STUDER 970

AUDIO CONSOLE

Prepared and edited by STUDER INTERNATIONAL TECHNICAL DOCUMENTATION Althardstrasse 10, CH-8105 Regensdorf-Zürich, Switzerland

We reserve the right to make alterations.

Copyright by WILLI STUDER AG

Printed in Switzerland, Order No. 10.27.0803 (Ed. 1090)

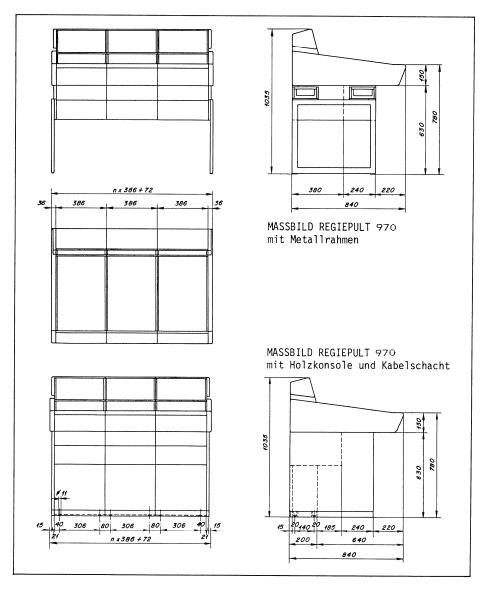
STUDER is a registered trade mark of STUDER INTERNATIONAL AG Regensdorf STUDER ist ein eingetragenes Warenzeichen der STUDER INTERNATIONAL AG Regensdorf

1	General Information Dimensions Level Diagram Technical Data
2	Block Diagrams Audio Signalization
3	Alignment Instruction
4	Plug in Units 1.970 Circuit Diagrams Diagrams for Component Placement Parts Lists
5	Plug in Units 1.913 Circuit Diagrams Diagrams for Component Placement Parts List
6	Modular Sub-Cards 1.914 Circuit Diagrams Component Lists Diagrams for Component Placement Parts List
7	Europe PCB + Power Supply 1.915/1.916 Circuit Diagram Diagrams for Component Placement Parts List
8	Connectors
9	Wiring List
10	Accessories

1 Allgemeine Daten

1.	Mechanische Abmessungen	
2.	Pegeldiagram	5
	Technische Daten	

1 General Information

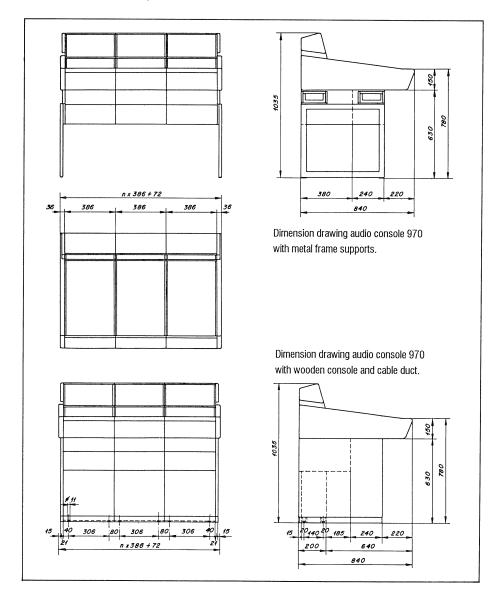

1.	Dimensions	2
	1.1 Cut Mixing Console 970	
	•	
2.	Level Diagram	5
3.	Technical Data	9
	3.1 Noise curve	4.4

1 Allgemeine Daten

1. Mechanische Abmessungen

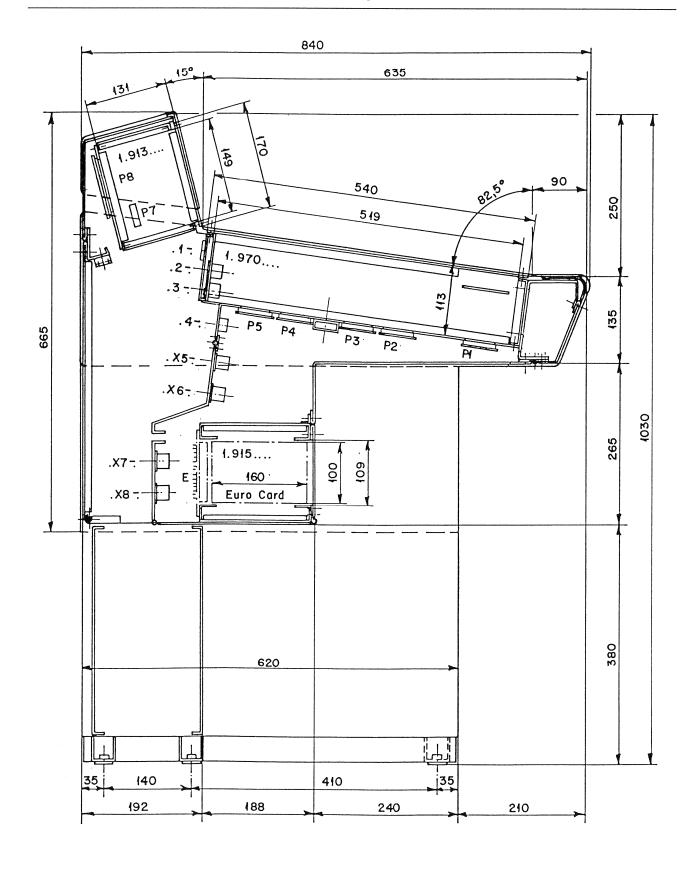
Die Regiepulte 970 werden wahlweise mit einfach demontierbarem Stahlrohrrahmen für den transportablen Einsatz oder mit Holzkonsole und Kabelschacht zum festen Einbau geliefert.

Die Regiepultbreite richtet sich nach der Anzahl der zusammengefügten mechanischen Grundeinheiten.

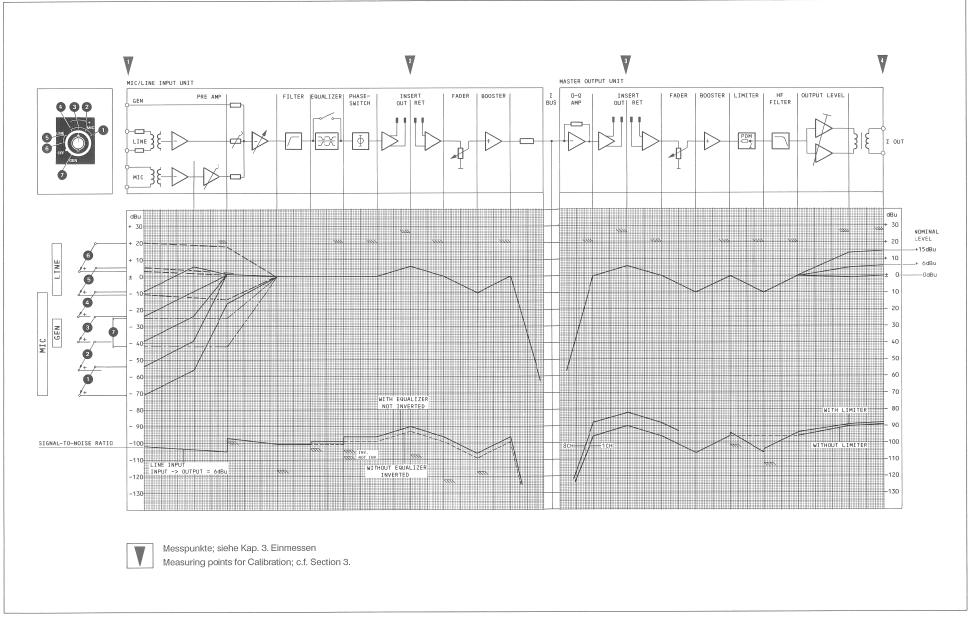


EDITION: 1. November 1990 1/1

1. Dimensions


The audio console 970 is available with removable metal frame support for OB application as also as a wooden console with integrated cable duct for stationary use.

The console width depends on the number of combined baseframes.


1/2 EDITION: 1. November 1990

1.1 Querschnitt Regiepult 970 / Cut Mixing Console 970

EDITION: 1. November 1990 1/3

2. Pegeldiagramm / Level Diagram

EDITION: 1. November 1990

Technische Daten 3.

