFACTURER: Bu=Burndy, Ex=Exar, $\mathrm{Fc}=F$ Fairchild, $G I=$ General Instrument HP=Hewlett Packard, ITT=Intermetal1, Mot=Motorola, Nat=National \{Matsushita\}, NS=National Semiconductors, Ph=Philips,
Ra=Raytheon, Sig=Signetics, Six=Siliconix, St=Studer, Ra=Ray theon, $\mathrm{Sig}=\mathrm{Sign}$
$\mathrm{TI}=$ Texas Instrument
1.913.310.81 STOP WATCH

SE 88/01/0400
1.913.310.81 STOP WATCH

CONTENTS

1 Introduction.

2 MSC System.

2.1 Modular Sub-Cards (MSCs).
2.1.1 Motherboard for 1 MS-Card ..1.914.500
2.1.2 Breadboarding Card ..1.914.529
2.1.3 Line Output Amplifier ..1.914.501
2.1.4 High-Level Input Amplifier ...1.914.502/504
2.1.5 Loudspeaker Amplifier ...1.914.505
2.1.6 Microphone Pre-Amplifiers ...1.914.506/507
2.1.7 VCA with Electronically Balanced Connections1.914.515
2.1.8 VCA with 1 or 3 Control Ports ..1.914.518/528.
2.1.9 Limiter Voltage Processor ...1.914.519.
2.1.10 1900 Hz Signal Generator ... 14.520
2.1.11 Call Decoder 20... 60 Hz ...1.914.521
2.1.12 Call Decoder 1900 Hz ...1.914.522.
2.1.13 Relay Sub-Cards ..1.914.523/524/525/526
2.1.14 $0-\Omega$ Input Amplifier with PFL Facility ...1.914.530.
2.1.15 High Level Input with PFL Facility ...1.914.531
2.1.16 Flip-flop Unit ...1.914.532
2.1.17 90° Filter ..1.914.533
2.1.18 Dual Vox Detector ..1.914.534
2.1.19 Microphone Amplifier with Limiter ..1.914.539
2.1.20 Dual Fader/VCA Control Voltage Interface ..1.914.540 /541
2.2 Euro-Cards
2.2.1 Motherboard for 4 MS-Cards ..1.915.770
2.2.2 Power Supply ...1.915.100
2.2.3 Audio Generator ..1.915.200
2.2.4 Monitor Amplifier and Switching Relays (Studio/CR)1.915.304
2.2.5 Distribution Amplifier ..1.915.307/308
2.2.6 5 W Power Amplifier ..1.915.410/415
2.2.7 40 W Power Amplifier ...1.915.440/441
2.2.8 Monitor Switching Relays ..1.915.601/602
2.2.9 Transistor-Driven Relays (7+2) ...1.915.603
2.2.10 Dual Limiter ..1.915.700
2.2.11 Telephone Hybrid ..1.915.760/764
2.2.12 Line Equalizer ..1.915.776/777/779
2.2.13 Dual Balancing Unit/Dual Line Amplifier ...1.915.904
2.3 Racks and Frames
2.3.1 19" Mounting Frame for 3 Euro-Cards ...1.918.100
2.3.2 19" Ventilation Unit/19" Blank Panels ...1.918.119/0XX
2.3.3 19" Euro-Card Mounting Frames ...1.918.318/319.
2.3.4 19" Euro-Card Mounting Accessories

1 INTRODUCTION

The individual descriptions and application notes contained in this brochure are intended to acquaint designers and project engineers with the Studer Audio System Components. They allow to realize custom-tailored signal distribution, signal switching and amplifying systems to satisfy almost any individual requirement.

Euro-Cards (1.915....) The backbone of the system is the so-called Euro-card, a circuit board measuring $100 \times 160 \mathrm{~mm}$, which comes in a great variety of different circuit configurations.

Modular Sub-Cards (1.914....) Furthermore, there are the Modular Sub-Cards, small plug-in cards. Four of them can be accommodated on one Euro-size motherboard, allowing to make up a system which provides the ultimate in flexibility.

Racks, Frames (1.918....) Matching 19" mounting frames and 19" sub-racks for Euro-cards with or without power supply are available as well as installation hardware.

For prices please consult your local Studer distributor or contact:
Studer Professional Audio GmbH
Althardstrasse 30
CH-8105 Regensdorf
Switzerland
Phone: +41 448707511
Fax: +41 448707134
e-mail: sales@studer.ch
We reserve the right to change the design and the performance specifications of the products listed here as technical progress may warrant.

To provide highest possible flexibility for the designer of professional sound systems, Studer engineers have pursued a completely new concept.

The Euro-card is a convenient circuit board as far as its size and its plug-in features are concerned. However, it often offers excess space for a particular circuit. This has triggered the idea to utilize the Euro-card simply as a carrier ("motherboard", order no. 1.915.770) for four smaller plug-in circuit boards, the "Modular Sub-Cards" (MSC).

The 32 connections of the Euro-card are divided into 6 supply lines common to the modular sub-cards, and 4×6 individual lines joining the plugin sockets for each sub-card. The remaining 2 connections are used as separate bus lines, one of them leading to sub-cards 1 and 2, the other one to sub-cards 3 and 4, resulting in a total of 13 connections to each MSC. A small motherboard for only one MSC is available as well (order no. 1.914.500).

A great variety of different circuits is available in form of MSCs, such as

- Balancing amplifiers
- Microphone pre-amplifiers
- Speaker amplifiers
- $0-\Omega$ input amplifiers
- Limiters
- Voltage controlled amplifiers (VCAs)
- Relay sub-cards
- High level input amplifiers
- Line output amplifiers
- 1900 Hz signal generator/decoder
- 90° filter, stereo/mono
- Flip-flop
- Breadboarding card ($0.1 " / 2.54 \mathrm{~mm}$ grid)

To meet the requirements of a system concept, a designer will be able to build individual circuits similar to working with a construction set: He either selects from the available circuits on Euro-cards or makes up his own Euro-card by simply arranging the most suitable combination of Modular Sub-Cards on the motherboard.

2.1 Modular Sub-Cards (MSCs)

2.1.1 Motherboard for 1 MS-Card

If only one MS-card is used, this motherboard is helpful for both mechanical and electrical interfacing. It consists of an aluminium mounting base $(135 \times 36 \mathrm{~mm})$ and a small PCB with a connector for the MS-card; for wiring, this PCB contains solder terminals.
Note: For installation of up to four MS-cards, there is a second, Euro-card format motherboard available (1.915.770) that can be installed into an Eurocard rack. Please refer to chapter 2.2.1.

This experimental board is an empty plug-in PCB compatible with the MSC system. It offers a punched $0.1 "$ grid $(2.54 \times 2.54 \mathrm{~mm})$ for individual component placement.

Ordering Information: Breadboarding card 1.914.529.xx

Designed for operation at a nominal line level of $+6 \mathrm{dBu}\left(1.55 \mathrm{~V}_{\mathrm{rms}}\right)$, this amplifier can handle levels of up to $+24 \mathrm{dBu}\left(12.3 \mathrm{~V}_{\mathrm{rms}}\right)$, providing an excellent overload margin without the risk of clipping. A unique circuit around the primary of the amplifier's output transformer ensures excellent frequency response performance throughout the audible range. Fine and coarse gain adjustment is provided which allows to accommodate input levels in the range from $-22 \ldots+8 \mathrm{dBu}$ for a nominal +6 dBu output.

Technical Specifications

Input:	Impedance Overload point	$\begin{aligned} & >10 \mathrm{k} \Omega \text {, electronically balanced (transformerless) } \\ & +24 \mathrm{dBu} \end{aligned}$
Output:	Impedance	$<50 \Omega$, balanced and floating
	Minimum load	200Ω
	Maximum level	+24 dBu
	Gain	$\mathbf{- 2} \mathbf{d B} \ldots+\mathbf{2 8} \mathbf{d B}$; adjustment: coarse 0 or $15 \mathrm{~dB} /$ fine $-2 \mathrm{~dB} \ldots+13 \mathrm{~dB}$
	Frequency response	$\pm \mathbf{0 . 2 ~ d B , ~} 30 \mathrm{~Hz} \ldots .16 \mathrm{kHz}$
	THD	< $\mathbf{0 . 0 1 \%}$, $30 \mathrm{~Hz} . . .16 \mathrm{kHz}$
	Equivalent input noise	$<\mathbf{- 1 0 6 ~ d B}$, linear, at 6 dB gain
Supply:		$\pm \mathbf{1 5} \mathbf{V}(25 \mathrm{~mA}$ idling; max. 170 mA at +24 dBu into $200 \Omega)$
Dimensions:		MS-card, $34 \times 85 \mathrm{~mm}$
Ordering Inf	formation:	Line output amplifier 1.914.501.xx

MSC LINE AMPLIFIER

Ad	POS.	REF.No.	DESCRIPTION.			MANUFACTURER
(1)	C..... 1	59.30 .1470	474	$3 V$	TA	
(1)	C.... 2	59.30 .1470	47\%	$3 V$	TA	
	C.... 3	59.34.5561	560pF	5\%	CER	
	C.... . 4	59.34.5561	560pF	5\%	CER	
	C..... 5	59.34.4101	100 pF		CER	
	C. ... 6	59.30.1470	47uF	3V	TA	
	C..... 7	59.06.0222	2200pF		PE	
	C.... 8	59.30 .1470	47uF	3 V	TA	
	C.... 9	59.06.0223	0,022 $\mathrm{F}^{\text {F }}$		PE	
	C. . . 10	59.34 .2220	22pF		CER	
	C.... 11	59.30.1470	47 p F	3 V	TA	
	C. . . 12	59.06.0223	0,022 ${ }^{\text {F }}$		PE	
	C. . . 13	59.06.0223	0,022uF		PE	
	C. . . 14	59.25.5221	220uF	40V	EL	
	IC.... 1	50.09.0105	NE5532	XR5532 DUAL 0	P LOW NOISE	SIG/EX
	IC.... 2	50.09.0105	NE5532	XR5532 DUAL 0	P LOW NOISE	SIG/EX
JSP		54.01.0021		JUMPER JACK		
		54.01 .0020		JUMPER PLUG 3		
$\begin{aligned} & \text { Q.... } 1 \\ & \text { Q.... } 2 \end{aligned}$		50.03 .0516	BC337	NPN IC $0,8 \mathrm{~A}$	MATCHED	ST
		50.03 .0516	BC337	NPN IC $0,8 \mathrm{~A}$]	ST
$\begin{aligned} & Q \ldots . .3 \\ & Q \ldots . .4 \end{aligned}$		50.03 .0625	BC327	PNP IC $0,8 \mathrm{~A}$	MATCHED	ST
		50.03.0625	BC327	PNP IC $0,8 \mathrm{~A}$]	ST
$\begin{aligned} & \text { Q. . . } 5 \\ & Q \ldots . .6 \end{aligned}$		50.03 .0516	BC337	NPN IC $0,8 \mathrm{~A}$	MATCHED	ST
		50.03.0516	BC337	NPN IC 0,8A]	ST
$\begin{aligned} & Q \ldots . .7 \\ & Q \ldots . .8 \end{aligned}$		50.03.0625	BC327	PNP IC $0,8 \mathrm{~A}$	MATCHED	ST
		50.03.0625	BC327	PNP IC $0,8 \mathrm{~A}$		ST
R. . . . 1		57.11.3512	5 k 1	1\%		
R. . . . 2		57.11.3512	5 kl	1\%		
R. . . . 3		57.11.3182	1 k	1\%		
R. 4		57.11.3182	1 k 8	1\%		
R. . . . 5		57.11.4331	330			
R. . . . 6		57.11.4152	1 k 5			
R..... 7		58.11 .9103	10k	TRIM LIN		
R. . . . 8		57.11.4222	2k2			
R. . . . 9		57.11.4223	22k			
R. . . 10		58.11.6102	1k	TRIM LIN		
R. . . 11		57.11.4681	680			
R. . . 12		57.11.4471	470			
R. . . 13		57.11.4103	10k			
R. . . 14		57.11.4103	10k			
R. . . 15		57.11.4339	3,3			
R. . . 16		57.11.4339	3,3			
R. . . 17		57.11.4222	2k2			
R. . . 18		57.11.4222	2k2			
R. . . 19		57.11 .4181	180			
R. . . 20		57.11.4339	3,3			
R. . . 21		57.11.4339	3,3			
R. . . 22		57.11.4103	10k			
R. . . 23		57.11.4103	10k			
R. . . 24		57.11.0209	5,6	PTC		PH
R. . . 25		57.11.0209	5,6	PTC		PH
		50.20 .2001		CLIP		
T. . . . 1		1.022.355.00		LINE OUTPUT TR		ST

$C E R=$ Ceramic, $E L=E l e c t r o l y t i c, ~ P E=P o l y e s t e r, ~ T A=T a n t a l u m$
MANUFACTURER: $S T=$ Studer, SIG $=$ Signetics, $E X=E x a r, P H=P h i l i p s$
1.914.501.00 LINE AMPLIFIER (Nr. 1)
1.914.501.00 LINE AMPLIFIER (Nr. 1)
(1) FRI 17/11/83

Basically, this is an amplifier with near 0 dB gain for high-level applications, yet with additional features, such as remote muting facility, RF input filter, and choice of two input and output impedances. The input configuration is balanced, whereas the output is unbalanced. Jumpers in the primary of the input circuit permit selection of either high-impedance operation with RF filter or a $0-\Omega$ input without filter, for summing-bus applications. The combining (mixing) resistors have to be added externally. By switching pin3 of the amplifier's 13-pin plug to ground (via a corresponding connection on the motherboard) the amplifier may be muted from a remote point. If only 20 dB level reduction is desirable instead of muting, this can be programmed by connecting a resistor across two solder points.

The amplifier may be used, for example, to work into a 600Ω load, or into the input of a $0-\Omega$ input amplifier of another summing circuit.

If transformerless yet balanced input configuration is desired, an MSC amplifier with basically the same performance characteristics is available as well. Refer to the ordering information below.

Technical Specifications

HL Input Amp, transformer-balanced 1.914.502.81 (1)

Idx.	Pos.	Part No. Qty.	Type/Val.	Description
0	C 1	59.05.1681	680p	PP, 1\%, 630V
0	C 2	59.05.1681	680p	PP, 1\%, 630V
0	C 3	59.06.5682	6 n 8	PETP, 63V, 5\%, RM5
0	C 5	59.34.5391	390p	CER 63V, 5\%, N1500
0	C 6	59.34.2220	22p	CER 63V, 5\%, N150
0	C 11	59.26.0470	47u	SAL 6.3V 20\%
0	C 12	59.32.4102	1 no	CER 20%, 50 V
0	C 13	not used	1 n 0	PETP, 63V, 10\%, RM5
0	C 14	59.26.0470	47u	SAL 6.3V 20\%
0	C 15	59.06.0102	1 n 0	PETP, 63V, 10\%, RM5
0	C 16	59.26.0470	47u	SAL 6.3V 20\%
0	C 17	59.26.2689	648	SAL 16V 20\%
0	C 18	59.26.2689	648	SAL 16V 20\%
0	C 19	59.06.0102	1 n 0	PETP, 63V, 10\%, RM5
0	D 1	50.04.0125	1 N4448	$75 \mathrm{~V}, 150 \mathrm{~mA}$, 4ns, DO-35
0	D 2	50.04.0125	1 N 4448	$75 \mathrm{~V}, 150 \mathrm{~mA}$, 4ns, DO-35
0	D 3	50.04.0125	1 N4448	$75 \mathrm{~V}, 150 \mathrm{~mA}, 4 \mathrm{~ns}$, DO-35
0	IC 1	50.05.0244	5534A	Single Op-amp, low noise
0	IC 2	50.09.0106	5532A	Dual Op-Amp, low noise
0	J 1	54.01.0021	Jumper	$0.63 * 0.63 \mathrm{~mm}, \mathrm{Au}$
0	J2	54.01 .0021	Jumper	$0.63 * 0.63 \mathrm{~mm}$, Au
0	J 3	54.01.0021	Jumper	$0.63 * 0.63 \mathrm{~mm}$, Au
0	P1	54.01 .0273	13 p	Stecker CIS parallelsteck
0	P 2	54.01.0020 11 pcs	1 p	Pin, 1 reihig, gerade
0	Q1	50.03.0350	J112	JFET N-Channel
0	Q 2	50.03.0350	$J 112$	JFET N-Channel
0	R 1	57.11.3152	1 k 5	MF, 1\%, 0207
0	R2	57.11.3392	3k9	MF, 1\%, 0207
0	R 3	57.11.3152	1 k 5	MF, 1\%, 0207
0	R 4	57.11.3392	3k9	MF, 1\%, 0207
0	R 5	57.11.3392	3k9	MF, 1\%, 0207
0	R6	57.11.3472	4k7	MF, 1\%, 0207
0	R 7	57.11.3432	4 k 3	MF, 1\%, 0207
0	R 8	57.11.3101	100 R	MF, 1\%, 0207
0	R 11	57.11.3104	100k	MF, 1\%, 0207
0	R 12	57.11.3332	3k3	MF, 1\%, 0207
0	R 13	57.11.3223	22k	MF, 1\%, 0207
0	R 14	not used	33k	MF, 1\%, 0207
			optional (20 dB attenuation)	
0	R 15	57.11.3104	100k	MF, 1\%, 0207
0	R 16	57.11.5106	10M	MF, $5 \%, 0207$
0	R 17	57.11.5335	3M3	MF, 5\%, 0207
0	R 18	57.11.5335	3M3	MF, 5\%, 0207
0	R 19	57.11.3151	150R	MF, 1\%, 0207
0	R 20	57.11.3821	820R	MF, 1\%, 0207
0	R21	58.01.9202	2k0	Cermet, $10 \%, 0.5 \mathrm{~W}$, vertical
0	R 22	57.11.3561	560R	MF, 1\%, 0207
0	R 23	57.11.3104	100k	MF, 1\%, 0207
0	R 24	57.11.3330	33R	MF, 1\%, 0207
0	R 25	57.11.3332	3k3	MF, 1\%, 0207
0	R 26	57.99.0206	50R	PTC, $25 \mathrm{~V}, 0.5 \mathrm{~W}$
0	R 27	57.99.0206	50R	PTC, $25 \mathrm{~V}, 0.5 \mathrm{~W}$
0	R 28	57.11.3104	100k	MF, 1\%, 0207
0	T1	1.022.451.00	1:0.62	EINGANGSTRAFO 1:0,62
1	W 1	57.11 .3000	ORO	MF, 0207
1	W 2	64.01 .0106	0.6 mm	Schaltdraht Cu

Comments:
(01) W1, W2 added

HL Input Amp, electronically balanced 1.914.504.81 (1)

Idx.	Pos.	Part No. Qty.	Type/Val.	Description
0	C 1	59.05.1681	680p	PP, 1\%, 630V
0	C 2	59.05.1681	680p	PP, 1\%, 630V
0	C 3	59.26.0470	47u	SAL 6.3V 20\%
0	C 4	59.26.0470	47u	SAL 6.3V 20\%
0	C 5	59.34.2101	100p	CER 63V, 5%, N150
0	C 6	59.34.2220	22p	CER 63V, 5%, N150
0	C 7	59.34.2101	100p	CER 63V, 5%, N150
0	C 11	59.26.0470	47u	SAL 6.3V 20\%
0	C 12	59.32 .4102	1 n 0	CER 20\%, 50V
0	C 14	59.26.0470	47u	SAL 6.3V 20\%
0	C 15	59.06.0102	1 no	PETP, 63V, 10\%, RM5
0	C 16	59.26.0470	47u	SAL 6.3V 20\%
0	C 17	59.26.2689	648	SAL 16V 20\%
0	C 18	59.26.2689	648	SAL 16V 20\%
0	C 19	59.06.0102	1 n 0	PETP, 63V, 10%, RM5
0	D 1	50.04.0125	1 N 4448	$75 \mathrm{~V}, 150 \mathrm{~mA}$, 4ns, DO-35
0	D 2	50.04 .0125	1 N4448	$75 \mathrm{~V}, 150 \mathrm{~mA}$, 4ns, DO-35
0	D 3	50.04.0125	1 N4448	$75 \mathrm{~V}, 150 \mathrm{~mA}$, 4ns, DO-35
0	IC 1	50.05.0244	5534A	Single Op-amp, low noise
0	IC 2	50.09.0106	5532A	Dual Op-Amp, low noise
0	J1	54.01.0021	Jumper	$0.63 * 0.63 \mathrm{~mm}, \mathrm{Au}$
0	J 2	54.01.0021	Jumper	$0.63 * 0.63 \mathrm{~mm}$, Au
0	J 3	54.01.0021	Jumper	$0.63 * 0.63 \mathrm{~mm}$, Au
0	P1	54.01 .0273	13 p	Stecker CIS parallelsteck
0	P 2	54.01.0020 9 pcs	1 p	Pin, 1reihig, gerade
0	Q1	50.03.0350	J112	JFET N-Channel
0	Q 2	50.03.0350	J112	JFET N-Channel
0	R 1	57.11.3152	1 k 5	MF, 1\%, 0207
0	R2	57.11.3392	3k9	MF, 1\%, 0207
0	R 3	57.11.3152	1 k 5	MF, 1\%, 0207
0	R 4	57.11.3392	$3 \mathrm{k9}$	MF, 1\%, 0207
0	R 5	57.11.3104	100k	MF, 1\%, 0207
0	R6	57.11.3104	100k	MF, 1\%, 0207
0	R 7	57.11.3332	3 k 3	MF, 1\%, 0207
0	R 8	57.11 .3332	3k3	MF, 1\%, 0207
0	R 11	57.11.3104	100k	MF, 1\%, 0207
0	R 12	57.11.3332	3 k 3	MF, 1\%, 0207
0	R 13	57.11.3223	22k	MF, 1\%, 0207
0	R 14	not used	33k	MF, 1\%, 0207
			optional (20 dB attenuation)	
0	R 15	57.11 .3104	100k	MF, 1\%, 0207
0	R 16	57.11.5106	10 M	MF, 5\%, 0207
0	R 17	57.11 .5335	3M3	MF, 5\%, 0207
0	R 18	57.11 .5335	3M3	MF, 5\%, 0207
0	R 19	57.11.3151	150R	MF, 1\%, 0207
0	R 20	57.11.3821	820 R	MF, 1\%, 0207
0	R 21	58.01 .9202	2 kO	Cermet, $10 \%, 0.5 \mathrm{~W}$, vertical
0	R 22	57.11.3471	470R	MF, 1\%, 0207
0	R 23	57.11.3104	100k	MF, 1\%, 0207
0	R 24	57.11 .3330	33R	MF, 1\%, 0207
0	R 25	57.11.3332	3k3	MF, 1\%, 0207
0	R 26	57.99.0206	50R	PTC, $25 \mathrm{~V}, 0.5 \mathrm{~W}$
0	R 27	57.99.0206	50R	PTC, $25 \mathrm{~V}, 0.5 \mathrm{~W}$
1	R 28	57.11.3104	100k	MF, 1\%, 0207
1	W 1	57.11 .3000	ORO	MF, 0207
1	W 2	64.01.0106	0.6 mm	Schaltdraht Cu

Comments:
(01) R28, W1, W2 added

This low-power amplifier on a modular sub-card is designed to drive a $10 . . .15 \Omega$ speaker. Power output is about $2 \ldots . .3 \mathrm{~W}$. As can be concluded from this specification, the amplifier is not intended for high-quality monitoring. It will be ideally suited, however, for pre-fader listening and similar applications. The amplifier's input is balanced and floating, with adjustable gain.