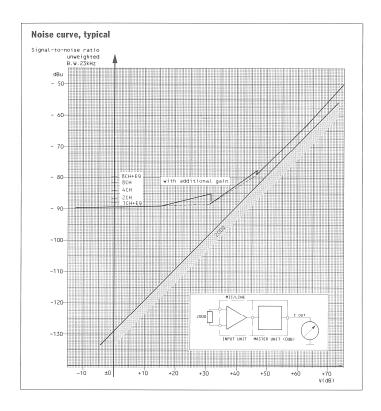
■ Spannungen in dBu beziehen sich immer auf 0,775V.	
0 dBu ≘ 0,775 V	
 Alle Eingangskanal- und Summmen-Flachbahnregler positioniert. Leitungsausgänge sind mit 6000 abgeschlossen 	sind in Stellung 0 dB
 ■ Externe Quellen haben einen Quellenwiderstand von ≤ ■ Die Angaben gelten im Bereich von 31,5 Hz16 kHz. ■ PPM-Version, Leitungspegel +6 dBu 	
VU-Version, nominaler Ausgangspegel 0 VU ≙ +4 dBu Einsatzpunkt des Ausgangslimiters ≙ Spitzen-Ausgan +6 VU ≙ +10 dBu	
■ Empfindlichkeit Mikrofoneingang	-699 dBu
	-9+21 dBu
	+4+21 dBu +6 dBu
	+6+15 dBu
Monitorpegel (symmetrisch, unbelastet)	+6+15 dBu
MikrofoneingangLeitungseingang	15 kHz ≥ 60 dB 15 kHz ≥ 50 dB
Mikrofoneingang	≥1,6 k Ω
Leitungseingang/Tape EingangQuellenimpedanz der Leitungsausgänge	≥10 kΩ ≤40 Ω
■ Filter ausgeschaltet	+0,51 dB
Filter ausgeschaltet	ca. 4,5 Hz/40 kHz
■ Trittschallfilter 12 dB/Oktave, –3 dB	75 Hz ± 5 Hz
■ Höhenregler, 20 kHz	
■ Tiefenregler, 20 Hz	±15 dB
-	±15 dB ±15 dB Q = 1 ±11 dB
Tiefenregler, 20 HzPräsenzfilter	±15 dB Q = 1
 Tiefenregler, 20 Hz Präsenzfilter einstellbar von 150 Hz7 kHz 	±15 dB Q = 1 ±11 dB ++6 dBu
 Tiefenregler, 20 Hz Präsenzfilter einstellbar von 150 Hz7 kHz Mikrofoneingang, Maximalpegel für K₃=1%/31,5 Hz Leitungseingang, Maximalpegel für K₃=1%/31,5 Hz Vor Kanalregler (K_{tot}=1%) 	±15 dB Q = 1 ±11 dB ++6 dBu
 Tiefenregler, 20 Hz Präsenzfilter einstellbar von 150 Hz7 kHz Mikrofoneingang, Maximalpegel für K₃=1%/31,5 Hz Leitungseingang, Maximalpegel für K₃=1%/31,5 Hz 	±15 dB Q = 1 ±11 dB +6 dBu +24 dBu
	Alle Eingangskanal- und Summmen-Flachbahnregler positioniert. Leitungsausgänge sind mit 600Ω abgeschlossen. Externe Quellen haben einen Quellenwiderstand von ≤ Die Angaben gelten im Bereich von 31,5 Hz16 kHz. PPM-Version, Leitungspegel +6 dBu VU-Version, nominaler Ausgangspegel 0 VU ≙ +4 dBI Einsatzpunkt des Ausgangslimiters ≙ Spitzen-Ausgan +6 VU ≙ +10 dBu Empfindlichkeit Mikrofoneingang Empfindlichkeit Tape Eingang Pegel an Einschleifpunkten und Direktausgängen Ausgangspegel, Einstellbereich Monitorpegel (symmetrisch, unbelastet) Mikrofoneingang Leitungseingang Leitungseingang Tilter ausgeschaltet 3 dB-Eckpunkte Filter ausgeschaltet (ausserhalb kontinuierlich abfallend)

1/7 EDITION: 1. November 1990

Rauschspannung, unbe- wertet, MIKROFON:	≤-125 dBu	
Störspannungsabstand:	 PPM-Version, bezogen auf Leitungspegel +6 dBu VU-Version, bezogen auf Spitzenausgangspegel +6 VU ← 10 dBu Am Summenausgang, Summenregler geschlossen 	≥95 dB
	 Ein Kanal, Eingangs- und Summenregler in Position 0 dB, Verstärkung Eingang -> Ausgang = 1; 	
	- ohne Filter	≥93 dB
	 mit Filter, linear 11 Kanäle, alle Fader in Position 0 dB, Verstärkung Eingang -> Ausgang = 1; 	≥92 dB
	- ohne Filter	>85 dB
	– mit Filter, linear	>83 dB
Klirrdämpfung:	 PPM-Version, gemessen mit Leitungspegel +6 dBu. VU-Version, gemessen mit nominalem Ausgangspegel 0 VU oder Spitzen-Ausgangspegel +6 VU Verstärkung = 1, 31,5 Hz16 kHz alle zulässigen Pegel, gemäss Pegeldiagramm, 	<70 dB
	60 Hz10 kHz	<60 dB
Übersprechdämpfung:	■ von Kanal zu Kanal	
	ohne Panorama-Potentiometermit Panorama-Potentiometer	>80 dB >70 dB
	 Kanalanwahischalter ausgeschaltet 	>70 dB >90 dB
	■ Faderdämpfung – Eingangsregler	>100 dB
	- Ausgangsregler	>90 dB
Stromversorgung:	 Netzspannungen, umschaltbar Leistungsaufnahme (970/3) Interne Betriebsspannungen; 	100240V, ±10% ca. 150 VA
	Verstärkerschaltungen	±15V
	Logik–Schaltkreise	-6V
	 Mikrofon-Phantomspeisung 	+48V
Umgebungstemparatur:	 Betriebs-Temperaturbereich 	0°C+50°C (34°F122°F)
Luftfeuchtigkeit:	■ gemäss DIN 40040, Kategorie F	
Sicherheit-Standard:	■ gemäss IEC-Empfehlung, Publikation 65, Schutzklasse 1	

1/8 EDITION: 1. November 1990

3. Technical Data


General:	■ Voltage specification dBu	
	0 dBu ≘ 0.775 V	
	 Channel input faders and master faders are set to 0 dB r 	nark.
	 Line outputs are terminated with 600Ω. 	
	 External sources have a source impedance of ≤ 200Ω All data are valid within the frequency band from 31.5 Hz 	to 16 kHz
	■ PPM version, line level +6 dBu	
	■ VU version, nominal output level 0 VU	
	■ Attack point of output limiter peak output level +6 VU	≙ +10 dBu
Levels:	 Microphone input sensitivity 	-69 to -9 dBu
	■ Line input sensitivity	-9 to +21 dBu
	■ Tape input sensitivity	+4 to +21 dBu
	Level at insertion points and tape inputsOutput level, adjustable within	+6 dBu +6 to 15 dBu
	 Monitor level (transformerless, balanced, unloaded) 	+6 to +15 dBu
	(
Common mode rejection:	Microphone input	15 kHz ≥ 60 dB
***************************************	■ Line input	15 kHz ≥ 50 dB
Impedances:	 Impedance of microphone input 	>1 6 ka
impedances.	 Impedance of fine input and tape input 	≥1.6 kΩ ≥10 kΩ
	 Internal impedance of line outputs 	≤40 ດ
Frequency response:	■ Filters switched off	+0.5 to -1 dB
	3 dB points	
	filters switched off	≈ 4.5 Hz/40 kHz
	(continuously decreasing outside this range) ■ Bass cut 12 dB/octave, –3 dB	75 Hz ± 5 Hz
	 High frequency equalizer, shelving at 20 kHz 	±15 dB
	 Low frequency equalizer, shelving at 20 Hz 	±15 dB
	 Presence equalizer 	Q = 1
	■ mid-frequency adjustable from 150 Hz to 7 kHz	±11 dB
Overload margin:	 Microphone input, max. level for 1% third harmonic at 31 	.5 Hz +6 dBu
3	■ Line input, max. level for 1% third harmonic at 31.5 Hz	+24 dBu
	 Head room before channel fader (1% THD) 	20 dB
	 Head room before master fader (1% THD) 	20 dB
	■ Max. line output level, R _L =300Ω	+24 dBu
Unweighted noise voltage	■ according to IEC 468-2 (DIN 454005) Equivalent	≤-125 dBu
MICROPHONE:	input noise at bandwith 23 kHz, 200Ω terminated	_ 123 aba
	·	

EDITION: 1. November 1990 1/9

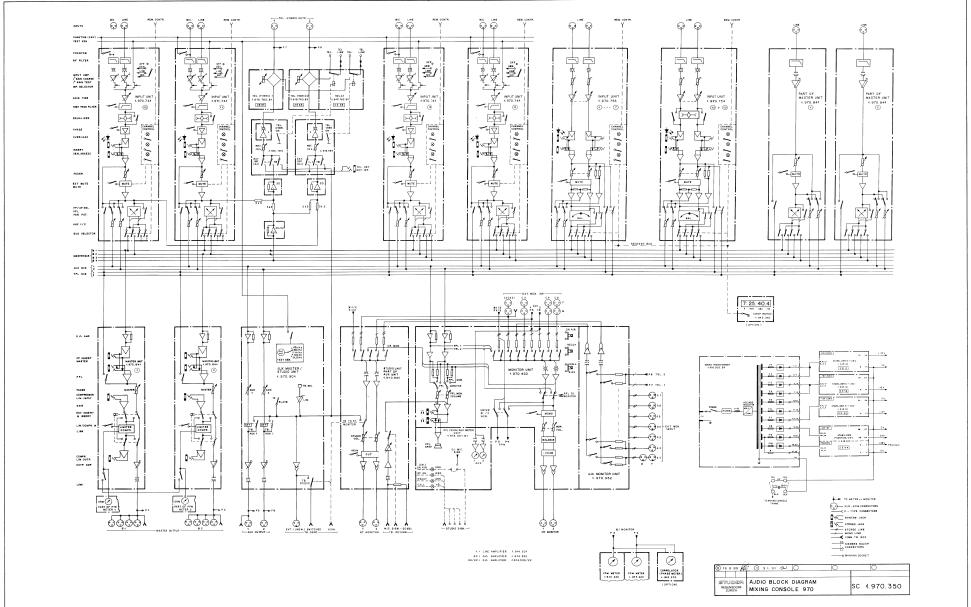
Signal-to-noise ratio:	 PPM version, relative to line level +6 dBu VU version, relative to peak output level +6 VU ← 10 dBU On master output master fader closed One channel Input and master faders at 0 dB mark, unity gain, – filters off – filters on, linear 11 channels, all faders at 0 dB mark, unity gain, – filters off – filters on, linear 	≥95 dB ≥93 dB ≥92 dB >85 dB >83 dB
Harmonic ratio:	 PPM version, measured with line level +6 dBu VU version, measured with nominal output level 0 VU or peak output level +6 dBu unity gain, 31.5 to 16 kHz All permissible levels according to level diagram, 60 Hz to 10 kHz 	<70 dB <60 dB
Cross-talk attenuation:	 channel to channel, without panorama potentiometer with panorama potentiometer Channel bus selector switched off Fader attenuation input Fader attenuation master 	>80 dB >70 dB >90 dB >100 dB >90 dB
Power supply:	 Electrical power mains, switchable Power consumption (STUDER 970/3) Internal supply voltages; Amplifiers Logic circuits Microphone phantom powering 	100 to 240V, ±10% ≈ 150 VA ±15V -6V +48V
Ambient temperature:	 Operating temperature range 	0°C to +50°C (34°F to 122°F)
Humidity:	■ according to DIN 40040, category F	
Safety standard:	 Mains input according to IEC standard, publication 65 	5, apparatur class 1