Technical Specifications

Input impedance	$>\mathbf{1 0} \mathbf{~ k} \Omega$, balanced and floating (with transformer)
Nominal power output	$\mathbf{2 W}$ into 15Ω
Power output	$\mathbf{2 5} \mathbf{~ m W} . . \mathbf{2 . 5} \mathbf{W}$ into 15Ω, with 0 dBu input
Distortion	$<\mathbf{0 . 5 \%}$ at 2 W
	$<\mathbf{0 . 1 5 \%}$ at 500 mW
$\mathrm{~S} / \mathrm{N}$	$\mathbf{9 9} \mathbf{~ d B}$, ref. to 2 W at max. gain
Frequency response	$\mathbf{- 0 . 5} \mathbf{~ d B}$ at 15 kHz
High pass filter	$\mathbf{1 5 0} \mathbf{~ H z}, 12 \mathrm{~dB} /$ oct.

Supply: $\quad \mathbf{- 2 4} \mathbf{V}(40 \mathrm{~mA}$ idling, max. 220 mA fully driven $)$
Dimensions:
MS-card, $34 \times 85 \mathrm{~mm}$

Ordering Information:
Loudspeaker amplifier
1.914.505.xx

MSC SPEAKER AMPLIFIER

Cls	PIN	Euro 32 pint			
		(1)	(b)	(c)	(d)
inp a	13	1	7	21	27
INP b	12	2	8	22	28
(1)	11	3	9	23	29
	10				
	9				
	8				
(1)	7				
	6				
$\bigcirc \mathrm{v}$	5	19	-		-
-24V	4	20			
OUT a	3	4	10	24	30
OUT b	2	5	11	25	31
	1				

Ad	pos.	.ref.No.	DESCRIPTION.		
	C.... 1	59.34.4680	68pF		CER
	c.... 2	59.06 .0224	0,22 uF		PE
	C.... 3	59.06 .0224	0,22 F		PE
(1)	C.... 4	59.34.2470	47pF		CER
	C.... 5	59.22 .5101	100 H	25V	EL
	C.... 6	59.22 .5101	100uF	25V	El
	c.... 7	59.22.4221	2204F	16 V	EL
	C.... 8	59.22 .4221	220 F	16 V	EL
	D.... 1	50.04 .0125	1 N4448		
	1c.... 1	50.09 .0107	RC4559		
	P.... 1	54.01.0273	13P	ClS	
	Q.... 1	50.03 .0515	всзо7в		
	Q.... 2	50.03.0436	BC2378		
	Q.... 3	50.03 .0436	ВС2378		
	Q.... 4	50.03 .0345	2 N 6476		
	Q.... 5	50.03.0515	BC3078		
	Q.... 6	50.03 .0344	$2 \mathrm{N6474}$		
	R. . . . 1	57.99.0210	2,3^		PTC
	R.... . 2	57.11.3562	5,6k		
	R. ... 3	57.11.3562	5,6k		
	R. . . . 4	57.11.4272	2,7k Ω		
	R. . . . 5	58.01.9503	50ks		PMG
	R. . . . 6	57.11.4472	4,7\% Ω		
	R. . . . 7	57.11.4472	4,7k		
	R. . . . 8	57.11.4272	2,7k Ω		
	R. ... 9	57.11.4472	4,7k		
	R. . . 10	57.11.3562	5,6К Ω		
	R. . . 11	57.11.3562	5,6k 2		
	R. . . 12	57.11.4222	2,2k ${ }^{2}$		
	R. . . . 13	57.11.4222	2,2k ${ }^{\text {2 }}$		
	R. . . 14	57.11.4470	47ת		
	R. . . 15	57.11.4222	2,2k Ω		
	R. . . 16	57.11 .4470	47Ω		
	R. . . 17	57.11.4229	2,28		
	R. . . 18	57.11.4229	2,28		
	R. . . 19	57.11.4229	2,28		
	R. . . 20	57.11.4229	2,28		
	R. . . 21	57.11.3562	5,6k Ω		
	R. . . 22	57.11.4332	3,3k 2		
	т..... 1	1.022.218.00	1:1		

$C E R=$ Ceramic, $P E=$ Polyester, EL=Electrolytic, PTC=Pos. Temp. Coif., PMG=Cermet

1.914.505.00 LSP AMPLIFIER $3 W$ (Nr. 5)	P. Casutt $07 / 09 / 83$
1.914 .505 .00 LSP AMPLIFIER $3 W$ (Nr. 5)	(1) A. Ho $30 / 11 / 83$

[^3]Two different microphone pre-amplifiers are available, for dynamic or condenser microphones, and for electret microphones. Both offer high gain and low noise, as is required for microphone pre-amplification.
1.914.506 features a balanced and floating input. It is designed for dynamic or condenser microphones with a source impedance of 200Ω or less. An RF filter is incorporated at the input transformer's primary. Furthermore, the input is equipped with the resistors required for phantom powering of condenser microphones.
1.914.507 is designed for unbalanced electret microphones requiring a 12 V supply.

A wide range of input levels can be accommodated (see level diagram).

By using the same solid-state switching circuit as can be found in the line and high-level amplifiers, remote muting or activation of a fixed amount of attenuation are possible as well.

The amplifier's two outputs are unbalanced, with impedances of $3.3 \mathrm{k} \Omega$ or 33Ω, respectively.

Technical Specifications

Input: $\begin{aligned} & \\ & \\ & \text { Co }\end{aligned}$		Transformer-balanced and floating, with RF filter	(1.914.506)
		Unbalanced, with RF filter and electret supply	(1.914.507)
	Impedance	$>\mathbf{1 k} \Omega$, for microphones with an impedance of 200Ω or less.	
	Max. input level	$\mathbf{- 2 ~ d B u}\left(615 \mathrm{mV}_{\text {rms }}\right)$; THD at 30 Hz : approx. 1%	
	Common mode rejection	$>\mathbf{6 0 ~ d B}$, unbalanced, to ground	
Output:	Max. level	+20 dBu (7.75 $\mathrm{V}_{\text {rms }}$)	
	Nominal level	$\mathbf{0} \mathbf{d B u}\left(0.775 \mathrm{~V}_{\text {rms }}\right)$	
	Impedance	33Ω (pin1)	
		$3.3 \mathrm{k} \Omega$ (pin2; to a $0-\Omega \mathrm{amp}$.	
	Minimum load	600Ω	
	Max. gain	71 dB (see level diagram)	
	Frequency response	$\pm \mathbf{0 . 5 ~ d B}, 30 \mathrm{~Hz}$... 16 kHz	
	THD	< 0.3\%, $30 \mathrm{~Hz} . . .16 \mathrm{kHz}$ at 20 dB gain	
	Noise figure, linear	$<4.5 \mathbf{d B}$, input terminated with 200Ω	
Supply:		$\pm \mathbf{1 5} \mathbf{V}$ (11 mA idling)	
		$\mathbf{+ 4 8} \mathbf{V}(1.914 .506$, only if phantom powering required)	
Dimensions:		MS-card, $34 \times 85 \mathrm{~mm}$	
Ordering Information:		Microphone pre-amplifier for dynamic microphones	1.914.506.xx
		Microphone pre-amplifier for electret microphones	1.914.507.xx

MSC MICROPHONE PRE-AMP.

MICROPHONE PRE-AMP. MSC

Ad .POS.	REF.No.	DESCRIPTION.			MANUFACTURER
c.... 1	59.05.1102	1000pF	630V 1%	Pp	
C.... 2	59.05.1102	1000pF	630 V 1\%	Pp	
c.... 3	59.34.4221	220 pF		CER	
C.... 4	59.30.4220	$22 \mu \mathrm{~F}$	16 V	TA	
c. ... 5	59.06.0102	1000 pF		PE	
C..... 6	59.34.2220	22pF		CER	
C. . . 11	59.26 .0470	47uF	6,3V	SAL	
C.... 12	59.32.4102	1000pF		CER	
c. ... 13					
C.... 14	59.26.0470	47uF	6,3V	SAL	
C.... 15	59.06.0102	1000pF		PE	
C.... 16	59.26 .0470	47pF	6,3V	SAL	
C. .. 17	59.26.2689	6,84F	16 V	SAL	
C. .. 18	59.26.2689	6,84F	16 V	SAL	
C. . . 19	59.06.0102	1000pF		PE	
D.... 1	50.04.0125	1 N 448			
D.... 2	50.04 .0125	1 14448			
D.... 3	50.04.0125	1 N 4448			
IC.... 1	50.05.0244	NE5534AN		EOP AM	SIG
IC.... 2	50.09.0106	NE5532AN	DUAL LOW	EOP AMP	SIG
J.... 5	54.01 .0021		JUMPER		
L.... 1	1.022.207.00		HF SYM.		ST
P	54.01.0273	13PIN	Cls		
P (15)	54.01.0020	PIN	JUMPER P		
Q.... 1	50.03 .0350	1112	N	N-FEt	
Q.... 2	50.03.0350	J 112	N	N-FET	
R. . . . 1	57.99.0250	6,8k Ω	0,1\%		
R.... 2	57.99.0250	6,8k	0,1\%		
R..... 3	57.11.3103	$10 \mathrm{k} \Omega$	1\%		
R. . . . 4	57.11.3103	10k8	1\%		
R.... 5	57.11.4123	12k Ω			
R.... 6	57.11.4223	22k			
R.... 7	58.01.9202	2k	POT		
R.... 8	57.11.4151	150			
R. . . 11	57.11.4104	100k Ω			
R. . . 12	57.11.4332	3,3k Ω			
R. . . 13	57.11.4223	$22 \mathrm{k} \Omega$			
R. . . 14	57.11.4333	33k Ω	OPTIONAL	ATI)	
R. . . . 15	57.11.4104	100k			
R. . . 16	57.11.5106	10M Ω			
R. . . 17	57.11.5335	3,3M 2	5\%		
R. . . 18	57.11.5335	3,3M2	5\%		
R. . . 19	57.11.4102	$1 \mathrm{k} \Omega$			
R. . . 20	57.11.4223	22ks			
R. . . 21	58.01 .9103	$10 \mathrm{k} \Omega$	POT		
R. . . 22	57.11.4821	820Ω			
R.... 23	57.11.4104	100k8			
R.... 24	57.11.4330	33Ω			
R. . . 25	57.11.4332	3,3k ${ }^{\text {a }}$			
R. . . 26	57.99.0206	50Ω	PTC		PH
R. . . 27	57.99.0206	50Ω	PTC		PH
R. . . 28	57.11.4104	100k Ω			
T..... 1	1.022.417.00	1:3,16	trafo		ST

$C E R=$ Ceramic, $P E=P o l y s t y r e n e, ~ S A L=$ Solid Aluminium, $P P=P=$ olypropylen, $T A=$ Tantalum MANUFACTURER: $S T=$ Studer, $S I G=$ Signetics, P PH=Philips

MICROPHONE PRE-AMP. MSC

In contrast to the VCA $1.914 .518 / 528$ (chapter 2.1.8), this assembly features an electronically balanced input and output.

It is intended for use in balanced audio systems for a variety of applications, especially when gain is to be controlled from a remote point. It will be useful in audio-video post-production work where suitable DC ramps can control cross-fades, voice-overs, etc. Its high overload margin and its exceptionally low noise and distortion performance make it the perfect choice for high-quality audio applications.

By connecting the gain control terminals of a number of VCAs to a common potentiometer or fader, several audio channels may thus be controlled simultaneously.

Two control inputs provide VCA gain control from two different remote points

Technical Specifications

Input: $\begin{array}{r}\text { Impedance } \\ \text { Clipping point }\end{array}$ Clipping point	$\begin{aligned} & \geq 10 \mathrm{k} \Omega \text {, electronically balanced } \\ & +24 \mathrm{dBu} \end{aligned}$	
Output:	Electronically balanced	
Recommended load	$\geq 2 \mathrm{k} \Omega$	
Maximum level	+24 dBu	
Frequency response	$\mathbf{- 0 . 5 ~ d B , ~} 30 \mathrm{~Hz}$.. 15 kHz	
Gain/attenuation range	+40...-100 dB, with ext. control	
Control input: pin1; gain tracking	$0 \mathrm{~V}=$ unity gain;	
	$1 \mathrm{~dB} / \mathbf{\mu A}$; jumper 1-2	
	$\mathbf{2 0 ~ d B /} / \mathbf{}$; jumper 2-3	
	$\mathbf{1 0 ~ d B / V}$; jumper 3-4	
Control input: pin10; gain tracking	$10 \mathrm{~dB} / \mathrm{V}$	
THD	< 0.1%	
Equivalent input noise	-93 dBu @ unity gain	
Supply:	$\pm \mathbf{1 5} \mathrm{V}(25 \mathrm{~mA})$	
Dimensions:	MS-card, $34 \times 85 \mathrm{~mm}$	
Ordering Information:	VCA with electronically balanced input and output	1.914.515.xx

MSC VCA

C..... 1	59.34.4101	100 pF	CER		
c..... 2	59.34.4101	100 pF	CER		
C..... 3	59.25.3470	47 uF	ALU		
c..... 4	59.34.4151	150 pF	CER		
C..... 5	59.25.3470	47 uF	ALU		
C..... 6	59.25 .3470	47 uF	ALU		
C..... 7	59.06.5104	100 nF	PE		
c..... 8	59.06.5104	100 nF	PE		
C..... 9	59.06.5104	100 nF	PE		
JS.... 1	54.01.0020		JUMPER PLUG 4-PIN		
JP.... 1	54.01.0021		JUMPER JACK		
IC.... 1	50.09.0107	RC4559	dual op. amp.		Ra, NE
IC.... 2	50.09.0107	RC4559	dual op. amp.		Ra.NE
IC.... 3	50.09.0107	RC4559	dual op. amp.		Ra, NE
IC.... 4	50.11.0140	2150A	VCA		DBX
IC.... 5	50.11 .0140	2150A	VCA		DBX
P.....1	54.01.0273	13 PIN	CIS		
R.....1	57.11.3512	5.1 kOhm	1\% 0.25W MF		
R..... 2	57.11.3242	2.4 kOhm	1\% 0.25W MF		
R..... 3	57.11.3512	5.1 kOhm	1\% 0.25W MF		
R..... 4	57.11.3242	2.4 k0hm	1\% 0.25W MF		
R..... 5	57.11.3153	15 kOhm	1\% 0.25W MF		
R..... 6	57.11.3153	15 kOhm	1\% 0.25W MF		
R..... 7	57.11.4472	4.7 kOhm	5\% 0.25W MF		
R..... 8	57.11.4472	4.7 kOhm	5\% 0.25W MF		
R..... 9	57.11.3822	8.2 kOhm	1\% 0.25W MF		
R.... 10	57.11.3152	1.5 kOhm	1\% 0.25W MF		
R....11	57.39.3091	3.09 kOhm	1\% 0.25W MF		
R.... 12	57.11.4224	220 kOhm	2\% 0.25W MF		
R.... 13	57.11.3152	1.5 kOhm	1\% 0.25W MF		
R.... 14	57.11.3302	3.0 k0hm	1\% 0.25W MF		
R.... 15	57.11.3152	1.5 kOhm	1\% 0.25W MF		
R.... 16	57.39.3091	3.09 kOhm	1\% 0.25W MF		
R.... 17	57.11.3152	1.5 kOhm	1\% 0.25W MF		
R.... 18	57.11.3302	3.0 kOhm	1\% 0.25W MF		
R. . . 19	57.11.3150	15 Ohm	1\% 0.25W MF		
R.... 20	57.11.3689	6.8 Ohm	1\% 0.25W MF		
R.... 21	57.11.3183	18 kOhm	1\% 0.25W MF		
R.... 22	57.11.3183	18 kOhm	1\% 0.25W MF		
R.... 23	57.11.3150	15 Ohm	1\% 0.25W MF		
R.... 24	57.11.3689	6.8 ohm	2\% 0.25W MF		
R.... 25	57.11.3104	100 kOhm	1\% 0.25W MF		
R.... 26	57.11.3104	100 kOhm	1\% 0.25W MF		
R.... 27	57.11.3104	100 kOhm	1\% 0.25W MF		
R.... 28	57.11.3104	100 kOhm	1\% 0.25W MF		
R. . . 29	57.11.3222	2.2 kOhm	1\% 0.25W MF		
R.... 30	57.11.3223	22 kOhm	1\% 0.25W MF		
R.... 31	57.11.3223	22 kOhm	1\% 0.25W MF		
R.... 32	57.11.3222	2.2 kOhm	1\% 0.25W MF		
R.... 33	57.11.3680	68 Ohm	1\% 0.25W MF		
R.... 34	57.11.3680	68 Ohm	1\% 0.25W MF		
R.... 35	57.11.4470	47 Ohm	2\% 0.25W MF		
R.... 36	57.11.4473	47 kOhm	2\% 0.25W MF		
R.... 37	57.11.4473	47 kOhm	2\% 0.25W MF		
R.... 38	58.01.8104	100 kOhm	10\% 0.5 W PMG	trimming resistor	
R.... 39	57.92.1271	6.50 hm	PTC	Philips Nr. 2322	66212711
R.... 39	57.92.7013	0.75 Ohm	I-Hold 0.5A		R-PTC
R. . . 40	57.92.1271	6.50 hm	PTC	Philips Nr. 2322	66212711
R.... 40	57.92.7013	0.75 Ohm	I-Hold 0.5A		R-PTC
R.... 41	57.11.4101	100 Ohm	2\% 0.25W MF		

(01) 89/11/02 - Improvement of distance PTC - R
$C E R=$ Ceramic, $P E=P o l y e s t e r, S A L=$ Solid Aluminium
MF=Metal Film, PMG=Cermet
MANUFACTURER: $E x=E x a r, N E=N E C, P h=P h i l i p s, R a=R a y t h e o n$,
Sig=Signetics, St=Studer,
1.914.515.00 BAL AMP WITH VCA
1.914 .515 .00
BAL AMP WITH VCA

Within the range of modular sub-cards, two more VCAs are available. Voltage controlled amplifiers are ideally suited for applications such as remote level control, level limiting (in combination with the voltage processor 1.914.519) or for automatic "voice-over" circuits, when driven by suitable ramp generators. These VCAs offer outstandingly low noise and harmonic distortion.

For best performance, they should be operated at a level of 0 dBu .
Gain pre-selection is possible on the 1.914 .518 version, allowing gain/attenuation ranges either from +10 to -90 dB or from +40 to -70 dB , using an external potentiometer.
The 1.914.528 VCA card differs in that it is equipped with three external control inputs, providing gain control from three different locations.

Technical Specifications

(1) $89 / 01 / 13$ A1 VCA 1.010 .110 .50 replaced by 1.911 .290 .00
(2) $90 / 01 / 17$ A1 VCA 1.911.290.00 replaced by 1.911 .290 .81
$C E R=$ Ceramic, $P E=P$ Polyester, $S A L=$ Solid Aluminium Lacquard MF=Metal Film, PMG=Cermet
MANUFACTURER: $E x=E x a r$, NE=NEC, Ph=Philips, Ra=Raytheon, Sig=Signetics, St=Studer.

1.914 .518 .81	VCA UNIT	SE $86 / 11 / 0500$
1.914 .518 .81	VCA UNIT	SE $89 / 01 / 1301$
1.914 .518 .81	VCA UNIT	WY $90 / 01 / 1702$

CER=Ceramic, PE=Polyester, SAL=Solid Aluminium
MF =Metal Film, PMG=Cermet
MANuFACTURER: Ex=Exar, NE=NEC, Ph=Philips, Ra=Raytheon, Sig=Signetics, St=Studer,
1.914 .528 .00 VCA UNIT / 3 CONTROL 1.914 .528 .00 VCA UNIT / 3 CONTROL

Together with this voltage processor, the VCAs 1.914.518/528 can perform as signal level limiters.

The processor's threshold can be set within a wide range of levels, so that limiting action becomes effective at a desired level within a range of -15 to +15 dBu . Limiting action attacks within 1 ms , whereas release can vary from 50 ms to 5 s , depending on the program's energy content. This means that no audible "pumping" action - which is often associated with such a device - will occur. After the cessation of loud passages, amplification will recover only slowly. For stereo applications, a two-channel setup (VCAs and voltage processor) can be linked, so that identical amounts of gain reduction will take place simultaneously in both channels.

The input of the voltage processor has to be wired to the output of the VCA. The processor's output, when connected to the VCA's control terminal, will effect the necessary gain reduction so that a limiting characteristic is obtained. The limiting threshold is adjustable in a wide range. Remote on/off switching of the limiter function is possible.

Technical Specifications

CIS	PIN	EURO 32 PIN			
		(a)	(b)	(c)	(d)
INPUT	13	1	7	21	27
\square (INP./OUTP.)	12	2	8	22	28
OUTPUT	19	3	9	23	29
Link	10	17	17	18	18
	9				
- 15 V	8				
OV	7				
+ 15 V	6				
	5				
	4				
+(LIMON)	3	4	10	24	30
	2	5	11	25	31
LIM ON	1	6	13	26	32

(0) 16.9.91 Ge	\bigcirc	\bigcirc	\bigcirc
STUDER REGENSDORF zURICH	LIMITER VOLTAGE PROCESSOR		1.914 .519 .81

MSC LIMITER

CER=Ceramic, PE=Polyester, $S A L=$ Solid Aluminium
MF=Metal Film, PMG=Cermet
MANUFACTURER: Mot=Motorola, NS=National Semiconductors
Six $=$ Siliconix, $\mathrm{TI}=$ Texas Instruments
1.914.519.81 LIM VOLTAGE PROCESSOR WM 86.21.1100

This signal generator produces a stable frequency of 1900 Hz to establish communication on outside broadcast lines, as specified in the EBU/CCIR recommendations.

Technical Specifications

Frequency	$\mathbf{1 9 0 0} \mathbf{~ H z}$ (adjustable)
Distortion	$<\mathbf{1 \%}$
Output level	$-\mathbf{- 1 5} \ldots \mathbf{6} \mathbf{~ d B u}$ (adjustable)
Output	balanced and floating
out 2	$\mathbf{k 0 0} \Omega$
Output Impedance, out 1	$\mathbf{6 0 0}$
Minimum load	$\mathbf{2 0 0} \Omega$

MSC 1900 HZ GENERATOR

$P E=P o l y e s t e r, S A L=$ Solid Aluminium, EL=Electrolytic
MANUFACTURER: EX=Exar, SIG=Signetics, $S T=S t u d e r, ~ P H=P h i l i p s$
1.914.520.00 SIGNAL GENERATOR (Nr. 20) P. Casutt 14/07/83

This assembly features a call receiver for the ringing frequency on telephone lines ($20 \ldots 60 \mathrm{~Hz}$). The receiver can activate an optical and/or an acoustical signal generated by an external buzzer (not supplied). In normal mode the buzzer will be on until reset. In linked mode the signal lasts only as long as a call is detected.