1/10 EDITION: 1. November 1990

3.1 Rauschkurve, typisch / Noise curve, typical

EDITION: 1. November 1990 1/11

2 Blockschaltbilder


1.	Audio Blockschaltbild	1
2.	Signalisation und Fernsteuerung	3
	2.1 Blockschaltbild: Signalisation und Fernsteuerung	c

2 Block diagrams

1.	Audio Block Diagram
2.	Signalization and Remote Control
	2.1 Block diagram: Signalization and Remote Control

Audio Block Diagram

1.970.350

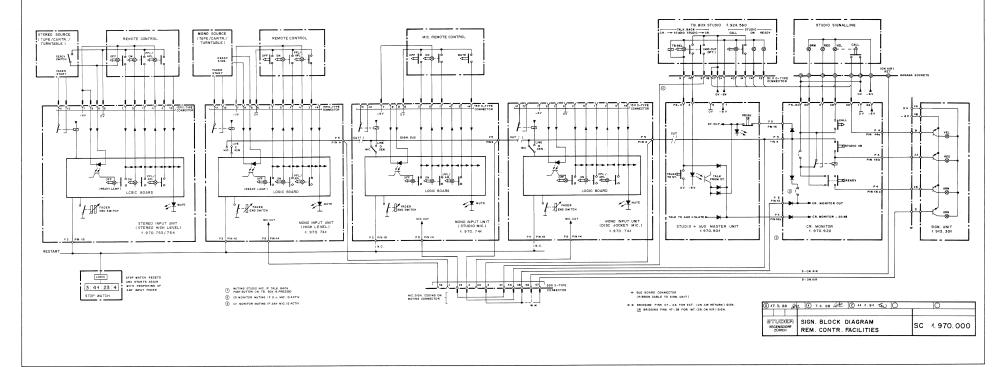
2.1 Blockschaltbild: Signalisations und Fernsteuerungen Block diagram: Signalization and Remote Control Facilities

1.970.000

2. Signalisation und Fernsteuerung

Das Mischpult 970 ist mit drei Signalisations- und Fernsteuersystemen ausgerüstet

- Reglerstart mit galvanisch getrennten Relaiskontakten für jede Eingangseinheit.
- Studio Signalisation mit Rot-, Grün-, und Gelblicht.
- Fernsteuermöglichkeit der Kanalstummschaltung (Mute-Funktion) zum Einsatz als Räuspertaste oder "Video follow audio" Durchschaltung.


Mit der Funktion Restart wird die Stopuhr automatisch zurückgesetzt und neu gestartet, wenn der Flachbahrregler einer beliebigen Eingangseinheit geöffnet wird.

2. Signalization and Remote Control

The STUDER audio console 970 is equipped with three controlling systems:

- Faderstart with physically separated relay contacts per input unit.
- Studio signaling system with red, green and yellow lights.
- Remote control facility for the mute function. (cough button/"vicleo follows audio")

The restart function resets and restarts the stop watch at the opening of any input fader.

EDITION: 5. Oktober 1990 2/3

3 Einmessen

		1.	Allgemeines 1.1 Pegel-Definition	1 2 3 4
		2.	Einmess - Anleitung der Einschub-Module 2.1 Mono Eingänge 1.970.741 2.2 Stereo Eingänge 1.970.753/754 2.3 Summen Einheit 1.970.841 2.4 AUX Master / Studio Monitor 1.970.901 2.5 Kontrollraum Monitor Einheit 1.970.920	11 12 17 18
		3.	Einmess - Anleitung der Anzeigeinstrumente	25 26
3	Alignment			
		1.	General	6 7 8 9
		2.	 1.1 Level Definitions 1.2 Prerequisites 1.3 Demagnetizing the Microphone Input Transformers 1.4 Required Measuring Instruments and Aids 1.5 Measuring Principles 	

3 Einmessen

1. Allgemeines

1.1 Pegel-Definition

Relative Pegelangaben in dBu

Nennpegelangaben in dBu basieren ausschliesslich auf einem festgelegten Spannungswert als Bezugsgrösse:

Die Bezugsgrösse 0,775V des relativen Spannungspegels in dBu wurde von der Wertdefinition des absoluten Spannungspegels in dBm übernommen; jedoch ohne Bindung an die Definition (600Ω/1mW).

Nennpegel in dBu

Nennpegel = Studiopegel bei Vollaussteuerung

Der Nennpegel (auch Leitungspegel) entspricht dem Studiopegel bei Vollaussteuerung.

Typische Nennpegel sind:

- $\begin{array}{lll} + & 6 dBu & \cong & 1,55 V_{eff.} \\ + & 10 dBu & \cong & 2,45 V_{eff.} \\ + & 15 dBu & \cong & 4,36 V_{eff.} \end{array}$
- Aussteuerungspegel

0 dB PPM = Nennpegel 0 VU = Nennpegel minus 6 dB*

- entspricht einem verbreiteten Wert für den Vorlauf (Lead) des VU-Instrumentes.
- Verstärkungs-/Dämpfungsmasse in dB

Relative Pegelangaben in dB geben Auskunft über das Verstärkungs-/Dämpfungsmass einer aktiven (z.B. Verstärkerstufe), resp. passiven (z.B. Flach-bahnregler) Schaltungskomponente, innerhalb eines Schaltkreises.

EDITION: 14. November 1990 3/1

Einige Beziehungen (approximative Faktoren):

		dB	0	1	2	3	6	10	15	20
Faktor	r (≈)	Verstärkung	1	1,1	1,2	1,4	2	3,2	5,6	10
	(~)	Dämpfung	1	0,9	0,8	0,7	0,5	0,3	0,2	0,1

1.2 Voraussetzungen

Hinweise:

Jedes ab Herstellerwerk ausgelieferte Mischpult verfügt über ein Prüfprotokoll, in dem die Daten der Endprüfung eingetragen sind, wie:

- Abgleich auf kundenspezifischen Nennpegel
- Frequenzgang, Klirrfaktor, Geräuschabstand, Rauschspannung und Übersprechdämpfung.

Das Einmessen des Mischpultes ist bei Änderungen der Betriebsbedingungen (Nennpegel) am Einsatzort oder nach Modifikationen am Mischpult erforderlich. Eine turnusgemässe Wartungs-Einmessung wird bei dieser Generation von Mischpulten nicht mehr beansprucht.

Einzige Wartungsmassnahme bildet das nachfolgend beschriebene Entmagnetisieren der Eingangsübertrager.

3/2 EDITION: 22. Oktober 1990

1.3 Entmagnetisieren von Mikrofon- Eingangsübertragern

Unerlaubtes Anschliessen asymmetrischer Eingangsquellen oder unbeabsichtigter Masseschluss der a/b-Tonadern von Mikrofon-Eingängen mit zugeschalteter Phantomspeisung treiben die Eingangsübertrager in die Sättigung und bewirken deren permanente Magnetisierung (Remanenz).

Diese äussert sich nachteilig durch den sogenannten Mikrofonie-Effekt: Leichte mechanische Einwirkungen auf das Mischpult, z.B. das Antippen von Einschüben, bewirken eine hörbare Modulation über die Lautsprecher, auch bei nicht belegten Mikrofon-Eingängen.

Auch kann sich Remanenz in den Übertragern im Laufe längerer Betriebsdauer kumulieren.

Es empfielt sich deshalb, alle Mikrofon-Eingänge periodisch, und vor Einmessvorgängen, zu entmagnetisieren:

Vorgehen:

- Mischpult ausschalten (zum Schutze angeschlossener Lautsprecher).
- NF-Generator an Mikrofon-Eingang anschliessen.
 Dieser muss ein gleichspannungsfreies Signal einspeisen, um eine unerwünschte Magnetisierung des Übertragers zu vermeiden.

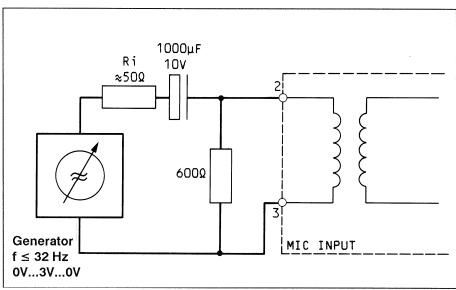


Fig. 1

- Kondensator $C=1000\mu F/10V$ sperrt Gleichstrom-Anteile.
- Widerstand R600 α dient der Entladung des Kondensators von Gleichstrom-Anteilen.
- Frequenz ≤32Hz sukzessive auf Einspeispegel von 0V...3V erhöhen.
- Einspeispegel langsam auf 0V zurückregeln.

EDITION: 22. Oktober 1990 3/3

1.4 Benötigte Messgeräte und Hilfsmittel

- Tonfrequenz-Generator 1kHz Sinus / Rs ≤ 200Ω
- NF-Voltmeter, $Rz_{in} \le 10k\Omega$
- 2 Kanal Kathodenstrahl Oszillograph
- Abgleich-Schraubenzieher, Grösse 2
- Sammelschienen-Adapter zur Kontaktierung ausgebauter Einschübe mit der Sammelschiene. Es werden benötigt:
 - 3 Adapter mit 32 pol. Kontaktierung Best.-Nr. 1.228.322
 - 1 Adapter mit 64 pol. Kontaktierung Best.-Nr. 1.228.327
- Schaumstoffmatte, Abmessung ca. 400 x 250 mm, als Unterlage für ausgebaute, über den Adapter mit der Sammelschiene kontaktierte Einschübe (werden mit Vorteil auf das Bedienungsfeld des Mischpultes gelegt).

1.5 Messgrundlagen

Hinweis: Ab Herstellerwerk ausgelieferte (Ersatz-) Einschübe sind werkseitig abgeglichen und können direkt in das einzumessende Mischpult eingesetzt werden.

- Das Einmessen des Mischpultes erfolgt bei erreichter Betriebstemperatur (ca. 15 Minuten nach Einschalten).
- Einschleifpunkte (INSERTs), Monitor-, Vorhör- und Kommando- (TB-) Ausgänge sind nicht zu belasten.
- Leitungsausgänge sind mit 600
 Last abzuschliessen.

Prüfsignal: 1 kHz / Sinus

Pegelreferenz: $0 \text{ dBu} = 0,775 \text{V}_{\text{eff.}}$

3/4 EDITION: 16. November 1990

1.6 Messaufbau

NF-Millivoltmeter und NF-Generator müssen grundsätzlich über symmetrische Ein- resp. Ausgänge verfügen. Asymmetrischen Messgeräten ist ein Symmetrier-Übertrager vorzuschalten.

Hinweis:

Stehen keine Messgeräte mit symmetrischen Ein- resp. Ausgängen zur Verfügung, können asymmetrische Messgeräte wie folgt (behelfsmässig) beschaltet werden:

b-Leitung (3) mit Audiomasse (1) verbunden, bilden mit der a-Leitung (2) einen asymmetrischen Messpunkt. Diese Schaltung ist jedoch nicht für Messungen höherer Aussteuerungen anwendbar (Clipping-Effekt bei den transformatorlosen INSERT's).

Beim Umpegeln oder Einmessen des Mischpultes ist die aufgeführte Kapitelfolge einzuhalten! (manche Abgleiche bilden die Grundlage für nachfolgende Abgleichabläufe).

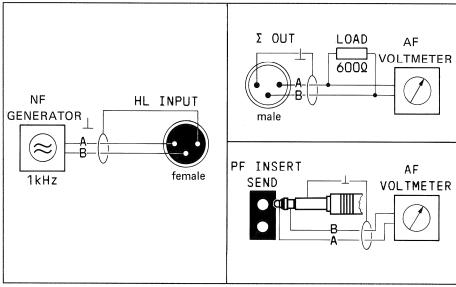


Fig. 2

3 Alignment

1. General

1.1 Level Definitions

Relative level specification in dBu

0 dBu ≘ 0,775 V_{eff.}

The nominal levels specified in dBu are strictly based on a defined voltage as the reference quantity:

The reference quantity 0,775V of the relative voltage level in dBu has been taken from the value definition of the absolute voltage level in dBm; however the definition $(600\Omega/1mW)$ has not been adopted.

Nominal level in dBu

Nominal level = Studio level at peak level

The nominal level (also line level) corresponds to the studio peak level.

Typical nominal levels are:

- $\begin{array}{llll} + & 6 dBu & \triangleq & 1,55 V_{eff.} \\ + & 10 dBu & \triangleq & 2,45 V_{eff.} \\ + & 15 dBu & \triangleq & 4,36 V_{eff.} \end{array}$
- Modulation level

0 dB PPM = Nominal level 0 VU = Nominal level less 6 dB*

- * Corresponds to a widely used value for VU instrument lead.
- Gain/attenuation in dB

Relative level specifications in dB give information on the gain/attenuation of an active (e.g. amplifier stage) or passive (e.g. linear fader) component within a circuit.

3/6 EDITION: 14. November 1990

Some relationships (approximative factors):

	dB	0	1	2	3	6	10	15	20
Ratio (≈)	Gain	1	1,1	1,2	1,4	2	3,2	5,6	10
Katio (~)	Attenuation	1	0,9	0,8	0,7	0,5	0,3	0,2	0,1

1.2 Prerequisites

General Information:

A test report is bypacked to each factory-shipped mixing console in which the data of a detailed test are recorded such as:

- Alignment to the nominal level specified by the customer
- Data from measurements concerning frequency response, distortion, S/N ratio, noise voltage and cross talk.

The mixing console needs to be recalibrated if the operating conditions (nominal level) at the place of service change or if modifications are made to the mixing console. Periodic recalibration is no longer required in this generation of mixing consoles.

The only maintenance required is the subsequently described demagnetization of the input transformers.

EDITION: 22. Oktober 1990

1.3 Demagnetizing the Microphone Input Transformers

Inadmissible connection of unbalanced input sources or unintentional ground connection of the a/b audio (leads of microphone inputs to a connected phantom supply drive the input transformers into saturation and cause permanent magnetization (remanence).

This detrimental effect is manifested through so-called microphonic noise: (light metallic vibrations of the mixing console, e.g. tapping against plug-in modules, produce audible modulations via the speakers, even if the microphone inputs are not connected.

The residual magnetism in the transformers can also accumulate over extended operating times.

We therefore recommend to demagnetize all microphone inputs periodically and before calibration work:

Procedure:

- Switch mixing console off (to protect the connected speakers).
- Connect audio generator to the microphone input.
 The generator should supply a signal without DC content in order to prevent unwanted magnetization of the transformer.

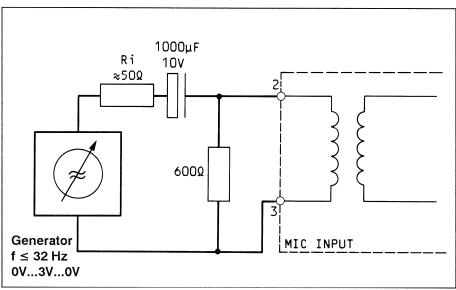


Fig. 1

- Capacitor C=1000μF/10V blocks the DC components.
- Resistor $R600\Omega$ removes DC components from the capacitors.
- Slowly increase ≤32 Hz frequency to supply level from 0V...3V.
- Slowly decrease supply level to 0V.

3/8 EDITION: 22. Oktober 1990

1.4 Required Measuring Instruments and Aids

- AF generator 1 kHz sine–wave / Rs $\leq 200\Omega$
- AF-voltmeter, $Rz_{in} \le 10k\Omega$
- 2 channel cathode-ray oscillograph
- Alignment screwdriver size 2
- Bus Adapter for connecting removed modules to the bus .The following are required:
 - 3 Adapter with 32 pin. Connector Order-No. 1.228.322
 - 1 Adapter with 64 pin. Connector Order-No. 1.228.327
- Foam rubber pad, approx. 400 x 250 mm as a soft surface for removed modules that are connected to the bus via the adapter (the pads are preferably placed on the operating panel of the mixing console).

1.5 Measuring Principles

Note: The factory-shipped (replacement) modules are already aligned and can be installed directly in the mixing console to be calibrated.

- The mixing console should only be calibrated when the operating temperature has been attained (15 minutes after power ON).
- Insertion points, monitor, prelistening, and talk-back outputs should not be loaded.
- The line outputs are to be terminated with 600Ω .

Test Signal: 1 kHz / sine-wave

Level Reference: $0 \text{ dBu} \triangleq 0,775V_{eff.}$

EDITION: 16. November 1990 3/9

1.6 Measuring Setup

The AF millivoltmeter and AF generator must feature balanced inputs and outputs. A balancing unit is to be connected to the input of unbalanced measuring instruments.

Note:

If no measuring instruments with balanced inputs and outputs are availabel, unbalanced measuring instruments can be connected (by way of expedient) in the following way:

b-line (3) connected to audio ground (1) together with the a-line (2) forms an unbalanced measuring point. However, this circuit is not suited for measuring higher levels (clipping effect on the transformerless INSERT's).

The specified sequence of the steps is to be followed for realigning the level or recalibrating the mixer!

(certain alignments from the basis for subsequent alignment operations).

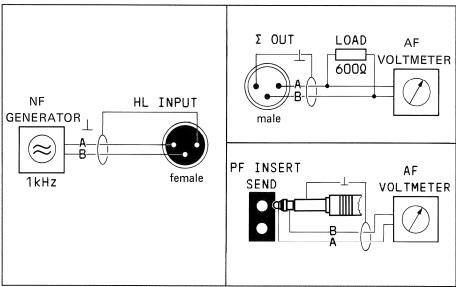


Fig. 2

2. Einmess - Anleitung der Einschub-Module

2.1 Mono Eingänge

1.970.741.81

TABELLE / TABLE		STATUS						
Bedienungselement / oper. eleme	nt			Ø	(1)	Q	\Box	显
Feinabgleich / fine adjust				Χ				
Filter	off	Х						
Phasenschalter / phase switch	φ off	Х						
Equalizer	off	Х						
Σ Anwahl / bus select	off	Х						
Panpot	off						Х	
ON-Taste / ON-key			Χ					

Line Input

- Eingangswahlschalter auf obere Stellung LINE positionieren.
- Status der Bedienungselemente gemäss Tabelle erstellen.
- NF Generator am LINE INPUT anschliessen.
- Leitungspegel / 1 kHz einspeisen.
- NF Voltmeter am INSERT SEND anschliessen.
- Kontrolle: Soll-Ausgangspegel am INSERT SEND = Leitungspegel.
- Korrektur: Feinabgleich am zentralen Potentiometer R64.

Fader Aufholverstärkung

- Eingangswahlschalter auf obere Stellung LINE positionieren.
- Status der Bedienungselemente gemäss Tabelle erstellen.
- Σ 1 anwählen.
- Eingangsfader auf Pos. 0 dB.
- NF Generator am LINE INPUT anschliessen.
- Leitungspegel / 1 kHz einspeisen.
- NF Voltmeter am Σ 1 INSERT SEND anschliessen.
- Kontrolle: Soll-Ausgangspegel am Σ 1 INSERT SEND = Leitungspegel.
- Korrektur: am Trimmpotentiometer R164.