Technical Specifications

Input:

Supply:

Dimensions:

Ordering Information:
balanced, floating; no DC
Impedance
$>20 \mathrm{k} \Omega$
$20 . . .60 \mathrm{~Hz}$
$17 \mathrm{~V}_{\text {rms }}$
$70 V_{\text {rms }}$
+15 V (5 mA$) ;-\mathbf{1 5} \mathrm{V}(10 \mathrm{~mA}) ; \mathbf{- 6} \mathbf{V}(2 \mathrm{~mA})$
MS-card, $34 \times 85 \mathrm{~mm}$
Call decoder 20 ... 60 Hz
1.914.521.xx

MSC CALL DECODER

Ad	.POS.	REF.No.	DESCRIPTION.			MANUFACTURER
	C.... 1	59.99.0453	0,11F	250V Rifa	MP	
	C.... 3	59.26 .2100	104F	16V	SAL	
	C.... 4	59.06 .5474	0,47uF		PE	
	C.... 5	59.06.5104	0,14F		PE	
	C..... 6	59.06.5104	0,14F		PE	
	C.... 7	59.06.5474	0,47uF		PE	
	C.... 8	59.26.5229	2,2uF	25 V	SAL	
	C. . . . 9	59.06.0224	0,22 F		PE	
	C. . . 10	59.06.5474	0,47uF		PE	
	C.... 11	59.26 .2689	6,8uF	16 V	SAL	
	c.... 12	59.26.2689	6,8uF	16V	SAL	
	C. . . 13	59.26.2689	6,8uF	16 V	SAL	
	C. . . 14	59.26.2689	6,8uF	16 V	SAL	
	D.... 1	50.04.1109	20 V	400 mW Lener		
	D. ... 2	50.04.1109	20 V	400 mW Zener		
	D. ... 3	50.04.0125	1N4448			
	D..... 4	50.04 .0125	1 N 4488			
	D.... 5	50.04.0125	1N4448			
	D..... 6	50.04.0125	IN4448			
	D..... 7	50.04.1117	12V	400 mW Zener		
	IC.... 1	50.09.0101	LF353N	DIP 8		
	IC.... 2	50.07.0032	Fx101L			CML
(1)	IC.... 3	50.07.1011	4011 BPC	DIL 14		
	P	54.01 .0273	13P	CIS		
	Q.... 1	50.03.0436	вс2378	NPN		
	Q.... 2	50.03.0515	ВСзо78	PNP		
	R. . . . 1	57.11.4103	$10 \mathrm{k} \Omega$			
	R.... 2	57.11.4103	$10 \mathrm{k} \Omega$			
(1)	R..... 3	57.11.3202	2k Ω			
	R. ... 4	57.11.4103	10ks			
	R. . . . 7	57.11.4103	10k Ω			
(2)	R. ... 9	57.11.3244	240k Ω			
	R. . . 10	57.11.4474	470k Ω			
	R. . . 11	57.11.4334	330k Ω			
	R. . . 12	57.11.4103	$10 \mathrm{k} \Omega$			
	R. . . 13	57.11.4103	10ks			
(1)	R. . . 14	57.11.5225	2,2M2			
	R. . . 15	57.11.4104	100k Ω			
(1)	R. . . 16	57.11.5225	2,2M 2			
	R. . . 17	57.11.4105	$1 \mathrm{M} \Omega$			
	R. . . 18	57.11.4104	$100 \mathrm{k} \Omega$			
(1)	R. . . 19	57.11.5225	2,2M			
	R. . . 20	57.11.4105	$1 \mathrm{M} \Omega$			
	R. . . 21	57.11.4104	100ks			
	R. . . 22	57.11.4220	22Ω			
	R. . . 23	57.99.0206	50Ω	PTC - 2322	66091008 Philips	
	R. . . 24	57.99.0206	50Ω	${ }_{\text {PTC }}$ TYy ${ }^{\text {PT }}$	822 IT	
	R. . . 25	57.99.0206	50Ω	PTC PTH	BD 470M 050 Murata	
	R. . . 26	57.11.4391	390Ω			
	T..... 1	1.022.218.00	1:1			ST

$P E=$ Polyester, $S A L=$ Solid Aluminium
MANUFACTURER: CML=Consumer Microcircuit LTD, ST=Studer

$1.914 .521 .0020 \div 60 \mathrm{HZ}$ DECODER (Nr. 21)	FRI $23 / 08 / 83$
$1.914 .521 .0020 \div 60 \mathrm{HZ}$ DECODER (Nr. 21)	(1) FRI 01/09/83
$1.914 .521 .0020 \div 60 \mathrm{HZ}$ DECODER (Nr. 21)	(2) FRI $18 / 06 / 84$

This card contains a call receiver for the standardized 1900 Hz call frequency on OB lines. It is tuned to respond to $1900 \mathrm{~Hz} \pm 1 \%$. The receiver can be switched either to activate an optical or an acoustical signal for the duration of the 1900 Hz call (linked mode), or the acoustical signal can be selected to remain activated until reset (normal mode).
The acoustical signal can be generated by an external buzzer (not supplied).

Technical Specifications

Input:		balanced, floating; no DC
	Frequency	$1900 \mathrm{~Hz}, \pm 1 \%$
	Impedance	$>10 \mathrm{k} \Omega$
	Min. level	-30 dBu
	Nominal level	+24 dBu
Supply:		+15 V (5 mA$) ;-\mathbf{1 5} \mathrm{V}(10 \mathrm{~mA}) ;-\mathbf{6} \mathrm{V}(2 \mathrm{~mA})$
	Insulation rating	$500 \mathrm{~V}_{\text {DC }}$
Dimensions:		MS-card, $34 \times 85 \mathrm{~mm}$
Ordering Inf	ation:	Call decoder 1900 Hz

Call Decoder 1900 Hz 1.914.522.00 (1)

Idx.	Pos.	Part No.	Qty.	Type/Val.	Description
0	C 2	59.06.0102		1 no	PETP, 63V, 10\%, RM5
0	C 3	59.06.0102		1 n 0	PETP, 63V, 10\%, RM5
0	C 4	59.06.0222		2n2	PETP, 63V, 10%, RM5
0	C 5	59.05.2472		4 n 7	PP, 2.5\%, 63V
0	C 6	59.34.4121		120p	CER 63V, 5\%, N750
0	C 7	59.06.0103		10 n	PETP, 63V, 10%, RM5
0	C 8	59.26.5229		2 u 2	SAL, 20\%, 25V
0	C 9	59.06.0224		220n	PETP, 63V, 10\%, RM5
0	C 10	59.06.5474		470n	PETP, 63V, 5\%, RM5
0	C 11	59.26.2689		648	SAL 16V 20\%
0	C 12	59.26.2689		648	SAL 16V 20\%
0	C 13	59.26.2689		648	SAL 16V 20\%
0	C 14	59.26.2689		648	SAL 16V 20\%
0	D 3	50.04.0125		1 N4448	$75 \mathrm{~V}, 150 \mathrm{~mA}$, 4ns, DO-35
0	D 4	50.04.0125		1 N 4448	$75 \mathrm{~V}, 150 \mathrm{~mA}$, 4ns, DO-35
0	D 5	50.04.0125		1 N4448	$75 \mathrm{~V}, 150 \mathrm{~mA}$, 4ns, DO-35
0	D 6	50.04 .0125		1 N4448	$75 \mathrm{~V}, 150 \mathrm{~mA}$, 4ns, DO-35
0	D 7	50.04.1117		12 V	Zener, 5\%, 0.5W, DO-35
0	IC 1	50.09.0101		TL072	Dual op-amp biFET
0	IC 2	50.07.0032		FX101	IC FX-101 L, ,A
1	IC 3	50.07 .1011		4011	Quad 2-inp NAND
0	P 1	54.01.0273		13p	Stecker CIS parallelsteck
0	Q1	50.03 .0515		BC307B	PNP $100 \mathrm{~mA} \mathrm{45V}$
0	Q 2	50.03.0436		BC237B	NPN 100 mA 45 V
0	R 1	57.11.3562		$5 \mathrm{k6}$	MF, 1\%, 0207
0	R 2	57.11.3562		$5 \mathrm{k6}$	MF, 1\%, 0207
0	R 3	57.11.3123		12k	MF, 1\%, 0207
0	R 4	57.11.3104		100k	MF, 1\%, 0207
0	R 5	57.11.3392		3k9	MF, 1\%, 0207
0	R 7	57.11.5155		1M5	MF, 5\%, 0207
0	R 8	58.01 .8203		20k	Cermet, $10 \%, 0.5 \mathrm{~W}$, horizontal
0	R 9	57.11.3154		150k	MF, 1\%, 0207
0	R 10	57.11 .3104		100k	MF, 1\%, 0207
0	R 11	57.11.3104		100k	MF, 1\%, 0207
0	R 12	57.11.3103		10k	MF, 1\%, 0207
0	R 13	57.11.3103		10k	MF, 1\%, 0207
0	R 14	57.11.5225		2M2	MF, 5\%, 0207
0	R 15	57.11.3104		100k	MF, 1\%, 0207
1	R 16	57.11.5225		2M2	MF, 5\%, 0207
0	R 17	57.11.3105		1 MO	MF, 1\%, 0207
0	R 18	57.11.3104		100k	MF, 1\%, 0207
1	R 19	57.11.5225		2M2	MF, 5\%, 0207
0	R 20	57.11.3105		1 MO	MF, 1\%, 0207
0	R 21	57.11.3104		100k	MF, 1\%, 0207
0	R 22	57.11 .3220		22 R	MF, 1\%, 0207
0	R23	57.99.0206		50R	PTC, $25 \mathrm{~V}, 0.5 \mathrm{~W}$
0	R 24	57.99.0206		50R	PTC, $25 \mathrm{~V}, 0.5 \mathrm{~W}$
0	R 25	57.99.0206		50R	PTC, $25 \mathrm{~V}, 0.5 \mathrm{~W}$
0	R 26	57.11.3391		390R	MF, 1\%, 0207
0	T1	1.022.218.00		1:1	EINGANGSTRAFO 1:1

Comments:
(01) IC3, R16, R19 changed

Audio signal routing or enabling/disabling of certain circuit sections is often effected best using relays. The Modular Sub-Card System, therefore, offers a selection of four relays on individual circuit boards. Because only one relay can be accommodated on one MS-Card, several cards (or a card from the Euro-card range) will be required if more complex switching has to be realized.

The relays offer double pole/double throw switching with non-shorting contacts, and coils rated for either $6 \mathrm{~V}_{\mathrm{DC}}$ or $24 \mathrm{~V}_{\mathrm{DC}}$ operation. A diode is wired across the relay coil in all versions to suppress interfering backEMF when de-energizing the relay.
For studio applications where the mechanical click produced by the relay's armature is objectionable, a low-noise type is available.

No.	Coil	Contact Rating	
1.914 .523	$6 \mathrm{~V} C / 137 \Omega$	$220 \mathrm{~V} / 2 \mathrm{~A} / 60 \mathrm{~W}$	
1.914 .524	$24 \mathrm{~V} / 2.0 \mathrm{k} \Omega$	$220 \mathrm{~V} / 2 \mathrm{~A} / 60 \mathrm{~W}$	
${ }^{*} 1.914 .525$	$5 \mathrm{~V} C / 135 \Omega$	$100 \mathrm{~V} / 0.5 \mathrm{~A} / 30 \mathrm{~W}$	$(\mathrm{R} 1=27 \Omega$ for 6 V operation $)$
${ }^{*} 1.914 .526$	$24 \mathrm{~V} / 2.6 \mathrm{k} \Omega$	$100 \mathrm{~V} / 0.5 \mathrm{~A} / 30 \mathrm{~W}$	$(\mathrm{R} 1=0 \Omega)$
* Low-noise relays			

Dimensions:

MS-card, $34 \times 85 \mathrm{~mm}$

Ordering Information:

MSC relay $6 \mathrm{~V}_{\mathrm{DC}} \quad$ 1.914.523.xx
MSC relay $24 \mathrm{~V}_{\mathrm{DC}}$

MSC RELAYS

(2)	$\stackrel{\sim}{\sim}{ }^{\circ} \stackrel{\infty}{\sim}$	윾N
N(3)	$\bar{\sim} \sim \sim \sim \sim$	$\stackrel{\sim}{\sim} \stackrel{\sim}{\sim}{ }_{\sim}^{\circ}$
$\stackrel{\substack{x \\ \underset{\sim}{2}}}{\sim}$	- の N	$\bigcirc \stackrel{m}{\square}$
(0	- NMN	
$\frac{z}{a}$		
$\frac{\square}{0}$		

02.10 .91 ç	$0 \quad 0$	O	O
		24 V LN	1.914.526.00
	RELAY BOARD 2 U	6 VLN	1. 914.525 .00
		24 V	4. 914.524 .00
		6 V	1.914.523.00

This amplifier with its characteristic input impedance of less than 1Ω finds its application as a summing amplifier. A multitude of unbalanced sources can thus be mixed with a high degree of effective isolation between the individual inputs.

When using $3.3 \mathrm{k} \Omega$ resistors as combining (mixing) resistors in series with each source feeding the summing bus, gain will be unity $(0 \mathrm{~dB})$, i.e., the amplifier's output level will be equal to the level of the signal source ahead of the combining resistor. The amplifier's output is unbalanced, with low impedance. Additional outputs for monitoring (or pre-listening) can be activated via solid-state switches by remote control.

Technical Specifications

Input:

Max. current Current for 0 dBu

Output:
Impedance
Max. output swing $+\mathbf{2 0} \mathbf{d B u}$
Frequency response $\quad \mathbf{0 . 3} \mathbf{~ d B u}, 30 \mathrm{~Hz} . .16 \mathrm{kHz}$

Noise voltage at the outpu
Noise figure, 12 inputs
Supply:
+15 V (11 mA idling); - $\mathbf{1 5} \mathbf{V}$ (7 mA idling $)$
Dimensions:

Ordering Information:
33Ω

Load $\geq 600 \Omega$ @ max. output swing
THD $<-75 \mathrm{~dB}, 30 \mathrm{~Hz} . . .16 \mathrm{kHz}$
$2.5 \mathbf{~ m A}_{\text {rms }}$ for max. output swing
$\mathbf{2 3 4 . 2} \boldsymbol{\mu} \mathbf{A}$; 0 dBu output ($=3.3 \mathrm{k} \Omega$ at the input for unity gain)
< $75 \mathrm{~dB}, 30 \mathrm{~Hz} . . .16 \mathrm{kHz}$
$\mathbf{- 1 1 0} \mathbf{d B u}$, input terminated with $3.3 \mathrm{k} \Omega$, bandwidth 23 kHz
$\mathbf{F}<\mathbf{2} \mathbf{d B} \hat{=} \mathrm{R}_{\mathrm{S}}=275 \Omega$

MSC Oת-INPUT

Ad ..POS.. ...REF.No... DESCRIPTION...................................... MANUFACTURER

This compact high-level input amplifier features a balanced and floating input stage. The output is unbalanced, with low impedance and low distortion up to +24 dBu . An additional PFL monitoring facility is electronically switchable (FET).

Technical Specifications

Input:		Balanced and floating	
	Impedance	$>10 \mathrm{k} \Omega$	
	Max. level	+26 dBu	
	CMRR	> 110 dB @ 50 Hz	
		> $\mathbf{1 1 0} \mathbf{d B}$ @ 16 kHz	
Output:		Unbalanced	
	Impedance	33Ω	
	Load	$\geq 600 \Omega$ @ max. output swing	
	Max. output swing	+20 dBu	
	Gain	-1.4...-17.8 dB	
	Frequency response	$\pm \mathbf{0 . 3 ~ d B , ~} 30 \mathrm{~Hz}$... 16 kHz	
	THD	<-85 dB, $30 \mathrm{~Hz} . . .16 \mathrm{kHz}$	
	Noise voltage	$<-\mathbf{1 0 7 ~ d B u}$, gain -6 dB , bandwidth 23 kHz	
Supply:		$\pm \mathbf{1 5} \mathbf{V}$ (10 mA idling)	
Dimensions:		MS-card, $34 \times 85 \mathrm{~mm}$	
Ordering Inf	ormation:	HL input with PFL	1.914.531.xx

(0) 25.9.91	10	10	0
STU(DER REGENSDORF	HL INPUT WITH PF	ESE	1.914 .531 .00

MSC HL INPUT WITH PFL

The Flip-flop Unit consists of a relay with two DPDT contacts and a flipflop circuit with a control input (opto-coupler). A ground pulse from a non-latching switch applied to the input activates the relay. A next ground pulse will deactivate it again.

Technical Specifications

Input:

Relay contacts: \quad Max. rating 100 V/0.5 A/30 W

Supply:

Dimensions:

Ordering Information:
floating, with opto-coupler
-6 V for logic
-24 V for opto-coupler
MS-card, $34 \times 85 \mathrm{~mm}$

Flip-flop unit
1.914.532.xx

This active 90° filter is used to form a monophonic signal from the left and right channel of stereo signals. Simple mixing of the left and right channel will not produce a mono signal of satisfactory quality, but results in an emphasis of the center information. By summing the stereo signals in a 90° phase-shifted manner, this undesirable effect can be avoided.

The 90° filter consists of two all-pass filter chains, producing a uniform 90° phase difference across the whole audio range. The left and the right stereo signals are each passed through one of these filters and added at the filter's output. Doubling of equally-phased signal components as well as canceling of opposite-phased components is thus avoided.

The filter circuits are of unbalanced configuration. For this reason a summing circuit usually consists of two high-level amplifiers with balanced inputs (1.914.502), one 90° filter, and one high-level output amplifier (1.914.501), all accommodated on one MSC motherboard, as shown in the diagram above.

The gain of this combination can be adjusted. A correlated stereo input of equal level in both channels will provide a mono signal of identical level. With only one input channel (left or right), the mono output level will be lower by 3 dB .

Since the 90° filter with its input and output cards can be realized on a single, Euro-card size MSC motherboard, it can possibly be combined with other Audio Components, such as limiters and isolation amplifiers. Such stereo-to-mono combinations are in use at various radio stations to feed the stereo programs to the monophonic AM-transmitter in a correctly summed manner.

Technical Specifications

Input:	Max. level Impedance	$\begin{aligned} & +20 \mathrm{dBu} \\ & 4 \mathrm{k} \Omega \end{aligned}$	
Output:	Max. level	+20 dBu	
	Impedance	$6.8 \mathrm{k} \Omega$	
	Frequency response	$30 \mathrm{~Hz} . .16 \mathrm{kHz}, \pm 0.3 \mathrm{~dB}$	
	Phase	$\mathbf{9 0}^{\circ} \pm 3^{\circ} ; 30 \mathrm{~Hz} . . .16 \mathrm{kHz}$	
	THD	$\leq-80 \mathrm{~dB}$	
	Noise	<-95 dBu	
Supply:		$\pm \mathbf{1 5} \mathbf{V}$ (18 mA idling)	
Dimensions:		MS-card, $34 \times 85 \mathrm{~mm}$	
Ordering Inf	rmation:	90° filter stereo/mono	1.914.533.xx

MSC 90° FILTER

Ad ..POS.. ...REF.No... DESCRIPTION...................................MANUFACTURER

The Dual Vox Detector card contains two adjustable threshold level detector circuits. Threshold level ($-22 \mathrm{dBu} \ldots+16 \mathrm{dBu}$) and release time ($0.2 \mathrm{~s} . . .10 \mathrm{~s}$) are separately adjustable for two audio channels. These adjustments are effected very precisely with multi-turn trimmer potentiometers.

The high-impedance audio input is balanced. The open-collector output is prepared to activate a relay or an alarm device.
A possible application of this card would be to detect incoming modulation.