EDITION: 22. Oktober 1990 3/11

2.2 Stereo Eingänge

1.970.753/754.81

TABELLE / TABLE	STATUS							
Bedienungselement / oper. element				Q	(Q	\Box	\Box
Feinabgleich / fine adjust (Gain)					Х			
Equalizer	off	Х						
Σ / GR Anwahl / bus select	off	Х						
Balance	off						Х	
ON-Taste / ON-key			Х					

Line Input L

- Status der Bedienungselemente gemäss Tabelle erstellen.
- NF Generator am LINE INPUT L anschliessen.
- Leitungspegel / 1 kHz einspeisen.
- NF Voltmeter am INSERT SEND L anschliessen.
- Kontrolle: Soll-Ausgangspegel am INSERT SEND L = Leitungspegel.
- Korrektur: am Trimmpotentiometer R111.

Line Input R

- Status der Bedienungselemente gemäss Tabelle erstellen.
- NF Generator am LINE INPUT R anschliessen.
- Leitungspegel / 1 kHz einspeisen.
- NF Voltmeter am INSERT SEND R anschliessen.
- Kontrolle: Soll-Ausgangspegel am INSERT SEND R = Leitungspegel.
- Korrektur: am Trimmpotentiometer R211.

Fader Aufholverstärkung L

- Status der Bedienungselemente gemäss Tabelle erstellen.
- Σ1 anwählen.
- Eingangsfader auf 0 dB. positionieren.
- NF Generator am LINE INPUT L anschliessen.
- Leitungspegel / 1 kHz einspeisen.
- NF Voltmeter am Σ 1 INSERT SEND anschliessen.
- Kontrolle: Soll-Ausgangspegel am Σ 1 INSERT SEND = Leitungspegel.
- Korrektur: am Trimmpotentiometer R182.

Fader Aufholverstärkung R

- Status der Bedienungselemente gemäss Tabelle erstellen.
- Σ 2 anwählen.
- Eingangsfader auf 0 dB. positionieren.
- NF Generator am LINE INPUT R anschliessen.
- Leitungspegel / 1 kHz einspeisen.
- NF Voltmeter am Σ 2 INSERT SEND anschliessen.
- Kontrolle: Soll-Ausgangspegel am Σ 2 INSERT SEND = Leitungspegel.
- Korrektur: am Trimmpotentiometer R282.

3/12

2. Alignment Instruction for Level Meters

2.1 Mono Input

1.970.741.81

TABELLE / TABLE		STATUS						
Bedienungselement / oper. eleme	nt			Q	\bigcirc	Q	\Box	显
Feinabgleich / fine adjust				Х				
Filter	off	Х						
Phasenschalter / phase switch	ϕ off	Х						
Equalizer	off	Х						
Σ Anwahl / bus select	off	Х						
Panpot	off						Х	
ON-Taste / ON-key			Х					

Line Input

- turn the input selector to the upper LINE position.
- set controls to the states specified in table.
- connect audio generator to LINE INPUT.
- feed line level / 1 kHz.
- connect audio voltmeter to INSERT SEND.
- check: desired output level on INSERT SEND = line level.
- correction: fine adjustment on central potentiometer R64.

Fader Booster Gain

- turn the input selector to the upper LINE position.
- set controls to the states specified in table.
- select Σ 1 bus.
- Input fader to 0 dB position.
- connect audio generator to LINE INPUT.
- feed line level / 1 kHz.
- connect audio voltmeter to Σ 1 INSERT SEND.
- check: desired output level on Σ 1 INSERT SEND = line level.
- correction: with trimmer R164.

EDITION: 22. Oktober 1990 3/13

2.2 Stereo HL-Inputs

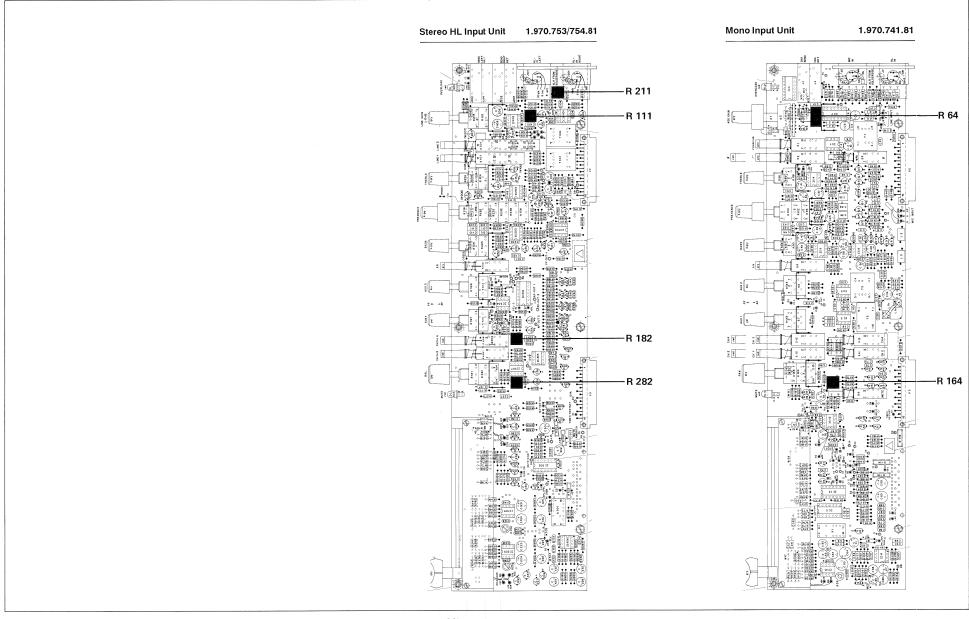
1.970.753/754.81

TABELLE / TABLE	STATUS							
Bedienungselement / oper. element				Q	\bigcirc	Q	\Box	\Box
Feinabgleich / fine adjust (Gain)					Χ			
Equalizer	off	Х						
Σ / GR Anwahl / bus select	off	Х						
Balance	off						Х	
ON-Taste / ON-key			χ					

Line Input L

- set controls to the states specified in table.
- connect audio generator to LINE INPUT L.
- feed line level / 1 kHz.
- connect audio voltmeter to INSERT SEND L.
- check: desired output level on INSERT SEND L = line level.
- correction: with trimmer R111.

Line Input R


- set controls to the states specified in table.
- connect audio generator to LINE INPUT R.
- feed line level / 1 kHz.
- connect audio voltmeter to INSERT SEND R.
- check: desired output level on INSERT SEND R = line level.
- correction: with trimmer **R211**.

Fader Booster Gain L

- set controls to the states specified in table.
- select Σ 1 bus.
- input fader to 0 dB position.
- connect audio generator to LINE INPUT L.
- feed line level / 1 kHz.
- connect audio voltmeter to Σ 1 INSERT SEND.
- check: desired output level on Σ 1 INSERT SEND = line level.
- correction: with trimmer R182.

Fader Booster Gain R

- set controls to the states specified in table.
- select Σ 2 bus.
- input fader to 0 dB position.
- connect audio generator to LINE INPUT R
- feed line level / 1 kHz.
- connect audio voltmeter to Σ 2 INSERT SEND.
- check: desired output level on Σ 2 INSERT SEND = line level.
- correction: with trimmer R282.

EDITION: 22: Oktober 1990 3/15

2.3 Summen Einheit

1.970.841.81

TABELLE / TABLE	STATUS								
Bedienungselement / oper. element				Q	\bigcirc	Q	\Box	\Box	
Limiter / Compressor 'In'	off	Х							
Gain					Х				
Σ		Х							
Release						Х			
Ratio						Х			
HL Input						Х			
Σ Anwahl / Σ select		Х							
Panpot	off						Х		
Mute	off	Х							

HL Input

- Status der Bedienungselemente gemäss Tabelle erstellen.
- NF Generator am HL INPUT anschliessen.
- Leitungspegel / 1 kHz einspeisen.
- NF Voltmeter am Σ 1 INSERT SEND anschliessen.
- Kontrolle: Soll–Ausgangspegel am Σ 1 INSERT SEND = Leitungspegel +10 dB.
- Korrektur: am Trimmpotentiometer R9.

Summen Ausgang

- Status der Bedienungselemente gemäss Tabelle erstellen.
- NF Generator am LINE INPUT 1 anschliessen.
- Leitungspegel / 1 kHz einspeisen.
- NF Voltmeter am INSERT SEND anschliessen.
- Kontrolle: Soll-Ausgangspegel = Leitungspegel.
- NF Voltmeter am Σ OUT anschliessen, (mit 600Ω Last).
- Summenfader auf 0 dB Position.
- Zu messende Σ anwählen.

A) Limiter überbrückt

- Kontrolle: Soll-Ausgangspegel am Σ OUT = Leitungspegel.
- Korrektur: am Trimmpotentiometer R104.

B) Limiter eingeschaltet

- Generatorpegel um 20 dB reduzieren; Leitungspegel -20 dB.
- Kontrolle: Soll-Ausgangspegel am Σ OUT = Leitungspegel.
- Korrektur: am Trimmpotentiometer R7 (PDM VCA Print).

Abgleichschritte wechselweise wiederholen bis optimale Éinstellung erreicht ist.

Limiter Einsatzschwelle

- Status der Bedienungselemente gemäss Tabelle erstellen.
- NF Generator am LINE INPUT 1 anschliessen.
- Leitungspegel / 1 kHz einspeisen.
- NF Voltmeter am INSERT SEND anschliessen.
- Kontrolle: Soll-Ausgangspegel = Leitungspegel.
- NF Voltmeter am Σ OUT anschliessen, (mit 600Ω Last).
- Zu messende Σ anwählen.
- Flachbahnregler auf +10 dB positionieren.

A) Limiter überbrückt

- Kontrolle: Soll-Ausgangspegel = Leitungspegel +10 dB.
- Korrektur: am Input Gain.

B) Limiter eingeschaltet

- Kontrolle: Soll-Ausgangspegel = Leitungspegel +0,2 dB.
- Korrektur: am Trimmpotentiometer R189.

EDITION: 12. November 1990 3/17

2.4 AUX Master / Studio Monitor

1.970.901.00

AUX Ausgang

- NF Generator am LINE INPUT 1 anschliessen.
- Leitungspegel / 1 kHz einspeisen.
- Eingangswahlschalter auf obere Stellung LINE.
- NF Voltmeter am INSERT SEND anschliessen.
- Kontrolle: INSERT SEND = Leitungspegel.
- Korrektur: mit Feinabgleich einstellen bis INSERT SEND = Leitungspegel.
- AUX 1/AUX 2 Regler auf Eingangseinheit 1 ziehen. (Stellung PF) und auf Rechtsanschlag drehen.
- Ausgangsregler AUX Master 1+2 auf Rechtanschlag drehen.

AUX Ausgang 1

- NF Voltmeter am AUX AUSGANG 1 anschliessen, (mit 600Ω Last).
- Ausgangspegel am Ausgangsregler AUX 1 um 15 dB reduzieren. (Übersteuerungsreserve).
- Ausgangspegel am Trimmpotentiometer R36 auf Leitungspegel abgleichen.

AUX Ausgang 2

- NF Voltmeter am AUX AUSGANG 2 anschliessen, (mit 600Ω Last).
- Ausgangspegel am Ausgangsregler AUX 2 um 15 dB reduzieren.
 - (Übersteuerungsreserve).
- Ausgangspegel am Trimmpotentiometer R62 auf Leitungspegel abgleichen.

TB Mikrofon

SLATE (TB auf Σ Sammelschiene).

- NF Generator anstelle vom TB Mic anschliessen.
- -40 dBu / 1 kHz einspeisen.
- NF Voltmeter am MASTER INSERT anschliessen.
- Beide Tasten SLATE drücken.
- Kontrolle: Soll-Ausgangspegel = Leitungspegel.
- Korrektur: am Trimmpotentiometer R89.

TB AUX

TB AUX (TB auf AUX).

- NF Voltmeter am AUX 1 OUTPUT anschliessen (mit 600Ω Last).
- Taste TB AUX drücken.
- Kontrolle: Soll-Ausgangspegel = Leitungspegel.
- Korrektur: an Trimmpotentiometer R91.

3/18

2.3 Master Unit

1.970.841.81

TABELLE / TABLE	STATUS								
Bedienungselement / oper. element				Q	(Q	\Box	\Box	
Limiter / Compressor 'In'	off	Х							
Gain					Х				
Σ		Х							
Release						Х			
Ratio	naha kilikula carana na baziba					Х			
HL Input						Х			
Σ Anwahl / Σ select		Х							
Panpot	off						Х		
Mute	off	Х							

HL Input

- set controls to the states specified in table.
- connect audio generator to HL INPUT.
- feed line level / 1 kHz.
- connect audio voltmeter to Σ 1 INSERT SEND.
- check: desired output level on Σ 1 INSERT SEND = line level +10 dB.
- correction: with trimmer R9.

Master Output

- set controls to the states specified in table.
- connect audio generator to LINE INPUT 1.
- feed line level / 1 kHz.
- connect audio voltmeter to INSERT SEND.
- check: desired output level = line level.
- connect audio voltmeter to Σ OUT, (with 600 Ω load).
- set group / Σ fader to 0 dB position.
- press corresponding group selection key.

A) Limiter Bypassed

- check: desired output level on Σ OUT = line level.
- correction: with trimmer potentiometer R104.

B) Limiter Switched In:

- decrease generator level by 20 dB: line level –20 dB.
- check: desired output level on Σ OUT = line level -20 dB.
- correction: with trimmer potentiometer R7 (on PDM VCA).

Alternatively repeat alignment steps A and B until optimal alignment is attained.

Limiter Attack Threshold

- set controls to the states specified in table.
- connect audio generator to LINE INPUT 1 fader to 0 dB position.
- feed line level / 1 kHz.
- connect audio voltmeter to INSERT SEND 1.
- check: desired output level = line level.
- select measured group / Σ.
- connect audio voltmeter to Σ OUT, (with 600 Ω load).
- set group / Σ fader to the +10 dB position.

A) Limiter Bypassed

- check: desired output level = line level +10 dB.
- correction: with Input Gain.

B) Limiter Switched On

- check: desired output level on Σ / GROUP OUT = line level +0,2 dB.
- correction: with trimmer potentiometer R189.

2.4 AUX Master / Studio Monitor

1.970.901.00

AUX Output

- connect audio generator to LINE INPUT 1.
- feed line level / 1 kHz.
- turn the input selector to the upper LINE position.
- connect audio voltmeter to INSERT SEND.
- check: INSERT SEND = line level.
- correction: on input selector within the LINE range, and fine adjustment potentiometer.
- pull the AUX 1/AUX 2 potentiometers (PF position) and turn them to the righthand limit position.
- turn AUX 1+2 SEND potentiometers to the right-hand limit position.

AUX 1 Out

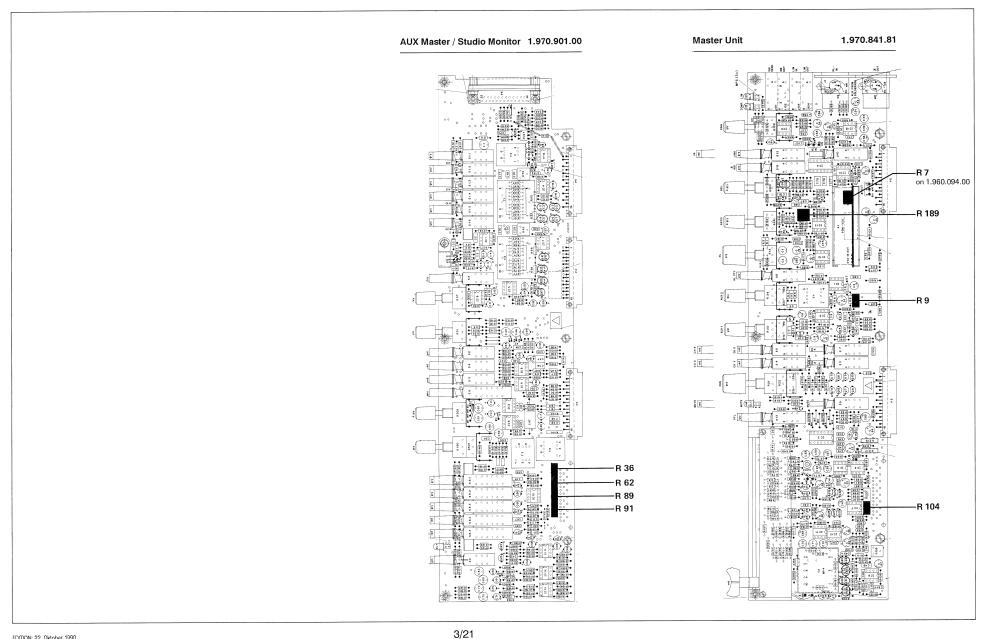
- connect audio voltmeter to AUX 1 OUT (with 600Ω load).
- decrease output level with potentiometer AUX 1 by 15 dB (headroom).
- align output level to line level with trimmer potentiometer R36.

AUX 2 Out

- connect audio voltmeter to AUX 2 OUT (with 600Ω load).
- decrease output level with potentiometer AUX 2 by 15 dB (headroom).
- align output level to line level with trimmer potentiometer R62.

TB Microphone

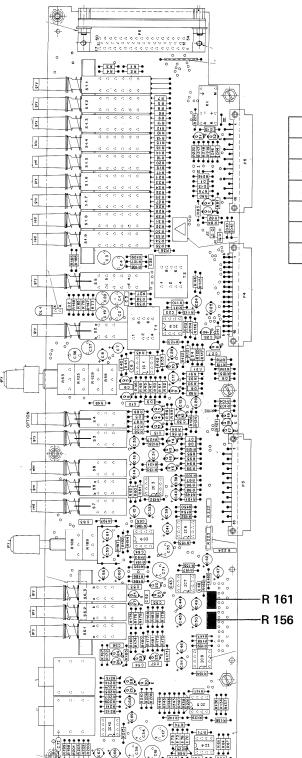
SLATE (TB on Σ bus).


- connect audio generator instead of TB Mic.
- feed -40 dBu / 1 kHz.
- connect audio voltmeter to MASTER INSERT.
- press both SLATE buttons.
- check: desired output level on Σ INSERT = line level.
- correction: with trimmer potentiometer R89.

TB AUX

TB AUX (TB on AUX OUTPUT 1..4).

- connect audio voltmeter to AUX 1 OUTPUT (with 600Ω load).
- press TB button (AUX 1).
- check: desired output level on AUX OUT 1 (with 600Ω load) = line level.
- correction: with trimmer potentiometer R91.


3/20

EDITION: 22. Oktober 1990

2.5 Kontrollraum Monitor Einheit

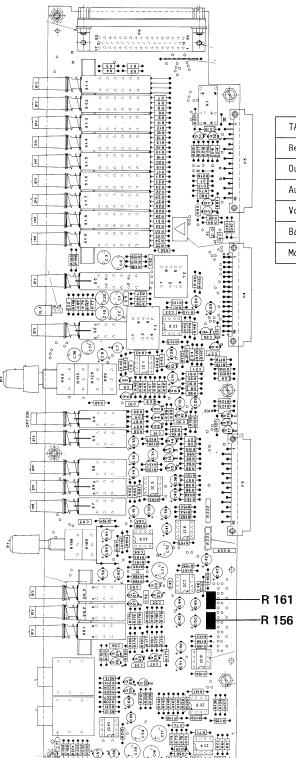
1.970.920.00

Voraussetzung:

Für die PFL Meter Einstellung muss zuerst das Anzeigeinstrument eingestellt sein.

Vgl. 3. Einmessanleitung der Anzeigeninstrumente.