Technical Specifications

Inputs:

Outputs:
Supply:
Dimensions:
Ordering Information:

Electronically balanced

$\geq 10 \mathrm{k} \Omega$
$+\mathbf{2 4} \mathbf{d B u}\left(0 \mathrm{dBu} \hat{=} 0,775 \mathrm{~V}_{\mathrm{rms}}\right)$
$75 \mathrm{~Hz} . . .12 \mathrm{kHz},-3 \mathrm{~dB}$

- $22 \mathrm{dBu} . . .+16 \mathrm{dBu}$

100 ms
$200 \mathrm{~ms} . .10 \mathrm{~s}$
$\leq 1 \mathrm{~dB}$

Open-collector; $\mathrm{U}_{\mathrm{CE}} \leq+45 \mathrm{~V}$; $\operatorname{Imax} \leq 100 \mathrm{~mA}$
$\pm \mathbf{1 5} \mathbf{V}$ ($\leq 15 \mathrm{~mA} / 4 \mathrm{~mA}$ idling)
MS-card, $34 \times 85 \mathrm{~mm}$
Dual vox detector

MSC DUAL VOX DETECTOR

Ad	..POS..	...REF.No...	DESCRIPTION..............			URER
01	c..... 1	59.34.2470	47 pF	63 V	CER 5\%		
01	c..... 2	59.34 .5102	1000 pF	63 V	PE ${ }^{5 \%}$		
	C..... 3	59.06.5105	1 uF		PE 5°		
	C..... 4	59.22.3101	100 uF	10 V	EL		
01	C..... 5	59.34.2470	47 pF	63 V	CER 5\%		
01	C..... 6	59.06.5102	1000 pF	63 V	PE 5		
	C..... 7	59.06.5105	1 uF				
	C..... 8	59.22.3101	100 uF	10 V	EL		
	C..... 9	59.26 .2100	10 uF	16 V	EL		
	C.... 10	59.26 .2100	10 uF	16 V	EL		
01	D..... 1	50.99.0183	ZTE1.5	1.5 V	ZENER		ITT
	D..... 2	50.04 .0125	1 N 4448				any
	D..... 3	50.04.0125	1 14448				any
01	D..... 4	50.99.0183	ZTE1.5	1.5 V	ZENER		ITT
	D..... 5	50.04.0125	1 N4448				any
	D..... 6	50.04.0125	1 N 4448				any
	IC.... 2	50.09.0119	TLO62				TI
	IC.... 3	50.09.0119	TL062		op.amp.		TI
	P.....1	54.01.0273		CIS,	13 pin		
	Q.....1	50.03 .0516	BC337	NPN			any
	Q..... 2	50.03 .0516	BC337	NPN			any
	Q..... 3	50.03 .0516	BC337	NPN			any
	Q..... 4	50.03 .0516	BC337	NPN			any
	R..... 1		6.8 kOhm	RZ 1			
01	R..... 2	57.11.3154	150 kOhm				
	R..... 3		6.8 kOhm	RZ 1			
01	R..... 4	57.11.3682	6.8 kOhm				
	R..... 5	58.05.0202	2 kOhm	Trim	10\%		
	R..... 6	57.11.3101	100 hm				
	R..... 7		6.8 kOhm	RZ 3			
	R..... 8	57.11.3221	220 Ohm				
	R..... 9	58.05 .0104	100 k 0 hm	Trim	10\%		
	R.... 10	57.11.3332	3.3 kOhm				
	R....11	-	6.8 kOhm	RZ 2			
	R.... 12	\cdots	6.8 kOhm	RZ 2			
	R.... 13	57.11.3563	56 kOhm				
	R....14		6.8 kOhm	RZ 2			
	R.... 15	57.11.3332	3.3 kOhm				
	R.... 16		6.8 kOhm	RZ 1			
01	R.... 17	57.11.3154	150 k0hm	1\%			
	R.... 18		6.8 kOhm	RZ 1			
01	$\begin{aligned} & \text { R.... } 19 \\ & \text { R.... } 20 \end{aligned}$	$\begin{aligned} & 57.11 .3682 \\ & 58.05 .0202 \end{aligned}$	6.8 kOhm 2 kOhm	Trim	10\%		
	R.... 21	57.11.3101	100 Ohm				
	R.... 22		6.8 kOhm	RZ 3			
	R.... 23	57.11.3221	220 0hm				
	R.... 24	58.05.0104	100 kOhm	Trim	10\%		
	R.... 25	57.11.3332	3.3 kOhm				
	R.... 26		6.8 kOhm	RZ 3			
	R.... 27		6.8 kOhm	RZ 3			
	R.... 28	57.11.3563	56 kOhm				
	R.... 29		6.8 kOhm	RZ 2			
	R.... 30	57.11.3332	3.3 kOhm				
	R.... 31	57.92.7001	0.3 Ohm		.5A		
	R.... 32	57.92 .7001	0.30 hm	PTC			
01	R.... 33	57.11.3682	6.8 kOhm				
01	R.... 34	57.11.3682	6.8 kOhm				
	RZ....1	57.88.2682	6.8 kOhm	R. Ne	etwork 4*6.8k		
	RZ.... 2	57.88 .2682	6.8 kOhm	R. Ne	etwork 4*6.8k		
	RZ.... 3	57.88.2682	6.8 kOhm	R. Ne	etwork 4*6.8k		
(01) update							
(O2) old name: THRESHOLD DETECTOR							
MANUFACTURER		Mot=Motorola, NS-National Semiconductor, Six=Siliconics, $\mathrm{TI}=$ Texas Instruments					
		1.914.534.00	THRESHOLD LEVEL DETECTOR THRESHOLD LEVEL DETECTOR DUAL VOX DETECTOR (POS)			FRI88/06/1800	
		1.914 .534 .00				FRI88/09/0701	
		1.914.534.00				FRI88/10/2702	

This assembly combines a microphone amplifier and a VCA limiter circuit with adjustable threshold level and program-depending release time. The input is balanced and floating, the output is unbalanced and with low impedance. Gain control is effected internally with a trimmer potentiometer, or externally with a gain-control DC voltage. A jumper-selectable pad reduces the input level by 21 dB .

The operation of the limiter circuit can be monitored at the gain reduction output, if an appropriate instrument (GRM) is connected.

This card is ideally suited for talkback applications.

Technical Specifications

MSC MIC AMP / LIMITER

$\mathrm{CER}=$ ceramic, $\mathrm{EL}=$ electrolytic, $\mathrm{PETP}=$ polyester
$\mathrm{SAL}=$ solid aluminim,
SAL $=$ solid aluminium, $T A=$ tantal
MANUFACTURER $d B x=d B x$-Incorp., $S t=$ Studer, $T I=$ Texas Instruments
1.914.539.00 MIC.AMPLIFIER WITH LIMITER HOR20/11/9000

These interfaces are used to convert the voltage of a linear fader to the non-linear dB scale of a Studer VCA. One card processes two channels. It is available in two versions: 540.xx $\left(0 \ldots+10 \mathrm{~V}_{\mathrm{DC}}\right.$ control voltage $)$, and 541.xx ($+5 \ldots . .0 \mathrm{~V}_{\mathrm{DC}}$ control voltage). A regulated $+10 \mathrm{~V}_{\mathrm{DC}}$ reference voltage is generated on-board. The DC from the fader's wiper is connected to the input. Offset and scale alignment is performed with on-board trimmer potentiometers for matching the VCA gain to the dB scale of the fader.

Technical Specifications

Input:Impedance Level range	$\begin{aligned} & \text { 1.914.540.xx } \\ & >1 \mathrm{M} \Omega \text {, unbalanced } \\ & 0 . . .+10 \mathrm{~V} \end{aligned}$	1.914.541.xx $100 \mathrm{k} \Omega$, unbalanced $+5 . . .0 \mathrm{~V}$
Output:Impedance Control range	33Ω, unbalanced +1 V...-10 V	33Ω, unbalanced +1 V...-10 V
Supply:	$\pm \mathbf{1 5} \mathrm{V}(15 \mathrm{~mA})$	
Dimensions:	MS-card, $34 \times 85 \mathrm{~mm}$	
Ordering Information:	Fader/VCA control interface Fader/VCA control interface	

[^4]MANUFACTURER TI=Texas Instruments, Sie=Siemens, St=Studer
Note 1: Q2, Q3, Q4, Q5, Q7, Q8, Q9, Q10 must fulfill BV 678 !
1.914.540.00 FADER/VCA CV INTERFACE BOARD HOR16/11/9000

Dual Fader/VCA Control Voltage IF				
Idx.	Pos.	Part No. Qty.	Type/Val.	Description
0	C 1	59.60.3325 1 pce	10 n	CER 50V, 10\%, X7R, 0805
0	C 2	59.60.2249 1 pce	100p	CER 50V, 5\%, C0G, 0603
0	C 3	59.60 .23731 pce	1 no	CER 50V, 5\%, C0G, 0805
0	C 4	59.60.3337 1 pce	100n	CER 50V, 10\%, X7R, 0805
0	C 5	59.60.3337 1 pce	100 n	CER $50 \mathrm{~V}, 10 \%$, X7R, 0805
0	C 6	59.60.2249 1 pce	100p	CER 50V, 5\%, C0G, 0603
0	C 7	59.68 .00651 pce	10u	EL 16V, 4.0*5.7
0	C 8	59.60.2373 1 pce	1 no	CER 50V, 5\%, C0G, 0805
0	C 9	59.60.3325 1 pce	10 n	CER 50V, 10\%, X7R, 0805
0	IC 1	50.61 .02011 pce	TL062	Dual FET Op-Amp
0	IC 2	50.10 .01061 pce	TL431	Shunt regulator
0	IC 3	50.61 .02011 pce	TL062	Dual FET Op-Amp
0	IC 4	50.61 .02011 pce	TL062	Dual FET Op-Amp
0	MP 1	1.914.541.11 1 pce		FADER/VCA INTERFACE2 PCB
0	MP 2	1.914.541.04 1 pce		NR.-ETIKETTE 5 * 20
0	MP 3	43.01.0108 1 pce	Label	ESE-Warnschild
0	P1	54.01.0273 1 pce	13 p	Stecker CIS parallelsteck
0	Q 1	50.60 .00021 pce	BC850C	NPN 45V 100mA SOT 23
0	Q 2	50.60 .00021 pce	BC850C	NPN 45V 100mA SOT 23
0	Q 3	50.60 .10021 pce	BC860C	PNP 45V 100mA SOT 23
0	Q 4	50.60 .10021 pce	BC860C	PNP 45V 100mA SOT 23
0	Q 5	50.60 .10021 pce	BC860C	PNP 45V 100mA SOT 23
0	Q6	50.60 .10021 pce	BC860C	PNP 45V 100mA SOT 23
0	Q 7	50.60 .00021 pce	BC850C	NPN 45V 100mA SOT 23
0	Q 8	50.60 .00021 pce	BC850C	NPN 45V 100mA SOT 23
0	Q9	50.60 .10021 pce	BC860C	PNP 45V 100mA SOT 23
0	Q 10	50.60 .10021 pce	BC860C	PNP 45V 100mA SOT 23
0	R 1	57.60.1101 1 pce	100R	MF, 1\%, 0204, E24
0	R 2	57.60.1223 1 pce	22k	MF, 1\%, 0204, E24
0	R 3	57.60.1113 1 pce	11k	MF, 1\%, 0204, E24
0	R 4	not used 1 pce	22k	MF, 1\%, 0204, E24
0	R 5	57.60.1104 1 pce	100k	MF, 1\%, 0204, E24
0	R6	57.60.1204 1 pce	200k	MF, 1\%, 0204, E24
0	R 7	57.60.1113 1 pce	11k	MF, 1\%, 0204, E24
0	R 8	57.60.1333 1 pce	33k	MF, 1\%, 0204, E24
0	R 9	57.60.1223 1 pce	22k	MF, 1\%, 0204, E24
0	R 10	57.60.1223 1 pce	22k	MF, 1\%, 0204, E24
0	R 11	57.60.1223 1 pce	22k	MF, 1\%, 0204, E24
0	R 12	57.60.1393 1 pce	39k	MF, 1\%, 0204, E24
0	R 13	57.60 .12411 pce	240R	MF, 1\%, 0204, E24
0	R 14	57.60.1393 1 pce	39k	MF, 1\%, 0204, E24
0	R 15	57.60.1223 1 pce	22k	MF, 1\%, 0204, E24
0	R 16	57.60.1330 1 pce	33R	MF, 1\%, 0204, E24
0	R 17	57.92.1820 1 pce	94 mA	PTC 60 V
0	R 18	57.92.1820 1 pce	94 mA	PTC 60 V
0	R 19	57.60.1681 1 pce	680R	MF, 1\%, 0204, E24
0	R 20	57.60.1223 1 pce	22k	MF, 1\%, 0204, E24
0	R 21	57.60.1223 1 pce	22k	MF, 1\%, 0204, E24
0	R 22	57.60 .12231 pce	22k	MF, 1\%, 0204, E24
0	R 23	57.60.1223 1 pce	22k	MF, 1\%, 0204, E24
0	R 24	57.60.1393 1 pce	39k	MF, 1\%, 0204, E24
0	R 25	57.60.1223 1 pce	22k	MF, 1\%, 0204, E24
0	R 26	57.60.1223 1 pce	22k	MF, 1\%, 0204, E24
0	R 27	57.60 .11131 pce	11k	MF, 1\%, 0204, E24
0	R 28	not used 1 pce	22k	MF, 1\%, 0204, E24
0	R 29	57.60.1104 1 pce	100k	MF, 1\%, 0204, E24
0	R 30	57.60.1204 1 pce	200k	MF, 1\%, 0204, E24
0	R 31	57.60.12411 pce	240R	MF, 1\%, 0204, E24
0	R 32	57.60.1393 1 pce	39k	MF, 1\%, 0204, E24
0	R 33	57.60.1223 1 pce	22k	MF, 1\%, 0204, E24
0	R 34	57.60.1330 1 pce	33R	MF, 1\%, 0204, E24
0	R 35	57.60.1684 1 pce	680k	MF, 1\%, 0204, E24
0	R 36	57.60.1684 1 pce	680k	MF, 1\%, 0204, E24
0	RA 1	58.01 .91031 pce	10k	Cermet, $10 \%, 0.5 \mathrm{~W}$, vertical
0	RA 2	58.01.9101 1 pce	100R	Cermet, $10 \%, 0.5 \mathrm{~W}$, vertical
0	RA 3	58.01.9103 1 pce	10k	Cermet, $10 \%, 0.5 \mathrm{~W}$, vertical
0	RA 4	58.01.9101 1 pce	100R	Cermet, $10 \%, 0.5 \mathrm{~W}$, vertical

2.2 Euro-Cards

2.2.1 Motherboard for 4 MS-Cards

The Modular Sub-Cards require a mounting base for mechanical and electrical installation. This motherboard for four MS-cards in standard Euro-card size easily integrates into the Studer audio components system; it carries 32 printed tracks from its edge connector to four small plug-in sockets. Each socket has 13 contacts; six of them are common supply lines, while another six are individual to each socket. Then there is a separate bus line for circuits 1 and 2 , and another bus line for circuits 3 and 4 .
A motherboard for only one MS-card is available as well, refer to chapter 2.1.1.

Dimensions:	Euro-card	$\mathbf{1 0 0} \times \mathbf{1 6 0} \mathbf{~ m m}$
Connectors:	$1 \times$ Euro connector	32-pin, DIN 41612
	$4 \times$ CIS connector	13-pin, plug-in socket for MSC

This power supply provides a regulated output of $\pm 15 \mathrm{~V}_{\mathrm{DC}}$ at a maximum load of 1.5 A for audio circuits, plus a regulated $48 \mathrm{~V}_{\mathrm{DC}}$ output for the phantom powering of microphones. In addition, 30 V of unregulated DC are available as well.
If a regulated $24 \mathrm{~V}_{\mathrm{DC}}$ supply is required, the stabilizer card 1.915.105.xx can be connected to the $30 \mathrm{~V}_{\mathrm{DC}}$ output.
Each of the output voltages is derived from a separate secondary winding of the mains transformer and can be fine-adjusted.

The $\pm 15 \mathrm{~V}_{\mathrm{DC}}$ supply is fully short-circuit proof and is protected against overvoltage and excess temperature. Short-circuit-protection is also effective in the $48 \mathrm{~V}_{\mathrm{DC}}$ section.
The power supply has no on/off switch in the primary circuit. Such a switch, if needed, will have to be fitted separately.

Mains transformer and regulator electronics are housed in one rectangular unit fitting into the 19 " Euro-card frame (1.918.318/319), occupying the space of 28 M widths. For this purpose, a mounting kit 1.918 .316 is recommended (see chapter 2.3.4).

Technical Specifications

Primary:	Voltage selector	100/120/140/200/220/240 $\mathrm{V}_{\mathrm{AC}} \pm 10 \%$	
	Fuse	T 2 A (slow), 100... 140 V	
		T 1 A (slow), $200 . .240 \mathrm{~V}$	
	Power consumption	< 120 W (190 VA)	
Secondary:	Audio supply:	$\pm \mathbf{1 5} \mathrm{V} / 1.5 \mathrm{~A}$ max., regulated voltage	
	Ripple	$100 \mu \mathrm{~V}$	
	Fuses	$2 \times \mathrm{T} 2.5 \mathrm{~A}$ (slow)	
	Phantom supply:	$\mathbf{4 8} \mathbf{V} / \mathbf{2 0 0} \mathbf{~ m A ~ m a x . , ~ r e g u l a t e d ~ v o l t a g e , ~ a c c o r d i n g ~ t o ~ D I N ~} 45596$	
	Ripple	$100 \mu \mathrm{~V}$	
	Fuse	T 315 mA (slow)	
	Unregulated DC:	$30 \mathrm{~V} / 0.5$ A max.	
	Fuse	T 0.8 A (slow)	
Dimensions:	$\mathrm{W} \times \mathrm{H} \times \mathrm{D}$	$140 \times 100 \times 160 \mathrm{~mm}$, Euro-card/28M units	
	Weight	2.75 kg	
Ordering Information:		Power supply	1.915.100.xx
		Mounting kit for installation in ELMA frame (1.918.318)	1.918.316.xx

Ad .Pos.	Ref.No.	DESCRIPTION.		,	MANUFACTURER
C. . 101	59.31 .2103	0,014	250 V	PE	
C. . . 102	59.31 .2103	0,014	250 V	PE	
C. . . 103	59.25.6471	470,	63 V	El	
(2) C... 104	59.99.0453	0,14	2504	MP	
c. . 201	59.31 .2103	0,01\%	250%	PE	
c. . 202	59.31 .2103	0,014	2504	PE	
C. . 203	59.35.4472	4700川	40 V	El	
C. . 204	59.34.1100	10p		CER	
c. . 205	59.34.6105	11	100 V	PE	
C. . 206	59.31.6104	0,14		PE	
C. . 207	59.36.5100	101	35 V	TA	
C. . 208	59.34.4151	150p		CER	
C. . 209	59.25.3102	1000μ	16 V	EL	
C. . 301	59.31 .2103	0,01 μ	250 V	PE	
c. . 302	59.31 .2103	0,014	250 V	PE	
C. . 303	59.35.4472	4700川	40 V	El	
C. . 304	59.34.2220	22p		CER	
C. . 305	59.31 .6105	11	100 V	PE	
C. . 306	59.31.6104	0,1\%		PE	
c. . 307	59.36.4109	$1{ }^{1 /}$	25V	tA	
C. . 308	59.25.3102	1000H	16V	El	
c. . 401	59.31.2103	0,014	250 V	PE	
C. . . 402	59.31.2103	0,014	250 V	PE	
C. . 403	59.22.9221	220μ	100 V	El	
C. . 404	59.36.5100	10"	35 V	TA	
C. . 405	59.34.1100	10 p		CER	
C. . . 406	59.36.5100	10μ	35V	TA	
C. . . 407	59.36.5100	10μ	354	TA	
C. . . 408	59.22 .8220	22%	63V	El	
D. . 101	50.04 .0105	1 12004	1 A 200 V		ANY
D. . 102	50.04.0105	1 14004	1 A 200V		ANY
D. . 103	50.04.0105	1 11004	1 A 200V		ANY
D. . . 104	50.04.0105	1N4004	1 A 200 V		ANY
D. . . 105	50.04.2109	MV5054-1	LED		
D. . 201	50.04.0507	MR502	3A 200V		мот
D. . . 202	50.04.0507	MR502	3 A 200V		мот
D. . 203	50.04.0507	MR502	3 A 200V		MOT
D. . 204	50.04.0507	MR502	3 A 200V		MOT
D. . 205	50.04.1122	2PD18	2-DIODE 18V	400 mW	
D. . 206	50.04.0125	1 14448			
D. . 207	50.04 .1503	ZPY7, 5	2-DIODE 7,5V	1,3W	
D. . . 208	50.04.2109	MV5054-1	LED		
D. . 301	50.04.0507	MR502	3 A 200V		мот
D. . 302	50.04.0507	MR502	3 A 200V		мот
D. . 303	50.04 .0507	MR502	3 A 200V		мот
D. . 304	50.04.0507	MR502	3 A 200V		MOT
D. . 305	50.04 .1122	2PD18	2-DIODE 18V	400 mW	
D. . 306	50.04.0125	1 14448			
D. . 307	50.04.1503	ZPY7,5	2-DIODE 7,5V	1,3W	
D. . . 308	50.04.2109	MV5054-1	LED		
D. . . 401	50.04.0105	1N4004	1 A 200V		
D. . . 402	50.04.0105	1 11004	1 A 200V		
D. . . 403	50.04.0105	1N4004	1 A 200V		
D. . . 404	50.04.0105	1N4004	1A 200V		
D. . . 405	50.04 .1121	2P024	2-DIODE 24V	400 mW	
D. . . 406	50.04 .0125	1N4448			
D. . 407	50.04 .1118	2P06,2	2-DIODE 6,2V	400 mW	
D. . . 408	50.04.0125	1 14448			
D. . . 409	50.04 .0125	1 12448			
D. . . 410	50.04.2109	MV5054	LED		
F.... 1	51.01.0120	2 A	SLOW BLOW ©	100... 140 VAC	
	51.01 .0117	1 A	SLOW BLOW ©	200... 240 VaC	
F... 101	51.01.0116	800 mA	SLOW BLOW		
F. . 201	51.01.0121	2,5A	SLOW BLOW		
F. . 301	51.01.0121	2,5A	slow blow		
F. . . 401	51.01 .0112	315 mA			
IC. 201	50.05.0119	$\mu A 723 C$			
Ic. 301	50.05.0119	uA723C			
P.....1	54.04.0104	3 p	mains-plug		
P.... 2	54.01 .0359	32p	EDGE CONNECT		
Q. .201	50.99 .0106	T28000	triac		RCA
Q. . 202	50.03.0481	M2955			MOT
Q. . 203	50.03 .0436	BC237B	NPN GEN. PUR	P. BC547B	
Q. . . 301	50.99.0106	T28000	triac		RCA
Q. 3.302	50.03.0481	M2955			MOT
Q. . . 401	50.03 .0436	BC2378	NPN 50V	BC547B	
Q. . . 402	50.03.0492	BC256B			
Q. . . 403	50.03.0344	2N6474			RCA
Q. . 404	50.03.0436	BC237B	NPN 50V	BC5478	
R. . 101	57.11.4682	6,8k			

Ad . POS.	.REF.No.	DESCRIPTION.		\ldots	MANUFACTURER
R. . 201	57.56.5278	0,27		4W	
R. . 202	57.11.4151	150			
R. . 203	57.11.4220	22			
R. . 204	57.11.4102	1 k			
R. . 205	57.11.4270	27			
R. . . 206	57.11.4270	27			
R. . . 207	57.56.5188	0,18		2 W	
R. . 208	57.11.4221	220			
R. . . 209	57.99.0208	16,7k	NTC R@ $100^{\circ} \mathrm{C}$		PH
R. . 210					
R. . 211	57.11.4109	1			
R. . 212	57.11.4332	3,3k			
R. . 213	57.11.4820	82			
R. . 214	57.11.4470	47			
R. . 215	57.39 .1002	10k	1\%	MF	
R. . 216	57.39.5111	5,11k	1\%	MF	
R. . 217	57.11.4682	6,8k			
R. . 218	58.01 .7202	2k	TRIM	PMG	
R. . 219	57.11.4562	5,6k			
R. . . 220	57.11.4100	10			
R. . . 221	57.11.4222	2,2k			
R. . . 301	57.56.5278	0,27		4W	
R. . . 302	57.11.4151	150			
R. . 303	57.11.4220	22			
R. . 304	57.11.4102	1k			
R. . . 305	57.11 .4270	27			
R. . 306	57.11.4270	27			
R. . . 307	57.56 .5188	0,18		2W	
R. . 308	57.11.4221	220			
R. . . 309	57.99.0208	16,7k	NTC R@100 ${ }^{\circ} \mathrm{C}$		PH

R. . 311	57.11.4109	1		
R. . 312	57.11.4820	82		
R. . . 313	57.39.1002	10k	1\%	MF
R. . 314	57.39 .5111	5,11k	1\%	MF
R. . 315	57.39.1002	10k	1\%	MF
R. . 316	57.39 .5111	5,11k	1\%	MF
R. . . 317	57.11.4222	2,2k		
R. . 318	57.11.4100	10		

R. . $401 \quad 57.11 .4682 \quad 6,8 \mathrm{k}$
T

This oscillator circuit provides a convenient source of 9 fixed audio frequencies with stable signal level, accommodated on one Euro-card. It is well suited for quick frequency-response measurements or for other calibration work in an audio system.

Two three-position rocker switches allow the selection of the 9 frequencies, a third switch permits changeover to an external Wien-bridge, if external frequency control should be desired.
An output amplifier with level control on its input is also implemented, providing three different outputs, as far as levels and balanced/unbalanced configurations are concerned.