TABELLE / TABLE	NBELLE / TABLE STATUS						
Bedienungselement / oper. element			\bigcirc	\bigcirc	Q		显
Aussteuerungsanzeige METER Σ	Х						
Automatik PFL TO MONITOR	Х						
Volume CR MONITOR			Х				
Balance BAL				Х			
Monoschaltung MONO	Х						


Vorhörkanal PFL

- NF Generator am LINE INPUT 1 anschliessen.
- Status der Bedienungselemente gemäss Tabelle erstellen.
- Eingangswahlschalter auf obere Stellung LINE positionieren.
- Leitungspegel / 1 kHz einspeisen.
- NF Voltmeter am INSERT SEND anschliessen.
- Kontrolle: Soll-Ausgangspegel am INSERT SEND = PPM Pulte > Leitungspegel.
 - VU Pulte > Leitungspegel minus Meter Lead (+4 dBu Standard).
- PFL Taste am Input Unit 1 drücken.
- PFL Taste am C.R. Monitor drücken.
- Meterwahlschalter auf Stellung Monitor.
- Kontrolle: Soll-Anzeige am Aussteuerungsmessinstrument = 0 dB.
- Korrektur: am Trimmpotentiometer R156 für linken Kanal, R161 für rechten Kanal.

EDITION: 22. Oktober 1990 3/23

2.5 Control Room Monitor Unit

1.970.920.00

Note:

For PFL adjustment the meter adjustment has to be done first.

Refer to 3. Alignment Instruction for Level Meters.

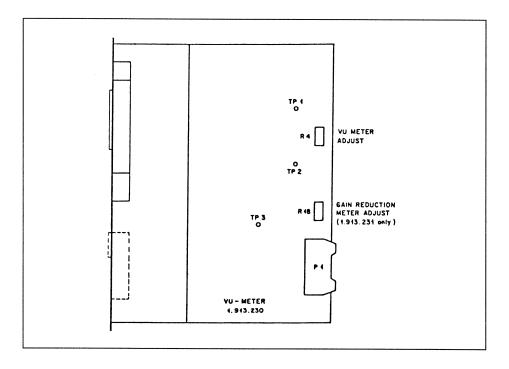
TABELLE / TABLE			STAT	JS	
Bedienungselement / oper. element			(Q	\Box
Output meter METER Σ	Х				
Automatic mode PFL TO MONITOR	Х				
Volume CR MONITOR		Х			
Balance BAL			Х		
Mono circuit MONO	Х				

Prefader Listening Channel PFL

- connect audio generator to LINE INPUT.
- set controls to the states specified in the table.
- turn the input selector to the upper LINE position.
- feed line level / 1 kHz.
- connect audio voltmeter to INSERT SEND.
- check: desired output level on INSERT SEND = PPM consoles line level.
 - VU consoles line level minus meter lead (+4 dBu standard).
- depress PFL button on INPUT UNIT 1.
- depress PFL button on C.R. MONITOR UNIT.
- depress METER button on the C.R. MONITOR's meter section (PFL level is shown on meters).
- check: meter indication, desired indication 0 dB.
- correction: with trimmer potentiometer R156 for PFL left channel, R161 for right channel.

3/24 EDITION: 22. Oktober 1990

3. Einmess - Anleitung der Anzeigeinstrumente


3.1 VU-Meter 1.913.230/231

TP1: Variabel (0,1 V...0,35 V_{eff.})

TP2: 1 V_{eff.}

TP3: -3,6 V p Vollweg-Gleichrichtung

Mit R4 kann die Referenzanzeige (0 VU) für Eingangssignale zwischen 0 dBu und + 10 dBu eingestellt werden.

EDITION: 22. Oktober 1990 3/25

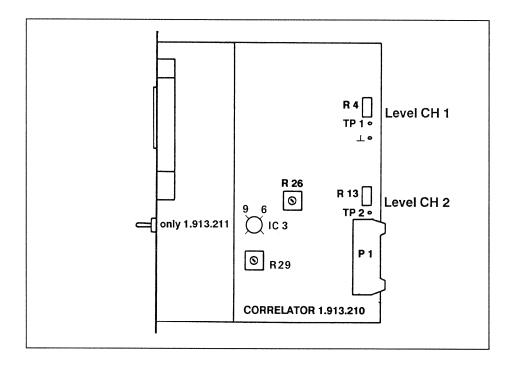
3.2 Peak Program Meter (PPM)

1.913.220/221

- 1. Summen-Ausgang auf Leitungspegel (1kHz) einstellen.
- 2. Mit **R4** (Fig. 4) am summenzugehörigen Instrument Zeigerausschlag auf 0 dB einstellen. (+3,5 V an TP2)

Hinweis:

Die Trimmpotentiometer R23, R28 und R34 dienen dem werkseitigen Skalenabgleich.


R28: OdB - Anzeige am InstrumentR34: -30dB - Anzeige am InstrumentR23: -40dB - Anzeige am Instrument

Die mechanische Nullstellung des Messwerkes liegt bei Referenzanzeige 0dB. Für Pegel, deren Anzeige 0 ...+6dB ergibt, wechselt die Polarität der Ausgangsspannung am Verstärker.

3/26

3.3 Korrelator 2CH/4CH

1.913.210/211

1. An beiden Eingängen wird ein gleichphasiges 1 kHz-Signal mit Leitungspegel eingespiesen.

R4 bzw. **R13** so einstellen, dass an den Messpunkten **TP1** bzw. **TP2** ein Pegel von 100 mV AC gegen $^{\perp}$ (Masse) erscheint.

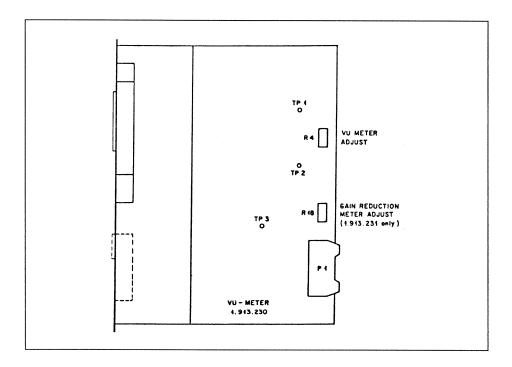
- 2. Eingangspegel um 50 dB verringern. KO an den Ausgang 6 oder 9 von IC3 gegen Masse [⊥] anschliessen. Die Amplituden beider Halbwellen mit R29 auf gleiche Höhe einstellen.
- 3. Eingangspegel wieder auf Leitungspegel einstellen. Mit R26 den Zeiger des Anzeigeinstrumentes auf +1 einstellen.
- 4. Einen der beiden Eingänge umpolen. Das Messinstrument soll –1 anzeigen.
- 5. Anzeigen gemäss Tabelle kontrollieren.

EINGANG	30 Hz	1 kHz	15 kHz
Leitungspegel = A	0,95	1	0,95
A + 20 dB	~ 1	1	~ 1
A - 20 dB	0,6	~ 1	0,5

EDITION: 22. Oktober 1990

3. Alignment Instruction for plug in Units

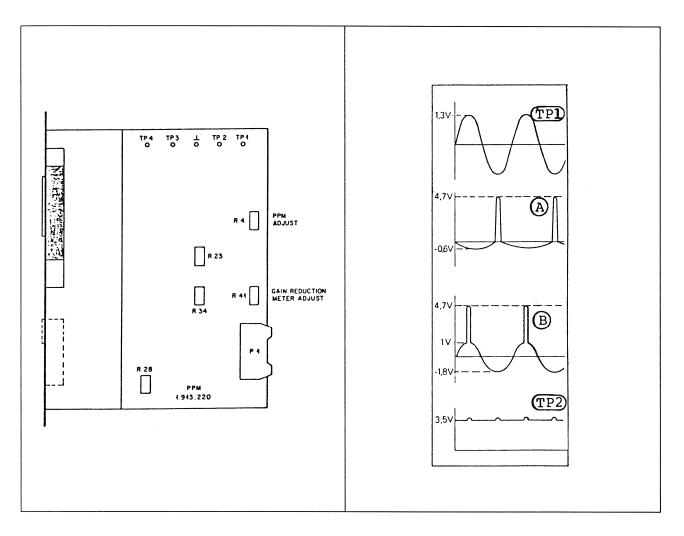
3.1 VU Meter


1.913.230/231

TP1: Variable (0,1 V ... 0,35 V_{eff.})

 $TP2: \ 1 \ V_{\rm eff.}$

TP3: - 3,6 V p full-wave rectification


The reference indication (0 VU) for input signals between 0 dBu and \pm 10 dBu can be adjusted with R4.

EDITION: 22. Oktober 1990 3/29

3.2 Peak Program Meter (PPM)

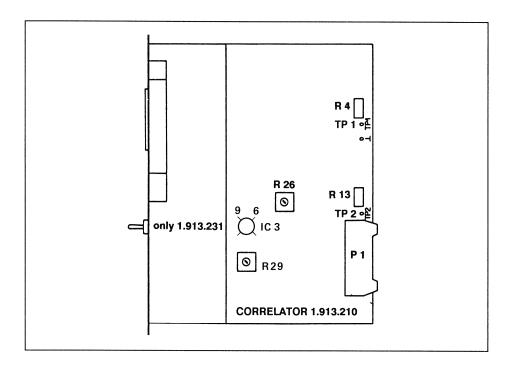
1.913.220/221

- 1. Line-level +6...+15 dB 1 kHz at input.
- 2. +3,5 V at TP2 adjust with **R4** (level PPM)

Note: The variable resistors R23, R28 and R34 are used for factory adjustment of the indicating scale.

R28 adjustment of 0dB indication.

R34 adjustment of -30dB indication.


R23 adjustment of -40dB indication.

The mechanical zero position of the instrument corresponds to the reference indication 0 dB. For levels which give a deflection of 0...+6 dB on the scale, the amplifier 4.2 changes the polarity of the output voltage.

3/30 EDITION: 22. Oktober 1990

3.3 Correlater 2CH/4CH

1.913.210/211

- Feed both inputs with an in-phase signal (1 kHz, line level).
 Adjust R4 and R13 in such a manner that 100 mV ACCorrelation appear at both test points TP1 or TP2, against ground.
- Reduce the input level by 50 dB. Connect oscilloscope to pin 6 or 9 of IC3 to ground. With R29 adjust the amplitudes of both halfwaves to equal height.
- 3. Restore input level to line level. With **R26** adjust the pointer of the meter to +1.
- 4. Reverse the polarity of one of the inputs. The meter should indicate -1.
- 5. Check meter readings according to the following table.