Technical Specifications

General: $\begin{array}{r}\text { Frequencies } \\ \text { Settling time } \\ \\ \text { Level accuracy } \\ \text { Operating temperature } \\ \\ \text { Supply }\end{array}$	$\begin{aligned} & \mathbf{3 0} / \mathbf{1 0 0} / \mathbf{1 5 0} / \mathbf{3 0 0} \mathbf{H z} / \mathbf{1} / \mathbf{1 . 5} / \mathbf{3} / \mathbf{1 0} / \mathbf{1 5} \mathbf{~ k H z}, \text { fixed (accuracy } \pm 5 \%) \\ & <\mathbf{5} \mathrm{s}(30 \mathrm{~Hz}) \\ & <\mathbf{1} \mathrm{s}(1 \mathrm{kHz}) \\ & \mathbf{+ 0 . 1 / - \mathbf { 0 . 2 } \mathbf { ~ d B } (0 \ldots 5 0 ^ { \circ } \mathrm { C })} \\ & \mathbf{- 1 0} \ldots+\mathbf{5 5}{ }^{\circ} \mathrm{C} \\ & \mathbf{\pm 1 5} \mathrm{~V}, \text { regulated within } \pm 0.2 \mathrm{~V}(<25 \mathrm{~mA}) \end{aligned}$
Output 1: balanced and floating Output level range Level uniformity vs. frequency	$\begin{aligned} & \text { separately adjustable } \\ & -\infty \ldots+\mathbf{1 0} \mathbf{~ d B u}\left(0 \ldots . . .45 \mathrm{~V}_{\mathrm{rms}}\right) \\ & \pm \mathbf{0 . 1 \mathbf { d B } (2 0 ^ { \circ } \mathrm { C })} \\ & <\mathbf{0 . 2 5 \%}, 30 \mathrm{~Hz} . . .15 \mathrm{kHz} \\ & <\mathbf{0 . 1 \%}, 100 \mathrm{~Hz} . . .10 \mathrm{kHz} \end{aligned}$
Output impedance Minimum load	$\begin{aligned} & <30 \Omega \\ & 200 \Omega \end{aligned}$
Output 2: $\begin{array}{r}\text { unbalanced } \\ \text { Output level range }\end{array}$ Level uniformity vs. frequency THD	$\begin{aligned} & \text { separately adjustable } \\ & -\infty \ldots+\mathbf{1 5} \mathbf{~ d B u}\left(0 \ldots .4 .4 \mathrm{~V}_{\mathrm{rms}}\right) \\ & \mathbf{\pm 0 . 2} \mathbf{~ d B}\left(20^{\circ} \mathrm{C}\right) \\ & <\mathbf{0 . 1 5 \%}, 30 \mathrm{~Hz} . .15 \mathrm{kHz} \\ & <\mathbf{0 . 1 \%}, 100 \mathrm{~Hz} . . .10 \mathrm{kHz} \end{aligned}$
Minimum load	200Ω
Output 3: balanced and floating Output level range Level uniformity vs. frequency THD Output impedance Minimum load	$\begin{aligned} & \text { separately adjustable } \\ & -\infty \ldots-\mathbf{5 0} \mathbf{~ d B u}(0 \ldots . .2 .5 \mathrm{mV} \text { rms }) \\ & \pm \mathbf{0 . 2} \mathbf{~ d B}\left(20^{\circ} \mathrm{C}\right) \\ & <\mathbf{0 . 2 \%}, 30 \mathrm{~Hz} . . .15 \mathrm{kHz} \\ & \mathbf{1 2} \Omega \\ & \mathbf{2 0 0} \Omega \end{aligned}$
Dimensions: $\begin{array}{r}\text { Euro-card } \\ \text { Weight }\end{array}$	$100 \times 160 \mathrm{~mm}, 7 \mathrm{M}$ units wide approx. 350 g
Ordering Information:	Audio generator $30 \mathrm{~Hz} . .15 \mathrm{kHz}$ 1.915.200.xx

Ad .POS..	REF.No...	DESCRIPTION.				MANUFACTURER
C..... 1	59.99 .0254	0,1 1	2\%	100 V	PE	
C.... 2	59.12.7103	0,014	1\%	63V	PS	
C. ... 3	59.12.9102	1000p	1\%	500 V	PS	
C..... 4	59.99.0254	0,14	2\%	100 V	PE	
C. ... 5	59.12.7103	0,014	1\%	63V	PS	
C..... 6	59.12.9102	1000p	1\%	500 V	PS	
C..... 7	59.34.0229	2,2p			CER	
C..... 8						
C. . . . 9	59.36.3339	3,3\%	20\%	16 V	TA	
C. . . 10	59.36.3339	3,3u	20\%	16V	TA	
C. . . 11	59.32 .0220	22p	20\%	400V	CER	
C. . . 12	59.36.4150	15μ	20\%	25V	TA	
C. . . 13	59.32.1151	150p	10\%	400 V	CER	
C. . . 14	59.32.0101	100p	20\%	400 V	CER	
C. . . 15	59.32.0220	22p	20\%	400 V	CER	
C.... 16	59.22.4102	1000\%	-10\%	16 V	EL	
C. . . 17	59.22.4102	1000 μ	-10\%	16 V	EL	
C. . . 18	59.22.4102	1000川	-10\%	16 V	EL	
D..... 1	50.04.2104	MV5020	LED			
D.... 2	50.04 .0125	1 N 4448	St	1N914		
D.... 3	50.04 .0125	1 N 4448	St	1N914		
D.... 4	50.04 .1104	25,6	5\%	0,4W		
D..... 5	50.04 .0125	1N4448	SI	1N914		
IC.... 1	50.05 .0144	LM301AN	OP AM			
IC.... 2	50.05.0144	LM301AN	OP AM			
IC.... 3	50.05 .0144	LM301AN	OP AM			
Q..... 1	50.03 .0305	BC179B	PNP			
Q.... 2	50.03.0305	BC1798	PNP			
Q.... 3	50.03 .0315	BC160-16	PNP			
Q. 4	50.03 .0316	BC140-16	NPN			
R. . . . 1	57.41 .4683	68k	5\%	3/w	CSCH	
R. . . . 2	57.39.2673	267k	1\%	KW	MF	
R. . . . 3	57.41.4683	68k	5\%	K/W	CSCH	
R.... 4	57.39.2052	20,5k	1\%	K/W	MF	
R. . . . 5	57.41.4683	68k	5\%	1/W	CSCH	
R.... 6	57.39.1242	12,4k	1\%	1/w	MF	
R. . . . 7	57.39.2673	267k	1\%	K/w	MF	
R. . . . 8	57.39.2052	20,5k	1\%	3/W	MF	
R. . . . 9	57.39.1242	12,4k	1\%	y/w	MF	
R. . . 10	57.41.4563	56k	5\%	kw	CSCH	
R. . . 11	57.41 .4123	12k	5\%	yw	CSCH	
R. . . 12	57.41 .4681	680	5\%	yiw	CSCH	
R. . . 13	57.99.0135	1 k		100VIX		
R. . . 14	57.41.4101	100	5\%	KW	CSCH	
R. . . . 15	57.39.1102	11k	1\%	yiw	MF	
R. . . 16	57.41.4223	22k	5\%	Y/W	CSCH	
R. . . 17	57.41.4223	22k	5\%	3/w	CSCH	
R. . . 18	58.02.8104	100k LOG	20\%	0,1w	PSCH	
R. . . 19	57.41.4564	560k	5\%	KW	CSCH	
R. . . 20	57.41 .4334	330k	5\%	Y/W	CSCH	
R. . . 21	57.41.4824	820k	5\%	L/W	CsCH	
R. . . 22	57.41.4334	330k	5\%	Y/W	CSCH	
R. . . 23						
R. . . . 24						
R... 25	57.41.4681	680	5\%	KW	CSCH	
R. . . 26	58.01 .7103	10k	10\%	Y/W	PMG	
R. . . 27	57.39.3921	3,92k	1\%	KW	MF	
R. . . 28	57.41.4123	12k	5\%	KW	CSCH	
R. . . 29	57.41.4221	220	5\%	yiw	CSCH	
R. . . 30	57.41 .4479	4,7	5\%	y/w	CSCH	
R. . . 31	58.01 .8202	2k	10\%	1/2W	PMG	
R. . . 32	57.41 .4223	22k	5\%	yw	CSCH	
R. . . 33	57.41 .4479	4,7	5\%	Y/W	CSCH	
R. . . 34	58.01 .7103	10k	10\%	H2W	PMG	
R. . . 35	57.41.4183	18k	5\%	KW	CSCH	
R. . . 36	57.41.4822	8,2k	5\%	Yiw	CSCH	
R. . . 37	57.41.4120	12	5\%	Y/W	CSCH	
R. . . 38	57.99.0209	5,6	PTC			
R. . . 39	57.99.0209	5,6	PTC			
R. . . 40	57.41.4102	1 k	5\%	Y/W	CSCH	
S. . . . 1	55.01 .0112	$2 \times \mathrm{ON}-\mathrm{ON}$	SWITCH	H AU KIPP		
S. . . . 2	55.01 .0114	$4 \times O \mathrm{~N}-\mathrm{ON}-\mathrm{ON}$	SWITCH	H AU KIPP		
S. . . . 3	55.01 .0114	4*ON-ON-ON	SWITCH	H AU KIPP		
T. . . . 1	1.022.400.00	4:1	TRAFO			ST
T. . . . 2	1.022.352.00					ST

$C E R=$ Ceramic, $P E=$ Polyester, $P S=$ Polystyrol, $P M G=$ Trimmer, $M F=$ Metal Film, $C S C H=$ Carbon Film
PSCH=Poti, EL=Electrolytic, $T A=$ Tantalum
MANUFACTURER: $\mathrm{ST}=$ Studer

The circuit on this Euro-card is designed to form part of an audio monitoring system. The card is narrower than most others, i.e., 4 M units only. It contains four amplifiers, each presenting a $0-\Omega$ input impedance, two metering amplifiers, and four relays for audio switching.

Two stereo signal inputs from a combination of sources (with suitable isolation resistors at the output of each source) can thus be summed for Control Room (CR) and Studio Monitoring, for example. In addition, the signal from the stereo master can be assigned to either monitor line and, if needed, CR monitoring and studio monitoring can be paralleled. A further circuit permits switchover of level meters from the master bus to the CR monitor line. The relays are designed for $6 \mathrm{~V}_{\mathrm{DC}}$ operation.

Technical Specifications

Monitor Amp 1.915.304.00 (0)

Idx.	Pos.	Part No. Qty.	Type/Val.	Description
0	C 1	59.32 .44711 pce	470p	CER, 20\%, 50V
0	C 2	59.25.4101 1 pce	100u	EL 25V 20\% axial
0	C 3	59.32.4471 1 pce	470p	CER, 20%, 50 V
0	C 4	59.25.4101 1 pce	100u	EL 25V 20\% axial
0	C 5	59.32 .44711 pce	470p	CER, 20\%, 50V
0	C 6	59.25.4101 1 pce	100u	EL 25V 20\% axial
0	C 7	59.25.4101 1 pce	100u	EL 25V 20\% axial
0	C 8	59.25.4101 1 pce	100u	EL 25V 20\% axial
0	C 9	59.32.4471 1 pce	470p	CER, 20%, 50 V
0	C 10	59.25 .41011 pce	100u	EL 25V 20\% axial
0	D 1	50.04.0125 1 pce	1N4448	$75 \mathrm{~V}, 150 \mathrm{~mA}$, 4ns, DO-35
0	D 2	50.04.0125 1 pce	1N4448	$75 \mathrm{~V}, 150 \mathrm{~mA}, 4 \mathrm{~ns}$, DO-35
0	D 3	50.04.0125 1 pce	1 N 4448	$75 \mathrm{~V}, 150 \mathrm{~mA}$, 4ns, DO-35
0	D 4	50.04.0125 1 pce	1N4448	$75 \mathrm{~V}, 150 \mathrm{~mA}$, 4ns, DO-35
0	IC 1	50.09.0107 1 pce	4559	Dual Op-Amp
0	IC 2	50.09.0107 1 pce	4559	Dual Op-Amp
0	IC 3	50.09.0107 1 pce	4559	Dual Op-Amp
0	K1	56.04 .01461 pce	4^{*} u	$6 \mathrm{~V}, 220 \mathrm{~V} / 2 \mathrm{~A}, \mathrm{PCB}$
0	K2	56.04 .01461 pce	$4^{*} \mathrm{u}$	$6 \mathrm{~V}, 220 \mathrm{~V} / 2 \mathrm{~A}, \mathrm{PCB}$
0	K3	56.04 .01461 pce	$4^{*} \mathrm{u}$	$6 \mathrm{~V}, 220 \mathrm{~V} / 2 \mathrm{~A}, \mathrm{PCB}$
0	K 4	56.04 .01461 pce	4^{*} u	$6 \mathrm{~V}, 220 \mathrm{~V} / 2 \mathrm{~A}, \mathrm{PCB}$
0	R 1	57.11.3682 1 pce	6 k 8	MF, 1\%, 0207
0	R 2	57.11.3393 1 pce	39k	MF, 1\%, 0207
0	R 4	57.11.3682 1 pce	6k8	MF, 1\%, 0207
0	R 5	57.11.3393 1 pce	39k	MF, 1\%, 0207
0	R 7	57.11.3562 1 pce	5k6	MF, 1\%, 0207
0	R 8	57.11.3562 1 pce	5k6	MF, 1\%, 0207
0	R 9	57.11.3562 1 pce	5k6	MF, 1\%, 0207
0	R 10	57.11.3562 1 pce	5k6	MF, 1\%, 0207
0	R 11	57.11.3334 1 pce	330k	MF, 1\%, 0207
0	R 12	57.11.3562 1 pce	5k6	MF, 1\%, 0207
0	R 13	57.11.3334 1 pce	330k	MF, 1\%, 0207
0	R 14	57.11.3562 1 pce	5k6	MF, 1\%, 0207
0	R 15	57.11.3682 1 pce	6 k 8	MF, 1\%, 0207
0	R 16	57.11.3393 1 pce	39k	MF, 1\%, 0207
0	R 17	57.11.3562 1 pce	5k6	MF, 1\%, 0207
0	R 18	57.99.0206 1 pce	50R	PTC, $25 \mathrm{~V}, 0.5 \mathrm{~W}$
0	R 19	57.99.0206 1 pce	50R	PTC, $25 \mathrm{~V}, 0.5 \mathrm{~W}$
0	R 20	57.11.3682 1 pce	6k8	MF, 1\%, 0207
0	R 21	57.11.3393 1 pce	39k	MF, 1\%, 0207
0	R 22	57.11.3562 1 pce	5k6	MF, 1\%, 0207
0	R 23	57.11.3562 1 pce	5k6	MF, 1\%, 0207
0	R 24	57.11.3562 1 pce	5k6	MF, 1\%, 0207
0	R 25	57.11.3562 1 pce	5k6	MF, 1\%, 0207
0	R 26	57.11.3562 1 pce	5k6	MF, 1\%, 0207
0	R 27	57.11.3562 1 pce	5k6	MF, 1\%, 0207
0	R 28	57.11.3562 1 pce	5k6	MF, 1\%, 0207
0	R 29	57.11.3562 1 pce	5k6	MF, 1\%, 0207
0	R 30	57.11.3562 1 pce	5k6	MF, 1\%, 0207
0	T1	1.022.419.00 1 pce		EINGANGSTRAFO 1:1
0	T2	1.022.419.00 1 pce		EINGANGSTRAFO 1:1
0	T3	1.022.419.00 1 pce		EINGANGSTRAFO 1:1
0	T4	1.022.419.00 1 pce		EINGANGSTRAFO 1:1

Comments:

The distribution amplifier cards offer splitting of one input to four or six individually adjustable outputs (versions 1.915 .308 or 1.915 .307 , respectively). The input and all outputs are transformer-balanced and floating. These cards satisfy any complex requirement of signal routing and distribution.

Technical Specifications

General: Frequency range $\mathbf{3 1 . 5} \mathbf{~ H z} . . .16 \mathrm{kHz}$
Input: balanced and floating

Impedance	$\geq \mathbf{1 0} \mathbf{k} \Omega$
Symmetry	$\geq \mathbf{6 0} \mathbf{~ d B}$
Gain, adjustable	$\mathbf{- 2 0} \ldots \mathbf{+ 1 0} \mathbf{~ d B}$ (Jumper 2-3: +6 dB Gain)

Outputs:
balanced and floating
Impedance $\leq 40 \Omega$
Maximum level $+\mathbf{2 4} \mathbf{d B u}, \mathrm{R}_{\mathrm{L}}=600 \Omega / \mathrm{THD}<1 \%$
+21 dBu, $\mathrm{R}_{\mathrm{L}}=200 \Omega / \mathrm{THD}<1 \%$
THD $\leq \mathbf{0 . 0 2 \%},+6 \mathrm{dBu} / 300 \Omega$
Output noise voltage $\mathbf{- 1 0 0} \mathbf{~ d B u}, 0 \mathrm{~dB}$ gain
Supply: $\quad \pm \mathbf{1 5} \mathbf{V}_{\mathbf{D C}} \quad(90 \mathrm{~mA}$, all outputs +6 dBu , without load;

Dimensions: \quad Euro-card $\mathbf{1 0 0} \times \mathbf{1 6 0} \mathbf{~ m m}, \mathbf{7} \mathbf{M}$ units wide
Weight $\mathbf{5 0 0} \mathbf{g}$ (1.915.308)
$\mathbf{6 0 0} \mathbf{g}$ (1.915.307)

Ordering Information:

Euro-cards:
19"/1U standard products:

- Distribution amplifier 1 to 6
1.915.307.xx
- Distribution amplifier 1 to 4
- Distribution unit 2×1 in/4 out on XLR
1.915.308.xx
- Distribution unit 3×1 in/4 out on XLR
- Distribution unit 2×1 in/6 out on XLR 75.700.89303

01
01

C.... 11			not used		
C.... 11	59.06.0222	2.2 nf		PE	
C.... 12	59.34.2470	47 pF		CER	
c.... 13	59.06.0472	4.7 nF		PE	
c.... 14	59.34.2470	47 pF		CER	
C.... 15	59.22.3101	100 uF		ALU	10 V
c.... 16	59.32.1680	68 pF		CER	400V
c.... 17			not used		
C.... 21			not used		
C.... 21	59.06.0222	2.2 nF		PE	
c.... 22	59.34.2470	47 pF		CER	
C.... 23	59.06.0472	4.7 nF		PE	
C.... 24	59.34.2470	47 pF		CER	
C.... 25	59.22.3101	100 uF		ALU	10V
c.... 26	59.32.1680	68 pF		CER	400V
C.... 27			not used		
C.... 31			not used		
C.... 31	59.06.0222	2.2 nf		PE	
C.... 32	59.34 .2470	47 pF		CER	
c.... 33	59.06 .0472	4.7 nF		PE	
C.... 34	59.34.2470	47 pF		CER	
c.... 35	59.22 .3101	100 uF		ALU	10 V
c.... 36	59.32.1680	68 pF		CER	400V
C.... 37			not used		
C.... 41			not used		
C.... 41	59.06.0222	2.2 nf		PE	
C.... 42	59.34 .2470	47 pF		CER	
C.... 43	59.06.0472	4.7 nF		PE	
C.... 44	59.34.2470	47 pF		CER	
C.... 45	59.22 .3101	100 uF		ALU	10 V
c.... 46	59.32.1680	68 pF		CER	400 V
C.... 47			not used		
C.... 51			not used		
C.... 51	59.06.0222	2.2 nF		PE	
C.... 52	59.34.2470	47 pF		CER	
C.... 53	59.06.0472	4.7 nF		PE	
c.... 54	59.34.2470	47 pF		CER	
C.... 55	59.22 .3101	100 uF		ALU	10 V
c.... 56	59.32.1680	68 pF		CER	400 V
C.... 57			not used		
c.... 61			not used		
C.... 61	59.06.0222	2.2 nF		PE	
c.... 62	59.34.2470	47 pF		CER	
c.... 63	59.06.0472	4.7 nF		PE	
C.... 64	59.34.2470	47 pF		CER	
c.... 65	59.22 .3101	100 uF		ALU	10 V
c.... 66	59.32.1680	68 pF		CER	4004
C....67			not used		
c.... 70	59.22 .4221	220 uF		ALU	6 V
C.... 71	59.22.4101	100 uF		ALU	10V
c.... 72	59.06.0152	1.5 nF		CER	
c.... 73	59.34 .2470	47 pF		CER	
C.... 74	59.34.4100	10 pF		CER	
c.... 75	59.34.5471	470 pF		CER	
c.... 76	59.05.1102	1 nF	1\%		
c.... 77	59.05.1102	1 nF	1\%		
c.... 79	59.22.4101	100 uF		ALU	10V
C.... 80	59.06.5105	1 uF		PE	
c.... 81	59.06.5105	1 uF		PE	
C.... 82	59.25 .5101	100 uF		40 V	
c.... 83	59.25.5101	100 uF		40 V	
C.... 84	59.25.5101	100 uF		40 V	
D.... 70	50.04.0105	1N4004			
D.... 71	50.04.0105	1 N4004			
F.....1	51.01 .0115		T $630 \mathrm{~mA} / 2$	5*20	
F..... 2	51.01 .0115		T $630 \mathrm{~mA} /$	5*20	
IC... 11	50.09 .0106	NE5532AN	dual op.		
IC... 12	50.09.0106	NE5532AN	dual op.		
IC... 21	50.09.0106	NE5532AN	dual op.		
IC... 22	50.09.0106	NE5532AN	dual op.		
IC... 31	50.09 .0106	NE5532AN	dual op.		
IC... 32	50.09.0106	NE5532AN	dual op.		
IC. . 41	50.09.0106	Ne5532AN			
IC... 42	50.09.0106	NE5532AN	dual op.		
IC... 51	50.09.0106	NE5532AN			
IC... 52	50.09.0106	NE5532AN	dual op.		
IC... 61	50.09 .0106	NE5532AN	dual op.		
IC... 62	50.09.0106	NE5532AN	dual op.		
IC... 70	50.05.0244	NE5534AN	single op		
JP....1	54.01.0021		JUMPER JACK		
JS.... 1	54.01 .0020		JuMPER PL	3-PIN	
MP....1	53.03 .0142	4 pcs	Fuse holder		
MP.... 2	1.915.307.02	1 pcs	Abdeckwink		
MP.... 3	1.915.307.05	1 pcs	Kuelblech		
MP.... 4	1.022.400.03	1 pcs	Isolation	T 70	

$\frac{\frac{1.915 .307-90}{(6 \times)}}{\text { ONLY 1.915.308-00 }}$
$\frac{28.21 .1380}{28.21 .2307}$
$* 2 M 3$
ONLY 1.915.307-00

CER=Ceramic, PE=Polyester, SAL=Solid Aluminium $M F=$ Metal $\mathrm{Fi} \mathrm{I}_{\mathrm{m}}, \mathrm{PMG}=$ Cermet
MANUFACTURER: Ex=Exar, NE=NEC, Ph=Philips, Ra=Raytheon, Sigrsignetics, St=Studer,

1.915 .308 .00	DISTRIBUTION AMP.1/4	SE 87/09/0400
1.915 .308 .00	DISTRIBUTION AMP.1/4	SE 92/07/0201

END

SE 87/09/0400
SE 92/07/0201

This amplifier on one Euro-card is designed for operation on a $\pm 15 \mathrm{~V}$ supply. It is capable of providing a power output of 5 W into a load of 8Ω.
With its low-to-medium power level, this amplifier is ideally suited for applications such as pre-listening or talkback speaker operation. Its output stage is protected by instantaneous output power limiting.