Input	30 Hz	1 kHz	15 kHz
Line level = A	0,95	1	0,95
A + 20 dB	~ 1	1	~ 1
A - 20 dB	0,6	~ 1	0,5

4 Einschubmodule

1.970....

1.	Eingangseinheit Mono 1.970.741	1
	1.1 Bedienungselemente	1
	1.2 Blockschaltbild	
	1.3 Steuertasten	3
	1.4 Entzerrer	
	1.5 Einschleifpunkt	
	1.6 Signalisation und Faderstart	10
	1.7 Schemateil	
	1.8 Switch Unit 1.970.790	34
	1.9 Extension Unit 1.970.792	35
2.	Stereo Hochpegeleinheit ohne Entzerrer 1.970.753	37
	Stereo Hochpegeleinheit mit Entzerrer 1.970.754	
	2.1 Bedienungselemente	37
	2.2 Blockschaltbild	
	2.3 Steuertasten	
	2.4 Entzerrer	
	2.5 Einschleifpunkt	
	2.6 Signalisation und Faderstart	
	2.7 Schemateil	
3.	Master Unit 1.970.841	71
	3.1 Bedienungselemente	71
	3.2 Limiter / Kompressor	72
	3.3 Blockschaltbild	75
	3.4 Schemateil	77
4.	Studio Monitor, Aux Master- und Kommandoeinheit 1.970.901	85
	4.1 Bedienungselemente	85
	4.2 Blockschaltbild	87
	4.3 Schemateil	89
5.	Kontrollraum (CR) Monitoreinheit 1.970.920	
	5.1 Bedienungselemente	
	5.2 Option	
	5.3 Blockschaltbild	
	5.4 Schemateil	101
6.	Monitorerweiterung 1.970.952	
	6.1 Blockschaltbild	
	6.2 Schemateil	111

4 Plug in Units

1.970....

1.	Input Unit Mono 1.970.741	.11
	1.1 Operating Elements	. 11
	1.2 Block Diagram	
	1.3 Control Keys	. 13
	1.4 Equalizer	. 19
	1.5 Insertion Point	. 20
	1.6 Signalization and Fader Start	. 20
	1.7 Circuit Diagrams	. 21
	1.8 Switch Unit 1.970.790	. 34
	1.9 Extension Unit 1.970.792	. 35
2.	Stereo High-Level Unit without Equalizer 1.970.753	. 47
	Stereo High-Level Unit with Equalizer 1.970.754	
	2.1 Operating Elements	
	2.2 Block Diagram	. 48
	2.3 Control Keys	. 49
	2.4 Equalizer	. 55
	2.5 Insertion Point	. 56
	2.6 Signalization and Fader Start	
	2.7 Circuit Diagrams	. 57
3.	Master Unit 1.970.841	
	3.1 Operating Elements	
	3.2 Limiter / Compressor	
	3.3 Block Diagram	. 75
	3.4 Circuit Diagrams	. 77
4.	Studio Monitor, Aux Master and Talk-back Unit 1.970.901	. 86
	4.1 Operating Elements	
	4.2 Block Diagram	. 87
	4.3 Circuit Diagrams	. 89
5.	Control Room Monitor Unit 1.970.920	. 97
	5.1 Operating Elements	. 97
	5.2 Option	
	5.3 Block Diagram	. 99
	5.4 Circuit Diagrams	101
6.	Monitor Expansion Unit 1.970.952	108
	6.1 Block Diagram	109
	6.1 Circuit Diagrams	111


4 Plug in Units

1.970....

1. Eingangseinheit Mono

1.970.741

1.1 Bedienungselemente

EDITION: 5. Oktober 1990

OVERLOAD: Die mit Overload bezeichnete LED leuchtet auf, sobald der maximal zulässige Pegel vor oder nach dem Flachbahnregler überschritten wird.

EINGANGSTEIL: MIC: Symmetrisch, erdfreier Mikrophoneingang. Eingangsempfindlichkeit –70...–10 dBu. Schaltbar in 4 Stufen zu 15 dB, dazwischen mit Potentiometer stetig einstellbar im Bereich 0...15 dB. Der maximale Eingangspegel am Mikrophoneingang darf +6 dB

betragen.

PHANTOM: Zuschaltbare 48 Volt Phantomspeisung.

LINE: Hochpegeleingang, symmetrisch, erdfreier Eingang. Eingangsempfindlichkeit –10...+20 dBu. Schaltbar in 2

Stufen zu 15 dB, dazwischen stetig einstellbar im

Bereich 0...15 dB.

GEN: Tongeneratoreingang über Sammelschiene vom pultin-

ternen Tongenerator gespeist.

Ø: Phasenumkehrschalter, wirkt auf alle Eingänge.

FILTER: Schaltbare Tiefensperre mit 12 dB/Okt., Grenzfrequenz

75 Hz.

ENTZERRER: Siehe 1.4

HILFSAUSGÄNGE Zwei getrennt regelbare Hilfsausgänge sind über die an AUX 1 und AUX 2: den Potentiometer angebauten Zug-Druckschalter vor

(PF) oder nach (AF) Flachbahnregler schaltbar.

PAN. POT.: Das Panorama-Potentiometer kann mit dem Zug-

Druckschalter aktiviert werden.

SUMMENWAHL: Stereo und 2 Kanal-Pulte sind mit zwei Tasten zur

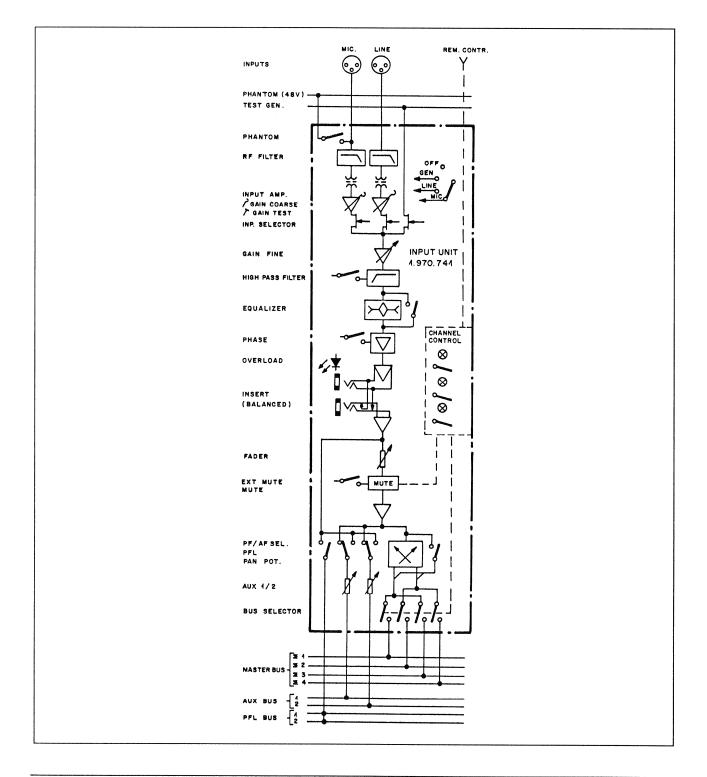
getrennten Anwahl der Sammelschienen $\Sigma 1$ und $\Sigma 2$ bestückt. 4 Kanal-Pulte sind mit vier Tasten $\Sigma 1$... $\Sigma 4$

bestückt.

MUTE-FUNKTION: Auf dem fünfzehnpoligen D-Type Stecker (REM-

CONTR) kann der Kanal knackfrei stummgeschaltet werden. Die Mute LED-Anzeige signalisiert die

aktivierte Funktion.


FLACHBAHN- Der Flachbahnregler ist mit einer Widerstandsschicht

REGLER: aus leitendem Kunststoff ausgerüstet.

STEUERTASTEN: Die drei grossen Drucktasten sind unter Punkt 1.3

beschrieben.

1.2 Blockschaltbild 1.970.741

4/2

1.3 Steuertasten

Vor dem Flachbahnregler sind drei geräuscharme Drucktasten mit Signallampen angebracht. Die Funktionen können im Einschub durch umstecken von Miniatur-Brückensteckern verändert werden.

Es sind 3 Grundversionen vorgesehen:

Version 1 (Fig.1)

- Das Vorhörsignal PFL (Pre fader listening) wird zum Vorhörlautsprecher und zum Kopfhörer durchgeschaltet. Ein weiterer Tastendruck unterbricht dieses Signal wieder.
- Gleichzeitig wird die Signallampe ein- oder ausgeschaltet.

- Schaltet den Modulationsweg durch, sofern Sammelschiene angewählt und Flachbahnregler geöffnet sind.
- ON-Lampe leuchtet.
- PFL wird unterbrochen, wobei aber die PFL-Lampe weiterleuchtet um den vorher angewählten Zustand anzuzeigen.
- Signalisation resp. Faderstart-Relais wird durchgeschaltet, sofern die übrigen Kriterien erfüllt sind (siehe 1.6, Signalisation und Faderstart).
- Automatische Stoppuhr wird zurückgesetzt. (Option)

OFF

- Modulation wird unterbrochen.
- Signalisation und Faderstart-Relais fallen ab.
- Falls die PFL-Taste angewählt war, wird nun das Vorhören wieder durchgeschaltet.
- ON-Lampe erlöscht.

OFF-Lampe:

Wird von Extern aktiviert und kann den Bereitschaftszustand der Quelle signalisieren.

Fernsteuerung:

Alle Tasten und Lampensignale sind auch auf einem fünfzehnpoligen D-Type Stecker verfügbar. Obige Funktionen können also auch ferngesteuert werden.

EDITION: 16. November 1990 4/3

Blockschaltbild Fernsteuerung:

(Standard)