The standard version has an electronically balanced (transformerless) input. It is also available with the following options:

- Input balancing transformer
- Remote muting
- Remote gain control (VCA)
- Input balancing transformer plus remote muting
- Input balancing transformer plus remote gain control (VCA).

Technical Specifications

Ordering Information:

5 W amplifier with

- transformerless input
1.915.410.xx
- input transformer
- transformerless input and remote muting facility
- input transformer and remote muting facility
- transformerless input and remote gain control (VCA)
- input transformer and remote gain control (VCA)
1.915.411.xx
1.915.412.xx
1.915.413.xx
1.915.414.xx
1.915.415.xx

Ad	POS.	REF.NO...	DESCRIPTI	N........................	MANUFACTURER	
	R. . . 33	57.11.4222	2,2k			
	R. . . 34	57.11.4222	2,2k			
	R. . . 35	57.11.4273	27k			
	R. . . 36	57.11.4222	2,2k			
	R. . . 37	57.11.4561	560			
	R. . . 38	57.11.4561	560			
	R. . . 39	57.11.4222	2,2k			
	R. . . 40	57.11.4332	3,3k			
	R. . . 41	57.11.4332	3,3k			
	R. . . 42	57.11.4272	2,7k			
	R. . . . 43	58.01 .8501	500	TRIM		
	R. . . . 44	57.11.4122	1,2k			
	R. . . . 45	57.11.4151	150			
	R. . . 46	57.11.4151	150			
	R. . . 47	57.11.4330	33			
	R. . . 48	57.11.4330	33			
	R. . . 49	57.11.4109	1			
	R. . . 50	57.11.4109	1			
	R. . . 51	57.11.4109	1			
	R. . . 52	57.11.4109	1			
	R. . . 53	57.11.4100	10			
	R. . . 54	57.11.4471	470			
	R. . . 55		OPT 3			
	R. . . 56		OPT 3			
	XF	53.03 .0142		FUSE HOLDER		
	XIC	53.03 .0166	8 pDIL			
OPTIONS						
OPTION 1						
	C.... 3	59.06 .0682	6800p	PE		
	C..... 7	59.34.2220	22p	CER		
	R. . . . 5	57.11.4102	1 k			
	R. . . . 6	57.11.4102	1 k			
	R..... 8	57.11.3181	180	1\%		
	R. . . 10	57.11.3752	7,5k	1\%		
	R. . . . 11	57.11.3752	7,5k	1\%		
	T. . . . 1	1.022.419.00	1:1			ST
		1.022.400.03		INSULATION		
OPTION 2						
	C.... 13	59.06.0682	6800p			
	C. . . 14	59.06 .0682	6800 p			
	Q.... 1	50.03 .0350	$\mathrm{J} 112$		MPF4392	SIX, MOT
	Q.... 2	50.03 .0515	BC307	PNP GEN. PURPOSE		
	Q..... 3	50.03 .0350	J 12	ND FET	MPF4392	SIX, MOT
	R. . . 21	57.11.6106	10 M			
	R. . . 22	57.11.4105	1 M			
	R. . . 23	57.11.4105	1M			
	R. . . . 24	57.11.4104	100k			
	R. . . 25	57.11.6106	10 M			
OPTION 3						
(3)	D. . . . 1	50.04.0122	1N4001			MOT
(2)	D.... 2	50.04.0122	1N4001			MOT
	R. . . 55	57.11.4152	1,5k			
	R. . . 56	57.11.4223	22k			
	VCA. . 1	1.010.110.50		VOLTAGE CONTROLLED AMPL.		ST

Additional Diodes see Page 6
$P P=P$ olypropylene, $S A L=$ Solid Aluminium, $C E R=$ Ceramic, EL=Electrohtic, $P E=P o l y e s t e r$
MANUFACTURER: $S T=$ Studer, $M O T=$ Motorola, $S I X=$ Siliconix, $R A=$ Raytheon, $S I G=$ Signetics

1.915 .410 .005 WATT AMPLIFIER	TH $14 / 04 / 82$
1.915 .410 .005 WATT AMPLIFIER	(1) HO $04 / 11 / 83$
1.915 .410 .005 WATT AMPLIFIER	(2) PA $18 / 04 / 85$

For applications where higher power level is needed, a 40 W amplifier has been realized on a Euro-card. Its width is 32 mm , which equals 7 M widths approximately.

Power is supplied from a separate $45 \mathrm{~V}_{\mathrm{DC}}$ source, as is contained in the 19 " mounting frame $1.918 .120 . x x$. Two amplifier cards will fit into that frame, making it suitable for applications where stereophonic monitoring is required.

Special Features

- Transformerless version with electronically balanced inputs standard
- Version with balanced and floating inputs available
- Output stage protected from overload by momentary power limiting
- Temperature sensing avoids thermal overload
- High-end frequency response limited to prevent transient intermodulation distortion
- Low distortion performance, even at low power output
- Operation with output transformer possible

Technical Specifications

$1.010 .006-33 \quad 1.010 .090-49$
$\frac{1.010 .096-49}{1.915 .440-01}$

40W POWER AMPLIFIER

Ad	POS.	REF.No...	DESCRIPTIO	N........	\ldots	.	
	R. . . 36	57.11.4332	3,3k				
	R. . . 37	57.11.4150	15				
	R. . . 38	57.11.4150	15				
	R. . . 39	57.56.5108	0,1	10\%	4W	WW	
	R. . . 40	57.56.5108	0,1	10\%	4W	WW	
	R. . . 41	57.11.4470	47		0,4W		
	R. . . 42	57.11 .4100	10		0,4W		
	R. . . 43	57.13 .4471	470		IW		
	T..... 1	1.022.405.00	1:1	INPUT TRANS	ORMER		ST
MODIFICATION LIST							
(2)	C.... 4	$220 \mu \mathrm{FEL} \rightarrow 100 \mu \mathrm{TA}$	QUALITY IMPROVEMENT				
(1)	C..... 7	$0,22 \mu \mathrm{~F} \rightarrow 2,2 \mu \mathrm{~F}$	BETTER INRUSH				
(2)	C. . . 12	$100 \mu \mathrm{FEL} \rightarrow 100 \mu \mathrm{TA}$	QUALITY IMPROVEMENT				
(2)	C. . . 13	$560 \mathrm{pF} \rightarrow 470 \mathrm{pF}$	PRODUCTIONS REASONS				
(2)	C. . . 20	$100 \mu \mathrm{FEL} \rightarrow 100 \mu \mathrm{TA}$	QUALITY IMPROVEMENT				
(2)	C. . . 21	$100 \mu \mathrm{FEL} \rightarrow 100 \mu \mathrm{TA}$	QUALITY IMPROVEMENT				
(2)	R. . . 21	$1 \mathrm{k} \boldsymbol{\Omega} \boldsymbol{\rightarrow} 390 \Omega$	SWITCH OFF @ $100^{\circ} \mathrm{C}$				
(3)	R. . . 31	$100 \mathrm{k} \rightarrow 220 \mathrm{k}$	CURRENT LIMIT @ HIGHER IDLE VOLTAGES				
(3)	R. . . 34	100k $\rightarrow 220 \mathrm{k}$	CURRENT LIMIT @ HIGHER IDLE VOLTAGES				

$P S=P o l y s t y r e n e, E L=E l e c t r o l y t i c, S A L=$ Solid Aluminium, $P E=P o l y e s t e r, C E R=$ Ceramic, $S L=$ Silicium, $T=$ Tantalum WW=Wire Wound

MANUFACTURER: PH=Philips, $\mathrm{SIG}=$ Signetics, $\mathrm{SIX}=$ Siliconix, $\mathrm{SIE}=$ Siemens, $\mathrm{TI}=$ Texas Instruments, $\mathrm{R}=\mathrm{RCA}$ MOT=Motorola, $\mathrm{N}=$ National, $\mathrm{ST}=$ Studer Also Valid for: 1.915.441 (1)

1.915 .440 POWER AMPLIFIER	PA 09/06/81
1.915 .440 POWER AMPLIFIER	(1) VO $25 / 05 / 83$
1.915 .440 POWER AMPLIFIER	(2) FRI $06 / 07 / 83$
1.915 .440 POWER AMPLIFIER	(3) VO $23 / 11 / 83$
1.915 .440 POWER AMPLFIER	(4) VO $23 / 09 / 91$

Two different monitor circuit switching cards are available. They are equipped with either five or eight relays for switching of a corresponding number of stereo sources to one or two stereo outputs in monitor circuits.

The relays are available with coil ratings of $6 \mathrm{~V}_{\mathrm{DC}}$ or $24 \mathrm{~V}_{\mathrm{DC}}$, depending on the user's requirement. Click-suppressing diodes are wired across each relay coil. The relays are equipped with four double throw (change-over) contacts each.

Isolation of the monitor lines from external circuitry is achieved by $5.6 \mathrm{k} \Omega$ resistors in the "a" and "b" legs of each stereo line, thus a high impedance (bridging) load is presented to the outside source, even in deenergized (non-selected) status, when the respective pair of relay contacts shorts the lines after the respective isolation resistors. With a relay energized, the corresponding stereo pair is routed to a stereo bus available on four pins of the 32 -contact edge connector (in case of the 5 -input card 1.915.601.xx).

Card 1.915.602.xx features a similar circuit configuration with eight relays, to switch one unbalanced and three balanced stereo inputs. Two stereo buses appear on eight pins of the edge-connector; in this way, the four inputs can be switched to either one or to both outputs, such as may be the case with separate monitor circuits in the control room and in the studio.

Monitor switching relay card 1.915 .602

Dimensions: \quad Euro-card $100 \times 160 \mathrm{~mm}, 4 \mathrm{M}$ units wide
 Weight approx. 250 g

Ordering Information:

- Relay card, 5 IN/1 OUT
1.915.601.xx
- Relay card, 4 IN/2 OUT
1.915.602.xx

$D 1 \ldots D 5=1 N 4448$

BOTTOM VIEW

DATE:	26.10.87						
SIGN:	C						
STM REGENSORF ZÜRICH	5/1 SWITCH A MONITOR RELAYS						SC 1.915.601.81

RELAYS

Ad .POS.	REF. No_{0},	DESCRIPTION.		MANUFACTURER
D..... 1	50.04.0125	1N4448		ANY
D. ... 2	50.04.0125	1N4448		ANY
D.... 3	50.04.0125	1N4448		ANY
D.... . 4	50.04.0125	1 N 4448		ANY
D. . . . 5	50.04.0125	1N4448		ANY
K. . . . 1	56.04.0146	4U/6V		$\mathrm{N} / 0$
K. . . . 2	56.04.0146	4U/6V		$\mathrm{N} / 0$
K. . . . 3	56.04.0146	4U/6V		N/0
K. . . . 4	56.04.0146	4U/6V		$\mathrm{N} / 0$
K. . . . 5	56.04 .0146	4U/6V		N/0
R. . . . 1	57.11.3562	5,6k	1\%	
R. . . . 2	57.11.3562	5,6k	1\%	
R. . . . 3	57.11.3562	5,6k	1\%	
R. . . . 4	57.11.3562	5,6k	1\%	
R. . . . 5	57.11.3562	5,6k	1\%	
R. . . . 6	57.11.3562	5,6k	1\%	
R. . . . 7	57.11.3562	5,6k	1\%	
R. . . . 8	57.11.3562	5,6k	1\%	
R. . . . 9	57.11.3562	5,6k	1\%	
R. . . 10	57.11.3562	5,6k	1\%	
R. . . 11	57.11.3562	5,6k	1\%	
R. . . 12	57.11.3562	5,6k	1\%	
R. . . 13	57.11.3562	5,6k	1\%	
R. . . 14	57.11.3562	5,6k	1\%	
R. . . 15	57.11.3562	5,6k	1\%	
R. . . 16	57.11.3562	5,6k	1\%	
R. . . 17	57.11.3562	5,6k	1\%	
R. . . 18	57.11.3562	5,6k	1\%	
R. . . 19	57.11.3562	5,6k	1\%	
R. . . . 20	57.11.3562	5,6k	1\%	
R. . . . 21	57.11.4105	IM		
R. . . 22	57.11.4105	1M		
R. . . . 23	57.11.4105	1 M		
R. . . . 24	57.11.4105	1M		
R. . . 25	57.11.4105	1M		
R. . . 26	57.11.4105	1 M		
R. . . 27	57.11.4105	1M		

R. . . 28	57.11.4105	1 M
R. . . 29	57.11 .4105	1M
R. . . 30	57.11.4105	1 M
R. . . 31	57.11.4105	1 M
R. . . 32	57.11.4105	1 M
R. . . 33	57.11.4105	1 M
R. . . 34	57.11.4105	1 M

MANUFACTURER: $\mathrm{N}=\mathrm{National}, 0=0 \mathrm{~m}$ ron
1.915.601.81 5/1 SWITCH A

WY 14/10/87 END \rightarrow

Ad . POS.	. REF.No. .	DESCRIPTION.			MANUFACTURER
D. 1	50.04 .0125	1N4448			ANY
D.... 2	50.04.0125	1N4448			ANY
D. . . . 3	50.04.0125	1N4448			ANY
D. 4	50.04.0125	1 N 448			ANY
D..... 5	50.04.0125	1N4448			ANY
D..... 6	50.04.0125	1N4448			ANY
D..... 7	50.04.0125	1 N 4448			ANY
D. . . . 8	50.04.0125	1N4448			ANY
K. . . . 1	56.04 .0146	4U/6V			N/O
K. . . . 2	56.04.0146	4U/6V			N/0
K. . . . 3	56.04 .0146	$4 \mathrm{U} / 6 \mathrm{~V}$			$\mathrm{N} / 0$
K. . . . 4	56.04.0146	4U/6V			N/0
K. . . . 5	56.04 .0146	4U/6V			N/0
K. 6	56.04 .0146	4U/6V			$\mathrm{N} / 0$
K. . . . 7	56.04.0146	4U/6V			N/O
K. . . . 8	56.04.0146	4U/6V			N/0
R..... 1	57.11.3562	5,6k	1\%	28Stk.	
R. . . . 2	57.11.3562	5,6k	1\%	28Stk.	
R.... 3	57.11.3562	5,6k	1\%	28Stk.	
R. . . . 4	57.11.3562	5,6k	1\%	28Stk.	
R. . . . 5	57.11.3562	5,6k	1\%	28Stk.	
R. . . . 6	57.11.3562	5,6k	1\%	28Stk.	
R. . . . 7	57.11.3562	5,6k	1\%	28Stk.	
R. . . . 8	57.11.3562	5,6k	1\%	28Stk.	
R. . . . 9	57.11.3562	5,6k	1\%	28Stk.	
R. . . 10	57.11.3562	5,6k	1\%	28Stk.	
R. . . 11	57.11.3562	5,6k	1\%	28Stk.	
R. . . 12	57.11.3562	5,6k	1\%	28Stk.	
R. . . 13	57.11.3562	5,6k	1\%	28Stk.	
R. . . 14	57.11.3562	5,6k	1\%	28Stk.	
R. . . . 15	57.11.3562	5,6k	1\%	28Stk.	
R. . . . 16	57.11.3562	5,6k	1\%	28Stk.	
R. . . 17	57.11.3562	5,6k	1\%	28Stk.	
R. . . . 25	57.11.3562	5,6k	1\%	28Stk.	
R. . . 26	57.11.3562	5,6k	1\%	28Stk.	
R. . . 27	57.11.3562	5,6k	1\%	28Stk.	
R... 28	57.11.3562	5,6k	1\%	28Stk.	
R. . . 29	57.11.3562	5,6k	1\%	28Stk.	

Ad . POS..	.REF.No...	DESCRIPT	1.	MANUFACTURER
R. . . 30	57.11.3562	5,6k	1\%	28Stk.	
R. . . 31	57.11.3562	5,6k	1\%	28Stk.	
R. . . 32	57.11.3562	5,6k	1\%	28Stk.	
R. . . 33	57.11.3105	1M			
R. . . 34	57.11.3105	1 M			
R. . . 35	57.11.3105	1 M			
R. . . 36	57.11.3105	1 M			
R. . . 37	57.11.3105	1M			
R. . . 38	57.11.3105	1M			
R. . . 39	57.11.3105	1M			
R. . . 40	57.11.3105	1 M			
R. . . 41	57.11.3105	1 M			
R. . . 42	57.11.3105	1M			
R. . . 43	57.11.3105	1 M			
R. . . 44	57.11.3105	1 M			
R. . . 45	57.11.3105	IM			
R. . . 46	57.11.3105	IM			
R. . . 47	57.11.3105	IM			
R. . . 48	57.11.3105	1 M			
R. . . . 49	57.11.3105	IM			
R. . . 50	57.11.3105	IM			
R. . . . 51	57.11.3105	1 M			
R. . . 52	57.11.3105	1M			
W.... 1	57.11.3000	$0-\Omega$			
W. . . . 2	57.11 .3000	$0-\Omega$			
W. . . . 3	57.11 .3000	$0-\Omega$			
W. . . . 4	57.11 .3000	$0-\Omega$			
MANUFACTURER: $\mathrm{N}=$ National, $0=0 \mathrm{mron}$					
1.915.602.81 4/2 SWITCH A					WY 14/10/87
1.915.602.81 $4 / 2$ SWITCH A					(1) WY $22 / 05 / 89$
$\rightarrow^{\text {END }}$					

This Euro-card is supplied with nine transistor-driven relays with singlepole, double-throw (SPDT) contacts. For two of the relays, both nor-mally-open and normally-closed contacts are routed to the edge connector; for the remaining seven it is jumper-selectable whether the normally-open or the normally-closed contact is used.

The relays are designed for operation on $6 \mathrm{~V}_{\mathrm{DC}}$, and each relay coil is bridged with a click-suppressing diode. PNP transistors in series with the coils are blocking the current flow, because each transistor is normally biased off. By applying the output from the gate of an external control logic to the base of a transistor, it is switched into saturation, thereby energizing the respective relay. This arrangement of nine relays was designed for use in signaling systems within a studio installation; however, it may find its use for other applications as well.

Polarity of the relay's supply voltage must be observed when utilizing this circuit.

Technical Specifications

Contact Ratings:		max. $1 \mathrm{~A} / 30 \mathrm{~V}_{\mathrm{DC}}$ or $0.3 \mathrm{~A} / 125 \mathrm{~V}_{\mathrm{AC}}$
	Note: Switching power	In this application 48 V must not be exceeded to avoid shock hazard. 60 VA (AC) 100 W (DC)
Dimensions:	Euro-card	$100 \times 160 \mathrm{~mm}, 4 \mathrm{M}$ units wide
Ordering Informa	ation:	Transistor-driven relays 1.915.603.xx

02411.92	O	10	0
-			
	9 RELAYS	SIGN.A	SC 1.915.603-81

RELAYS

In sound work there are numerous situations where the signal amplitude has to be limited to a pre-determined level in order to prevent overloading of succeeding equipment, such as light modulators in film work, or radio transmitters. With this limiter, excessive levels are automatically reduced to a preset level, and, since regulation is controlled by the program's energy content, the performance of this limiter is free of any "pumping" effects. Gain reduction is achieved with a Studer Voltage Controlled Amplifier (VCA) which ensures low noise performance and negligible distortion.

Two identical, independent limiter circuits are contained on one Eurocard, plus additional, separate gain stages to drive peak program meters.
The perfect tracking of the two VCAs makes this Dual Limiter suitable for stereo work as well, in which case a simple electrical connection is needed to link the units.

Note: Gain reduction meters (not supplied) can be connected to the LINK outputs as well, if required.

Technical Specifications

Input:	Impedance	$5.4 \mathrm{k} \Omega$, balanced configuration $2.7 \mathrm{k} \Omega$, unbalanced configuration	
	Overload point		
Output:	Impedance		
	Frequency response	$+\mathbf{0} / \mathbf{- 0 . 5} \mathbf{~ d B}, 30 \mathrm{~Hz} . . .15 \mathrm{kHz}$	
	Gain	0 dB , limiter off	
	Output noise level	-102 dBu, Limiter on	
		-106 dBu, Limiter off	
	Limiting ratio	20:1	
	Threshold	-15 dBu... +3 dBu , adjustable	
	Limited output level	-14 dBu... +4 dBu , depending on threshold setting	
	Attack time	1 ms	
	Release time	$50 \mathrm{~ms} . . .5 \mathrm{~s}$, program-dependent	
PPM Section: Output impedance		$<50 \Omega$, unbalanced	
	Maximum output level	+20 dBu	
	Gain	$2.5 \mathrm{~dB} . . .27 \mathrm{~dB}$, adjustable	
	Frequency response	+0/-3 dB, 2 Hz ... 200 kHz	
Supply:		$\pm 15 \mathrm{~V}(100 \mathrm{~mA})$	
Dimension	ns: Euro-card	$100 \times 160 \mathrm{~mm}, \mathbf{7} \mathrm{M}$ units wide	
Ordering Information:		Dual limiter 1.915.700.xx	

	（1）（3）							Θ				
$\begin{gathered} \text { Po } \\ \vdots \\ \vdots \\ \vdots \end{gathered}$		 	 	ס? ס? ס ס? ס? ס? ס? ס? ס? ס －io io in is in		م：م؛ م؛ م：م：م： 	হ ু ু র $\rightarrow \omega$ in	\bigcirc	 	 むら云こ	? ? ? ? ? ? ? ? ? ?	¢0
	 	 	 	 		당 항 항 댕 \＆잉 잉		妣	 		8\％N\＆N广 	
ㅍㅜㅜ					जs\％			牵				Nㅡㄴ읃
	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\Gamma}{z} \end{aligned}$	\bar{z}	กัなูกั				$\begin{aligned} & \text { 들믈믈몰 } \\ & \text { 융 } 98 \% \end{aligned}$			发		宝安
	꽇	꿓		꿍	끙뭉			\bigcirc	$\underline{\sim}$			m
					꼬꼬		$\begin{aligned} & \text { 요 }=\frac{\infty}{\infty} \\ & =x_{0}^{\infty}=0 \end{aligned}$					

Ad	POS．	REF．No．	DESCRIPTION．		MANUFACTURER
	R．．． 43	57．11．4224	220k		
	R．．．． 44	57．11．4223	22k		
	R．．． 45	57．11．4103	10k		
	R．．． 46	57．11．4105	1M		
	R．．． 47	57．11．6106	10 M		
	R．．．． 48	57．11．4105	1 M		
	R．．． 49	57．11．4473	47k		
	R．．． 50	57.11 .6106	10 M		
	R．．． 51	57．11．4105	1 M		
	R．．． 52	57．11．4105	1 M		
（4）（5）	VCA．．． 1	1．911．290．81		STUDER VCA－BOARD	ST
（4）（5）	VCA．．． 2	1．911．290．81		STUDER VCA－BOARD	ST
	XIC	53．03．0166	DIP8POL		

EL＝Electrolytic，SAL＝Solid Aluminium，CER＝Ceramic，PETP＝Polyester，Sl＝Silicium，PTC＝Pos．Temp．Coif． PMG $=$ Cermet

MANUFACTURER： $\mathrm{SIG}=$ Signetics， $\mathrm{EX}=$ Exar， $\mathrm{N}=$ National， $\mathrm{TI}=$ Texas Instruments， $\mathrm{RA}=$ Raytheon， $\mathrm{SIX}=$ Siliconix SIE＝Siemens，PH＝Philips，ST＝Studer

1.915 .700 .00 DUAL LIMITER	W．MarkI $14 / 06 / 82$
1.915 .700 .00 DUAL LIMITER	（1）W．MarkI $14 / 12 / 82$
1.915 .700 .00 DUAL LIMITER	（2）A．H0 $01 / 04 / 84$
1.915 .700 .00 DUAL LIMITER	（3）VO $16 / 07 / 84$
1.915 .700 .00 DUAL LIMITER	（4）PA $13 / 01 / 89$
1.915 .700 .00 DUAL LIMITER	（3）WY $17 / 01 / 90$

\rightarrow

In order to record or transmit a conversation between the announcer in the studio and a person outside the studio being interviewed by telephone, the telephone line must be connected to the mixing console.

In such a case, the full conversation is transmitted, since both voice signals are carried on normal 2-wire telephone lines. However, also the voice of the announcer in the studio is then transmitted in telephone quality ($300 \ldots 3400 \mathrm{~Hz}$). By mixing the microphone signal of the announcer (in studio quality) to the conversation, the addition of the "good" and "poor" signals results in a distorted and untrue signal.

Principle of a telephone transmission via a mixing console
The telephone hybrid allows to greatly improve the quality of a telephone transmission by selectively suppressing the undesired "poor" announcer signal (side-tone attenuation). This side-tone attenuation is done in principle by a hybrid circuit which is a familiar feature in telephony.

The Studer telephone hybrid permits high-quality transmission of telephone conversations with the announcer in the studio. Apart from connecting it to the telephone line, the hybrid works automatically.

Maximum side-tone attenuation of the studio voice signal in the receiver line is achieved by automatically constituting a dummy load for the telephone line. This adjustment is performed electronically, the real (resistive) and imaginary (capacitive) components of the telephone line impedance being matched as near as possible. This automatical matching process begins as soon as an announcer signal is present.

Operation with a single Telephone Hybrid Board
The telephone set is used to establish a telephone connection (call). After switching over to the mixing console, the holding current for the subscriber's relay is maintained by a resistor on the hybrid board.

Versions:

Ordering Information:

Euro-cards:	- Telephone hybrid card - Telephone hybrid card with noise gate	$\begin{aligned} & 1.915 .760 . \mathrm{xx} \\ & 1.915 .764 . \mathrm{xx} \end{aligned}$
19" standard products:	- Telephone hybrid 1CH-ST	75.700 .89118
	- Telephone hybrid 2CH-ST	75.700 .89228
	- Telephone hybrid 1CH-NG	75.700 .89114
	- Telephone hybrid 2CH-NG	75.700 .89224
	- Telephone hybrid 1-H-CA	75.700 .89116
	- Telephone hybrid 2CH-CA	75.700 .89226
	- Telephone hybrid 1CH-CA/NG	75.700 .89117
	- Telephone hybrid 2CH-CA/NG	75.700.89227

[^5]

TEL. HYBRID

$\mathrm{T} \ldots .1$	1.022 .414	$1: 1$	ST
$\mathrm{T} \ldots .2$	1.022 .416	$1: 1$	ST
$\mathrm{T}_{\ldots} \ldots .3$	1.022 .416	$1: 1$	ST
$\mathrm{T} \ldots .4$	1.022 .415	$1: 2$	ST

$C E R=C$ eramic, $E L=E l e c t r o y t i c, ~ T A=T a n t a l u m, ~ P E=P o l y e s t e r, ~ P S=P o l y s t y r e n e, ~ P C=P o l y c a r b o n a t e$
MANUFACTURER: $S T=S$ tuder, $P H=P$ hilips, $T R=T R W, S P=S$ pectrol, $T I=$ Texas Instruments, $R A=R a y t h e o n$ $N S=$ National Sem., $S I X=$ Siliconix, $T=$ Telefunken, $S I E=$ Siemens, $F=F$ airchild

1.915 .760 .81 TELEPHONE HYBRID	FRI $14 / 03 / 78$
1.915 .760 .81 TELEPHONE HYBRID	(1) FRI 06/11/78
1.915 .760 .81 TELEPHONE HYBRID	(8) H0 $11 / 05 / 79$
1.915 .760 .81 TELEPHONE HYBRID	(3) HO $10 / 09 / 80$
1.915 .760 .81 TELEPHONE HYBRID	(4) V0 $11 / 03 / 81$
1.915 .760 .81 TELEPHONE HYBRID	(3) VO 20/08/82

TEL. HYBRID

The Line Equalizer Euro-card is the ideal component to cope with situations as inadequate frequency response or excessive level loss on longhaul audio lines. Special effects equalization may be another application.

The frequency response can be varied in three bands over a $\pm 15 \mathrm{~dB}$ range, as shown by the respective graphs below. Gain is normally set to unity, with 10 dB of continuously variable gain or attenuation available. Remote controlled muting or bypassing is possible.

The equalizer cards are supplied with a choice of different front panels for either horizontal recessed, vertical recessed, or vertical flush installation into suitable mounting frames.

When installed vertically, each equalizer occupies 8 M units.
A 19" mounting frame for three equalizer cards plus the required power supply is described below.

Parametric filter diagrams:

HF shelving equalizer: Treble filter $\mathbf{7 0 0} \mathbf{~ H z} . . .15 \mathbf{~ k H z}, \pm \mathbf{1 5 ~ d B}$
MF bell-shaped equalizer: Center frequency $\mathbf{4 0 0} \mathbf{~ H z} . . .7 \mathbf{~ k H z}, \mathbf{\pm 1 5 ~ d B}$; Q approx. 1
LF shelving equalizer: Bass filter $\mathbf{3 0} \mathbf{~ H z} . . \mathbf{6 0 0 ~ H z}, \pm 15 \mathbf{d B}$

Technical Specifications

LINE EQUALIZER

Leiter auf Lö̀seite oufgetrenn

(1) 1.169.118-90
(1) 28.21 .1380

.

$\frac{1.010 .200-64}{\text { (blk) }} \frac{1.010 .204-64}{(\mathrm{yel})} \quad \underset{\text { (blu) }}{\mathbf{1 . 0 1 0 . 2 0 6 - 6 4}^{1.915 .775-11}}$
1.912.000-03 $\int^{21.51 .8354}$
$\xrightarrow{1.010 .090-4 \dot{9}}$
(1)1.010.107-65

8)

$21.01 .0281(2 x)$
$24.6 .1025(2 x)$

$$
\begin{aligned}
& \text { 1.915.777-00(2) } \\
& \text { (vertical) } \\
& \text { 1.9(5.778-00 } \\
& \text { (VRO) (3) } \\
& \text { 1. } 915.779-00 \\
& (\text { IEC) }
\end{aligned}
$$

In professional audio work it is not uncommon that equipment with unbalanced input or output configuration must be connected to a system that is based on a strictly balanced design. The Dual Balancing Unit is the ideal component if the requirement of matching unbalanced to balanced equipment or vice versa has to be satisfied.

The Dual Balancing Unit consists of one Euro-card which contains four separate circuits to accommodate unbalanced-to-balanced or balanced-tounbalanced matching in a stereo system. It is the ideal choice for applications in which consumer-type stereo equipment has to be integrated into a professional audio system, where balanced audio lines are a must. The Dual Balancing Unit will also be used in situations where balanced auxiliary units must be connected to unbalanced insert points on a mixing desk.

The use of the balancing unit is not restricted to matching of balanced and unbalanced audio system components, because it can also be utilized as a (line) booster amplifier or as a stereo-to-mono mixer. By simply connecting the unbalanced outputs and inputs together and by adjusting again within the available ranges, two booster amplifiers with a maximum gain of 30 dB and a maximum output capability of $+24 \mathrm{dBu}^{*}$) can be realized.

For stereo-to-mono mixing, the unbalanced sides of the amplifier sections simply are connected by means of combining (mixing) resistors, as shown in the diagram below.

*) To avoid signal clipping, a system should always be designed in such a way that signal peaks stay well below an amplifier's maximum output capacity. Alignment procedures and level settings depend to a large degree on the type of metering used in an audio system. When making measurements with a steady-state signal, a margin of 6 dB below a system's clipping point and the PPM deflected to "zero volume", or a margin of 15 dB (for programs with extreme crest factors, even 20 dB) when utilizing a VU-meter, is considered good engineering practice.

Technical Specifications

Balanced to unbalanced (Section 1):

Input impedance	$\geq 10 \mathrm{k} \Omega$, balanced/floating
Maximum input level	+24 dBu
Output impedance	< 100Ω, unbalanced
Maximum output level	+20 dBu
Minimum load	600Ω
Frequency response	$\pm \mathbf{0 . 2} \mathbf{~ d B}, 30 \mathrm{~Hz} . . .16 \mathrm{kHz}$
Attenuation	$\mathbf{0 / 1 5 ~ d B}$; two fixed steps
	$0 . .15 \mathrm{~dB}$; variable
S/N	> $\mathbf{1 0 0} \mathbf{~ d B}$; attenuation set

Unbalanced to balanced (Section 2):

Input impedance $5 \mathrm{k} \Omega$, unbalanced
Maximum input level $\mathbf{+ 2 0} \mathbf{d B u}$
Output impedance $\leq \mathbf{5 0} \Omega$, balanced/floating
Minimum load 200Ω
Maximum output level +24 dBu
Frequency response $\mathbf{\pm 0 . 2} \mathbf{~ d B}, 30 \mathrm{~Hz} . . .16 \mathrm{kHz}$
Gain $\quad \mathbf{1 4 / 3 0} \mathbf{d B}$; two fixed steps
$0 . .17 \mathrm{~dB}$; variable
$\mathrm{S} / \mathrm{N}>\mathbf{1 0 0} \mathbf{d B}$; gain set to 6 dB , line level +6 dBu

Supply: $\mathbf{\pm 1 5} \mathbf{V}(70 \mathrm{~mA}$, idling; 170 mA , each channel +24 dBu into $200 \Omega)$
Dimensions: \quad Euro-card $100 \times \mathbf{1 6 0} \mathbf{m m}, 7 \mathrm{M}$ units wide
Ordering Information:
Euro-card: • Dual balancing unit 1.915.904.xx
19"/1U standard products:

- 2 CH balancing unit $(1 \times 1.915 .904)$
75.700 .89212
- $\quad 4 \mathrm{CH}$ balancing unit $(2 \times 1.915 .904)$
75.700 .89422
- $\quad 6 \mathrm{CH}$ balancing unit $(3 \times 1.915 .904)$
75.700 .89632

Ad. POS..	REF.No.	DESCRIPTION.				MANUFACTURER	
C.... 1	59.22 .4221	220μ		16 V	EL		
C.... 2	59.22 .4221	220μ		16V	EL		
C.... 3	59.06.0103	10 n		63V	PE		
C.... 4	59.06.0103	10 n		63V	PE		
C. ... 5	59.25.5102	1000\%		40 V	El		
C. ... 6	59.25.5102	1000川		40 V	El		
C.... 1	59.05.1681	680p	1\%	630 V	Pp		
C.... 2	59.05.1681	680p	1\%	630 V	PP		
C.... 3	59.06.0103	10 n		63 V	PE		
C.... 4	59.34.4151	150p		63V	CER		
c.... 5	59.22.2221	220]		6 V	EL		
C.... 6	59.06.0104	$0,1 \mu$		63V	PE		
C..... 7	59.22.5101	100\%		25 V	EL		
C.... 8	59.22.5101	100\%		25 V	El		
C. ... 9	59.34.5471	470p		63V	CER		
C. . . 10	59.06.0104	0,14		63V	PE		
C.... 11	59.22 .5101	100\%		25 V	El		
C. . . 12	59.06.0222	2,2n		63V	PE		
C. . . 13	59.22.5470	47\%		25 V	EL		
C. . . 14	59.06 .0333	33n		63V	PE		
C. . . 15	59.22.5470	47,		25 V	El		
C.... 16	59.06.0104	0,1p		63 V	PE		
C. . . 17	59.34.2220	$22 p$		63 V	CER		
(1) C.... 18	59.34.4101	100p		63V	CER		
IC.... 1	50.09.0105	NE5532	dual	OP AMP		XR5532	SIG, EX
IC.... 2	50.09.0105	NE5532	DUAL	OP AMP		XR5532	SIG, EX
IC.... 3	50.09 .0105	NE5532	DUAL	OP AMP		XR5532	SIG, EX
JS.... 1	54.01 .0020	4PIN					
	54.01 .0021	JUMPER					
JS.... 2	54.01 .0021	4PIN					
	54.01.0021	JUMPER					
P.... 1	54.01 .0359	2•16P					
Q.... 1	1.010.037.50	BC337	NPN	-			
Q.... 2	1.010.036.50	BC327	PNP				
Q.... 3	1.010 .037 .50	${ }^{\text {BC33 }}$	NPN]	MATCHED		
Q.... ${ }^{4}$	1.010 .036 .50 1010.03750	${ }_{8 C 3}{ }^{\text {BC327 }}$					
Q..... 6	${ }^{1.01010 .036 .50}$	${ }_{\text {BC327 }}$					
Q..... 7	1.010 .037 .50	${ }_{\text {BC33 }}$					
Q..... 8	1.010.036.50	BC327					
R.... 1	57.99.0209	5,6	PTC				PH
R.... 2	57.99.0209	5,6	PTC				PH
R..... 3	57.99.0209	5,6	PTC				PH
R.... 4	57.11.4569	5,6					
R.... 5	57.99 .0209	5,6	PTC				PH
R. . . . 6	57.11.4569	5,6					
R.... 1	57.11.3152	1,5k	1\%				
R.... 2	57.11.3152	1,5k	1\%				
R.... 3	57.11.3392	3,9k	1\%				
R. . . . 4	57.11.3392	3,9k	1\%				
R.... . 5							
R.... 6	57.11.4182	1,8k					
R.... 7	57.11.3101	100					
R.... 8	57.11.3432	4,3k					
$\begin{aligned} & \text { R. ... } 9 \\ & \text { R. . . } 10 \end{aligned}$	57.11.3392 57.11.4561	3.9 k 560	2\%				
R.... 11	57.11.4332	3,3k					
R. . . 12	58.01 .9102	1 k	10\%	TRIM			
R. . . 13	57.11.4221	220	2\%				
R. . . 14	57.11.4151	150	2\%				
R. . . 15	57.11.4330	33					
R. . . 16	57.11.4223	22k					
R. . . 17	57.11.4104	100k					
R. . . 18	57.11.3562	5,6k					
R. . . 19	57.11.3101	100					
R. . . . 20	57.11.3101	100	1\%				
R... 21	57.11.3562	5,6k					
R... 22	57.11.3562	5,6k					
R. . . 23	57.11.3562	5,6k					
R. . . 24	57.11.4181	180	2\%				
R. . . 25	57.11.4471	470	2\%				
R. . . . 26	58.01.9102	1k	10\%	TRIM			
R. . . 27	57.11.4182	1,8k	2\%				
R. . . 28	57.11.4561	560	2\%				
R. . . 29	57.11.4222	2,2k					
R. . . 30	57.11.4223	22k					
R. . . 31	58.01 .8201	200	TRIM				
R. . . 32	57.11.4122	1,2k					
R. . . 33	57.11.4471	470					
R. . . 34	57.11.4103	10k					
R. . . 35	57.11.4103	10k					
R... 36	57.11.4339	3,3					
R. . . 37	57.11.4339	3,3					
R. . . 38							
R. . . 39	57.11.4181	180					
R. . . 40	57.11.4222	2,2k	2\%				

Ad .POS.	REF.No..	DESCRIPTION.		MANUFACTURER
R. . . . 41	57.11.4222	2,2k	2\%	
R. . . 42				
R. . . 43				
R. . . 44	57.11.4339	3,3		
R. . . . 45	57.11.4339	3,3		
R. . . 46	57.11.4103	10k		
R. . . . 47	57.11.4103	10k		
T..... 1	1.022.451.00	1:0,62	INPUT TRAFO	ST
T. . . . 2	1.022.355.00	1:1,38	LINE OUTPUT TRAFO	ST
XIC	53.03 .0166	8 P	IC SOCKET	

$E L=E l e c t r o l y t i c, P E=P o l y e s t e r, ~ P P=P o l y p r o p y l e n, ~ C E R=$ Ceramic
MANUFACTURER: SIG=Signetics, $\mathrm{PH}=\mathrm{Philips}, \mathrm{EX}=\mathrm{Exar}, \mathrm{ST}=$ Studer
1.915.904.81 STEREO BAL. UNIT BR 24/11/82

2.3 Racks and Frames

This 19 " mounting frame (height: $44.5 \mathrm{~mm} / 1 \mathrm{U}$) offers space for three Euro-cards next to the power supply. The power supply provides $\pm 15 \mathrm{~V}_{\mathrm{DC}}$ (regulated) and $24 \mathrm{~V}_{\mathrm{DC}}$ (unregulated).

The frame comes equipped with three edge connectors to accommodate three Euro-cards horizontally, side by side. A blank back panel of anodized aluminium is provided and permits the installation of input and output connectors as required, depending on the application.

Technical Specifications

Primary: Voltage selector for Fuse (slow-blow)

100, 120, 140, 200, 220, $240 \mathrm{~V}_{\mathrm{AC}}$
400 mA (for $100 \ldots 140 \mathrm{~V}_{\mathrm{AC}}$) 200 mA (for $200 \ldots 240 \mathrm{~V}_{\mathrm{AC}}$)

Secondary: Regulated voltage Unregulated voltage Fuses (slow-blow)
$\pm \mathbf{1 5} \mathbf{V}_{\mathbf{D C}}, 0.5 \mathrm{~A}$ max.
$24 \mathbf{V}_{\mathbf{D C}}, 0.2 \mathrm{~A}$ max. (for signaling)
$2 \times 1 \mathrm{~A}$

Ordering Information:

19"/1U standard product

Alternative Back Panels:

- Mounting frame for three Euro-cards with power supply and stabilizer PCB, with two blank aluminium back panels (1.918.100.21)
1.918.100.xx

The mounting frame $1.918 .100 . \mathrm{xx}$ can be equipped with the following back panels:

Ordering Information:

Alternative Back Panels for Mounting Frame 1.918.100

- Steel back panel for $15 \times$ XLR sockets (Neutrik)
1.918.113.03

Alternative Back Panels for Blank Panels 1.918.100.21

- Aluminium back panel for $6 \times$ XLR sockets (Neutrik)
1.918.100.36
- Aluminium back panel for $1 \times$ Siemens $30 / 39$ pin and 1×15 pin D-type sockets
- Aluminium back panel for $2 \times$ Siemens $30 / 39$ pin sockets
- Mechanical interface Siemens panel \rightarrow D-type connector: see chapter 2.3.4.

P O WER S UP P L Y 1.918.098

Technical data:

Input	$100 \ldots 240 \mathrm{VAC}$	
Output	$\pm 15 \mathrm{~V}, ~ 0.5 \mathrm{~A}$	(audio)
	$24 \mathrm{~V}, ~ 0.2 \mathrm{~A}$	(signalling)
	Prim.fuse	$400 \mathrm{mAT}(100 \ldots 140 \mathrm{VAC})$
	200 mAT	$(200 \ldots 240 \mathrm{VAC})$
Sec. fuse	1 AT	$(\pm 15 \mathrm{~V} \mathrm{DC})$

Codierung: Schaltdraht $64.04 .0108 \$ 0,8 \times 8 \mathrm{~mm}$ (muss 1 mm vorstehen)

In	Buchsenleisto	J 1 in	Konlak!	3
"	"	$J 2$	"	3
"	"	$J 3$	"	3
"	"	J4	"	3
\cdots	"	J5 "	-	

DATE:	6.11 .79	25.3 .85			
SIGN:	We	We			
STODESR REGENSDORF ZURICH	WIRING				

When filling a cabinet rack with various electronic equipment, considerable heat may be generated, which could be harmful to other nearby components. To provide for sufficient convection cooling, the use of ventilation units above and below the heat-generating equipment is strongly recommended.

A ventilation unit consists of a 19 " wide and 1 U high sheet metal structure, which extends about 340 mm into the rack. The unit's front section is perforated, with a slanting metal panel mounted inside. By installing the ventilation unit with that panel either slanting upwards or downwards, the air flow can be directed as desired.

If only moderate heat problems have to be coped with, it may be sufficient to use one ventilation unit above or below the heat source, and to provide sufficient spacing from adjacent equipment by installing a 1 U blank panel on the opposite side.

Ordering Information:

19" Ventilation Units

- Ventilation unit $19 " / 1 \mathrm{U}$
1.918.119.xx
- Ventilation unit without air guide panel
1.918.119.09

19" Blank Panels

- Blank panel $19 " / 1 \mathrm{U}$ high, anodized finish
1.918.001.xx
- Blank panel $19 " / 2 \mathrm{U}$ high, anodized finish
- Blank panel 19"/3U high, anodized finish
1.918.002.xx
- Blank panel $19 " / 1 \mathrm{U}$ high, plastic coated, grey
1.918.003.xx
- Blank panel $19 ״ / 2 \mathrm{U}$ high, plastic coated, grey
1.918.001.09
- Blank panel $19 ״ / 3 \mathrm{U}$ high, plastic coated, grey
1.918.002.09
- Blank panel $19 " / 1 \mathrm{U}$ high, paint finish, grey
1.918.003.09
- Blank panel $19 " / 2 \mathrm{U}$ high, paint finish, grey
1.918.011.xx
- Blank panel $19{ }^{\prime \prime} / 3 \mathrm{U}$ high, paint finish, grey

The Euro-card mounting frame (sometimes also referred to as 19" Sub Rack) is an empty structure which fits into any standard 19 " rack. It is intended to accommodate PCBs of the Euro format vertically, side by side. The available space within the sub rack is divided into 84 Modular Widths, each measuring 5.08 mm (0.2 inches). One Euro-card usually occupies 7 M (Module) widths, thus up to 12 Euro-cards may be installed.

The Euro-card frame is supplied as a kit for assembly by the user. Assembly instructions are included with each kit.

Supplied with the kit is a hinged front panel of anodized aluminium, providing quick access to the plug-in PCBs if required. This front panel and its hinges are available separately in case a damaged panel or hinge needs to be replaced.

Separate edge connectors and slide rails are required for each Euro-card and power supply unit installed into the Euro-card frame. Mounting kits containing the slide rails, edge connectors, and other accessories are described below (1.918.315/316).

To provide for convection cooling within an equipment rack, the Ventilation Unit 1.918.119.xx is recommended.

Euro-Card Racks, Ordering Information:

- Euro-card frame (19"/3U, ELMA), direct access to 32pin connectors on back panel
- Euro-card frame (19 " $/ 3 \mathrm{U}$, ELMA) with additional rear panel, for max. 10 freely assignable connector panels

2.3.4 19" Euro-Card Mounting Accessories

Euro-Card Mounting Kit

For installing Euro-cards and/or a power supply unit into a Euro-card frame 1.918.318/319, suitable edge connectors and guide rails are required.

Euro-Card Mounting Kit, Ordering Information:

- Mounting kit for 1 Euro-card (ELMA rack); see photograph 1.918.315.xx
- Mounting kit for power supply 1.915.100

Connector Panels:

The connector panels fit into the Euro-card frame with back panel (1.918.319). Please order the suitable panels separately.

1.918.319.24

Connector Panel (3U high) Ordering Information:

- Blank panel
1.918.319.21
- Panel for Siemens connector (cut out $18 \times 67 \mathrm{~mm}$) *
1.918 .319 .22
- Panel for mains inlet and 2 banana sockets
1.918 .319 .23
- Panel for 4 XLR sockets
1.918 .319 .24
* Siemens Connector Sets: Including male and female connector:
- Siemens 30pin, without connector panel
1.900.080.xx
- Siemens 39pin, without connector panel
1.900.081.xx
* D-Type Adapter Panels: The Siemens connector panel can be used as a base for mounting a D-type connector adapter panel. The adapter sets listed below include male and female connectors, connector cover, bolting spring, clamp, and adapter panel:

Adapter Panel Ordering Information:

The adapter kits consist of male and female D-type connector, metal or plastic connector cover, adapter panel, and mounting hardware, to fit on the Siemens connector panels 1.918.319.22 (for 3 U frames) or 1.918.100.33 (for 1 U frames):

- D-type set, 9pin, metal connector cover
1.900.075.xx
- D-type set, 15pin, metal connector cover
1.900.076.xx
- D-type set, 25pin, metal connector cover
$1.900 .077 . x x$
- D-type set, 37pin, metal connector cover 1.900.078.xx
- D-type set, 50pin, metal connector cover 1.900.079.xx
- D-type set, 9pin, plastic connector cover 1.970.075.xx
- D-type set, 15pin, plastic connector cover
- D-type set, 25pin, plastic connector cover
- D-type set, 37pin, plastic connector cover
- D-type set, 50pin, plastic connector cover

Extension Board:

For alignment and repair, a Euro-card may have to be operated outside the mounting frame. To facilitate any service work that has to be performed on individual cards, extending the card's 32 electrical connections is possible by means of a flexible extension board.

Ordering Information: Extension PCB for Euro-cards, 2×32 pin, flexible
1.228 .327 .82
1.970.101

Power Supply 1.970.101/102

Trafoblock mit Gleichrichter. Es bestehen zwei Grundausführungen:

- mit Netzschalter
- mit Netzrelais

1. Beschreibung

- Die Ausgangsspannungen sind programmierbar.
- Die Gleichrichter sind stark überdimensioniert.
- Die Sekundärseite ist mit 4 kV Prüfspannung von der Primärseite isoliert.
- Der Trafoblock ist allseitig geschlossen und liegt isoliert im Mischpult.
- Alle Primär- und Sekundärspannungen sind einzeln abgesichert.

Blockschaltbild

2. Sicherheit

Der Trafoblock ist aufgebaut wie ein schutzisoliertes Gerät nach IEC 65, Klasse II. Als zusätzliche Sicherheit wird der Endleiter eingeführt. Der Trafoblock 1.910.50X ist im Mischpult isoliert eingebaut, so dass die Verbindung zwischen Schutzleiter und Mischpultgehäuse gefahrlos aufgetrennt werden kann.

3. Spezielle Daten

Siehe unter spezielle Datenblätter
1.910 .500
1.910 .505
4. Mechanische Daten

Sekundär Buchse: 24P Molex
Gewicht: 9400 gr

Trafoblock

- Die maximale Belastung darf auf der gleichgerichteten Seite 350W nicht überschreiten.

1.910 .500 .81	$1 \times 6 \mathrm{VDC}$	$2 \times 24 \mathrm{~V}$ DC
	$2 \times 15 \mathrm{VDC}$	
	$4 \times 40 \mathrm{VDC}$	$1 \times 48 \mathrm{VDC}$ PHANTOM

$\stackrel{\square}{\mp}$

Umbau auf andere
Phantomspannungen

- Trafo-Block umbauen
- Widerstände auf dem Anschlussprint der Eingangseinheit ändern 48 V 6, $8 \mathrm{kOhm} / 0,4$ \% 24V 4,3 kOhm/0,4 \% 12V 580 Ohm/0,4 \%
- Stabilisatorkarte 1.915.107 Litze umstecken

1.910 .505 .81

```
1\times6VDC
4\times15V DC
\(2 \times 40 \mathrm{VDC}\)
```

```
2x 24 V DC
```

2x 24 V DC
1\times48 V DC PHANTOM

```
    1\times48 V DC PHANTOM
```


Umbau auf andere

Phantomspannungen

- Trafo-Block umbauen
- Widerstände auf dem Anschlussprint der Eingangseinheit ändern $48 \mathrm{~V} 6,8 \mathrm{kOhm} / 0,4 \%$
1.169.200.21 Entwurf IEC 268-15A
1.169.200.20
- Stabilisatorkarte 1.915.107 Litze umstecken

Trafo with rectifier. Two basic types are available:
= with mains switch

- with mains relay

1. Features

- Output voltages are programmable.
- Rectifiers are heavely oversized.
- Secondary wirings are isolated by 4 kV against the primary side.
- The trafo-block is separately boxed and fixture by means of isulators.
- All voltages are protected by fuses individually.

Block Diagram

2. Safety

The trafo-block is built like a double-isolated electric device (IEC 65 clause II). For improved safety, the connection to earth is also wired. In the mixer, the trafoblock 1.910 .50 X is built-in isolated. On the back side of the mixer the connection between earth and ground can be opened without the danger of an electric shock.

3. Specifications

See special data sheet
1.910 .500
1.910 .505
4. Dimensions

Secondary connector: 24P Molex
Weight: $\quad 9400 \mathrm{gr}$

Trafo Block

- The maximum load should not exceed 350 W on the rectifier side.

```
1.910.500.81 1 x 6 V DC 2 x 24 V DC
            2x15V DC
    4\times40V DC 
```


Conversion of phantom powering

- Convert trafo-block
- Change resistor on the connection PCB of the input unit 48 V 6,8 kOhm/0,4 \% 24V 4,3 kOhm/0,4 \% 12V 580 Ohm/0,4 \% Draft IEC 268-15A 1.169.200.20
- Reconnect the stranded wire on the stabilizer PCB 1.915.107

```
1\times6VDC
2x 24VDC
4\times15V DC
2\times40VDC
    1\times46V DC PHANTOM
```


$\stackrel{-}{-}$

Conversion of phantom powering

- Convert trafo-block
- Change resistor on the connection PCB of the input unit 48V 6,8 kOhm/0,4 \% 24V 4,3 kOhm/0,4 \%
1.169.200.21

Draft IEC 268-15A
1.169.200.20

12V 580 Ohm/0,4 \%

- Reconnect the stranded wire on the stabilizer PCB 1.915.107

		$\begin{aligned} & \text { O} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & 0.0 \\ & \stackrel{0}{0} \end{aligned}$							
		$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{e} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Ö } \\ & \text { in } \end{aligned}$		－					
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$			管家家		$\xrightarrow[\substack{4 \\ \hline}]{ }$	－	－		－
	$\stackrel{\text { O}}{\stackrel{0}{0}}$	$\begin{gathered} \stackrel{0}{0} \\ \stackrel{0}{+} \end{gathered}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{+} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0 \\ & \hline 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{0}{\vdots} \\ & \stackrel{y}{\circ} \\ & \hline \end{aligned}$	$\stackrel{\square}{\square}$	$\begin{aligned} & 0.0 \\ & \stackrel{\rightharpoonup}{n} \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{y}{0} \\ & \underset{n}{2} \end{aligned}$	$\begin{aligned} & \hline \stackrel{\circ}{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \underset{\sim}{z} \\ & \underset{\sim}{z} \end{aligned}$

Spannungsstabilisator dessen Ausgangsspannung und Kurzschlusstrom mit Widerständen extern einstellbar ist. Mit Ausnahme der Phantom Stromversorgung werden alle in den Mischpulten der Serie 900 benötigten Betriebsspannungen mit den beiden Kartentypen 1.915.106 und 1.915.108 stabilisiert.

Leuchtdiode zur Anzeige des Betriebszustandes.
Drei von vorne zugängliche Messpunkte zur Kontrolle der Referenz- und Ausgangsspannung.

1. Schutzeinrichtungen

- "Crow Bar" schaltet ab bei zu hoher Ausgangsspannung
- Temperaturüberwachung am Regeltransistor
- Verpolungsschutz am Ausgang
- Langsames Hochfahren der Spannung beim Einschalten

Beim Betrieb als Doppelstabilisator für die Stromversorgung von Verstärkern mit positiver und negativer Speisespannung werden zwei Stabilisatorkarten gekoppelt.

Die Ausgangsspannung des einen Stabilisators steuert die Ausgangsspannung des anderen (Tracking). Damit werden die Koppelkondensatoren der angeschlossenen Audioverstärker nicht unnötig belastet.

Blockschaltbild

2. Technische Daten
1.915 .106
1.915 .108

Ausgangsspannung extern programmierbar	$\mathrm{U}=5 \div 24 \mathrm{~V}$	$\mathrm{U}=5 \div 24 \mathrm{~V}$
Minimale Eingangs- spannung (ohne Rippel)	$U_{\min }=\mathrm{U}+1,5 \mathrm{~V}$	$U_{\min }=\mathrm{U}+1,5 \mathrm{~V}$
Maximale Eingangs- spannung	$U_{\max }=36 \mathrm{~V}$	$\mathrm{U}_{\mathrm{max}}=36 \mathrm{~V}$
Kurzschlusstrom extern programmierbar	$\mathrm{I}_{\mathrm{k}} \approx 0,5 \ldots 4,5 \mathrm{~A}$	$\mathrm{I}_{\mathrm{k}} \approx 0,5 \ldots 8,0 \mathrm{~A}$
Max. Verlustleistung am Kühlblech	$\mathrm{P} \approx 18 \mathrm{~W}$	$\mathrm{P} \approx 30 \mathrm{~W}$

Kurzschlussverhalten

Bei Überlast regelt der Temperatursensor die Ausgangsspannung zurück.

Überspannungsschutz spricht an bei ca. 15\% Überspannung am Ausgang

Max. Ausgangsstrom	$@ \mathrm{U}_{15 \mathrm{~V}}: 5 \mathrm{~A}$ $@ \mathrm{U}_{6 \mathrm{~V}}: 8 \mathrm{~A}$	$@ \mathrm{U}_{15 \mathrm{~V}}: 5 \mathrm{~A}$ $@ \mathrm{U}_{6 \mathrm{~V}}: 8 \mathrm{~A}$
Überlagerte Brumm- spannung	$\mathrm{U}_{\mathrm{Br}} \leq 100 \mu \mathrm{~V}$	$\mathrm{U}_{\mathrm{Br}} \leq 100 \mu \mathrm{~V}$
Leerlaufstrom	$\mathrm{I}_{\mathrm{o}}\left(@ \mathrm{U}_{\mathrm{in}} 30 \mathrm{~V}\right)=30 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{o}}\left(@ \mathrm{U}_{\mathrm{in}} 30 \mathrm{~V}\right)=30 \mathrm{~mA}$

3. Mechanische Daten

Abmessungen	1.915 .106	1.915 .108
Breite	Europakarte $100 \mathrm{~mm} \times 160 \mathrm{~mm}$	Europakarte $100 \mathrm{~mm} \times 160 \mathrm{~mm}$
Steckersystem	$33 \mathrm{~mm}, 7 \mathrm{E}$	$66 \mathrm{~mm}, 14 \mathrm{E}$
Gewicht	DIN 41612 TYP B	DIN 41612 TYP B

The output voltage and the short-circuit current of this voltage stabilizer are externally adjustable with resistors. Except for the phantom supply, all operating voltages of the Series 900 mixers are stabilized with the two types of circuit board numbered as 1.915.106 and 1.915.108.

Pilot LED for indicating the operating status.
Three test points for checking the reference voltage and the output voltage are accessible from the front.

1. Protective features

- "Crow Bar" disconnects if overvoltages are detected
- Temperature monitoring at regulating transistor
- Polarity confusion protection at output
- Slow voltage run-up when unit is switched on

Dual stabilizer operation for supplying amplifiers with negative and positive supply voltages is possible by coupling two stabilizer boards.

The output voltage of the first stabilizer controls the output voltage of the other (tracking). In this manner the coupling capacitors of the audio amplifiers are not unnecessarily loaded.

Block Diagram

2. Specifications
1.915 .106
1.915 .108

Output voltage externally programmable	$\mathrm{U}=5 \div 24 \mathrm{~V}$	$\mathrm{U}=5 \div 24 \mathrm{~V}$
Minimum input voltage without ripple	$\mathrm{U}_{\min }=\mathrm{U}+1,5 \mathrm{~V}$	$\mathrm{U}_{\min }=\mathrm{U}+1,5 \mathrm{~V}$
Maximum input voltage	$\mathrm{U}_{\mathrm{max}}=36 \mathrm{~V}$	$\mathrm{U}_{\max }=36 \mathrm{~V}$
Short-circuit current externally progr.	$\mathrm{I}_{\mathrm{k}} \approx 0,5 \ldots 4,5 \mathrm{~A}$	$\mathrm{I}_{\mathrm{k}} \approx 0,5 \ldots 8,0 \mathrm{~A}$
Max. power dissipation at heat sink	$\mathrm{P} \approx 18 \mathrm{~W}$	$\mathrm{P} \approx 30 \mathrm{~W}$

Short circuit response:
In the event of an overload the output voltage is regulated down by the temperature sensor.

Over-voltage sense responds at approx. 15\% excess output voltage

Maximum output current	$@ \mathrm{U}_{15 \mathrm{~V}}: 5 \mathrm{~A}$ $@ \mathrm{U}_{6 \mathrm{~V}}: 8 \mathrm{~A}$	$@ \mathrm{U}_{15 \mathrm{~V}}: 5 \mathrm{~A}$ $@ \mathrm{U}_{6 \mathrm{~V}}: 8 \mathrm{~A}$
Superimposed ripple voltage	$\mathrm{U}_{\mathrm{Br}} \leq 100 \mu \mathrm{~V}$	$\mathrm{U}_{\mathrm{Br}} \leq 100 \mu \mathrm{~V}$
Idle current	$\mathrm{I}_{\mathrm{O}}\left(@ \mathrm{U}_{\mathrm{in}} 30 \mathrm{~V}\right)=30 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{o}}\left(@ \mathrm{U}_{\mathrm{in}} 30 \mathrm{~V}\right)=30 \mathrm{~mA}$

3. Mechanical Data $\quad 1.915 .106 \quad 1.915 .108$

Dimensions	"Europe" PCB $100 \mathrm{~mm} \times 160 \mathrm{~mm}$	"Europe" PCB $100 \mathrm{~mm} \times 160 \mathrm{~mm}$
Width	$33 \mathrm{~mm}, 7 \mathrm{U}$	$66 \mathrm{~mm}, 14 \mathrm{U}$
Connector system	DIN 41612 type B	DIN 41612 type B
Weight	ca. 360 gr	ca. 560 gr

Stabilisatorkarte mit zwei getrennten, isoliert aufgebauten Spannungsstabilisatoren für die Phantom- und 24 V Stromversorgung. Zwei Leuchtdioden zeigen den Betriebszustand an. Zwei Messpunktpaare sind mit Messkiemmen von vorne zugänglich.

1. Phantomversorgung

Die Ausgangsspannung von $12 \mathrm{~V}, 24 \mathrm{~V}$ oder 48 V ist mit einer Brücke einstellbar (Beachten Sie, dass eine Änderung der Phantomspannung auch eine Anpassung der Eingangsspannung und eine Änderung der Phantomeinspeisewiderstände im Mikrokanal bedingt).

Blockschaltbild

2. Technische Daten

Ausgangsspannung $U=12 \mathrm{~V}, 24 \mathrm{~V}, 48 \mathrm{~V}$
einstellbar
Minimale Eingangs- $\quad U \min =13 \mathrm{~V}$
spannung für 12 V
Max. Eingangsspannung $\quad U \max =100 \mathrm{~V}$
Kurzschlusstrom $\quad \mathrm{Ik}=350 \mathrm{~mA}$
Laststrom Imax $=300 \mathrm{~mA}$
Kurzschlussverhalten mit automatisch, spannungsabhängigem "Fold Back"

Überlagerte Brumm- $\quad U_{B r} \leq 100 \mu \mathrm{~V}$ spannung

Leerlaufstrom $\mathrm{I}_{\mathrm{o} @} 80 \mathrm{~V} \mathrm{U}_{\mathrm{in}}=25 \mathrm{~mA}$
3.

24V Stabilisator

Die Ausgangsspannung ist fest eingestellt auf 24 V DC.

Blockschaltbild

4.
 Technische Daten

> Ausgangsspannung $U=24 \mathrm{~V}$
> Minimale Eingangs- $\quad U \min =25 \mathrm{~V}$
> spannung (ohne Rippel)
> Maximale Eingangs-
> $U \max =36 \mathrm{~V}$
> spannung
> Kurzschlusstrom $\quad \mathrm{I}_{\mathrm{k}} \sim 660 \mathrm{~mA}$
> Laststrom Imax=600mA

Kurzschlussverhalten mit automatischem "Fold Back"

$$
\begin{aligned}
\begin{array}{r}
\text { Überlagerte } \\
\text { Brummspannung }
\end{array} & \mathrm{U}_{\mathrm{Br}} \leq 100 \mu \mathrm{~V} \\
\text { Leerlaufstrom } & \mathrm{I}_{\mathrm{O} @} \mathrm{Uin} 30 \mathrm{~V}=20 \mathrm{~mA}
\end{aligned}
$$

5. Mechanische Daten
```
Abmessungen "EUROPE" PCB 100mm x 160mm
Steckersystem DIN 416 12 Typ B
    Breite 33mm 7m
    Gewicht ca. 320 gr
```

Stabilizer board with two separate and isolated voltage stabilizers for the phantom supply and the 24 V supply. The two pilot LEDs indicate the operating status. Two pairs of test points are accessible from the front with rest clips.

1. Phantom Supply

The $12 \mathrm{~V}, 24 \mathrm{~V}$ or 48 V output voltage can be adjusted with a bridge. (Please note that any change of the phantom voltage requires a corresponding adjustment of the input voltage and the replacement of the phantom supply resistors is the microphone channel).

2. Specifications

Output voltage, variable	$\mathrm{U}=12 \mathrm{~V}, 24 \mathrm{~V}, 48 \mathrm{~V}$
Minimum input voltage for 12 V	$U \mathrm{~min}=13 \mathrm{~V}$
Max. input voltage	$U \max =100 \mathrm{~V}$
Short-circuit current	$\mathrm{lk}=350 \mathrm{~mA}$

Short-circuit response with automatic, voltage-dependent fold-back

Superimposed ripple $U_{\mathrm{Br}} \leq 100 \mu \mathrm{~V}$ voltage

No-load current $\quad \mathrm{I}_{\mathrm{o} @} 80 \mathrm{~V} \mathrm{U}_{\mathrm{in}}=25 \mathrm{~mA}$
3.

24V Stabilizer

The output voltage is permanently set to 24 VDC.

Block Diagram

4. Specifications

```
Output voltage \(\mathrm{U}=24 \mathrm{~V}\)
Minimum input voltage \(\quad U \min =25 \mathrm{~V}\)
(without ripple)
Maximum input voltage \(U \max =36 \mathrm{~V}\)
Short-circuit current \(\quad I_{k} \sim 660 \mathrm{~mA}\)
Load current Imax \(=600 \mathrm{~mA}\)
Short-circuit response with automatic fold-back
```


$\begin{array}{r}\text { Superimposed ripple } \\ \text { voltage }\end{array} \mathrm{U}_{\mathrm{Br}} \leq 100 \mu \mathrm{~V}$
No-load current $\mathrm{I}_{\mathrm{o} @}$ Uin30V=20mA
5. Mechanical Data

Dimensions	"EUROPE" PCB $100 \mathrm{~mm} \times 160 \mathrm{~mm}$
Connector system	DIN 416 12 type B
Width	33 mm 7 m
Weight	ca. 320 gr

Stabilizer 5/24V/5A $\quad 1.915 .108$

Automatic Telephone Hybrid 1.915 .760 .81

8 Connectors

JUMPERS 511,512,513 (STANDARD)

2.3 .87 WiB	D-TYP - CONNECTOR	15 PIN.
STUDER	MIXING CONSOLE 15 pin D-TYPE INPUT UNIT	1.970.

	D-TYP-CONNECTOR 50 PIN.	
STUDER	TB-BOX	

Talk Back Box D-Typ-Connector 50 PIN.

1 1. 15.11 .85	D-TYP-CONNECTOR 50PIN.	
STUDER	TALK BACK BOX	1.924 .560

[^0]: Line Input

 - turn the input selector to the upper LINE position.
 - set controls to the states specified in table.
 - connect audio generator to LINE INPUT.
 - feed line level / 1 kHz .
 - connect audio voltmeter to INSERT SEND.
 - check: desired output level on INSERT SEND = line level.
 - correction: fine adjustment on central potentiometer R64.

 Fader Booster Gain - turn the input selector to the upper LINE position.

 - set controls to the states specified in table.
 - select $\sum 1$ bus.
 - Input fader to 0 dB position.
 - connect audio generator to LINE INPUT.
 - feed line level $/ 1 \mathrm{kHz}$.
 - connect audio voltmeter to $\Sigma 1$ INSERT SEND.
 - check: desired output level on $\Sigma 1$ INSERT SEND $=$ line level.
 - correction: with trimmer R164.

[^1]: $x=$ Jumper gesetzt $x=$ Jumper set

[^2]: LIMITER/KOMPRESSOR
 -EINSCHLEIFPFAD
 INSERT Bei eingerasteter vorwahltaste [4] (Stellung INSERT) steht der Limiter/Kompressor-Schaltkreis zum Einschleifen in den PF-Einschleifpfad einer beliebigen Ein-gangs- oder Summeneinheit zur Verfügung.
 Folgende Parameter der Limiter-/Kompressorfunktion können verändert werden:

[^3]: END
 \rightarrow

[^4]: SAL $=$ electrolytic, $P E=$ polyester

[^5]:

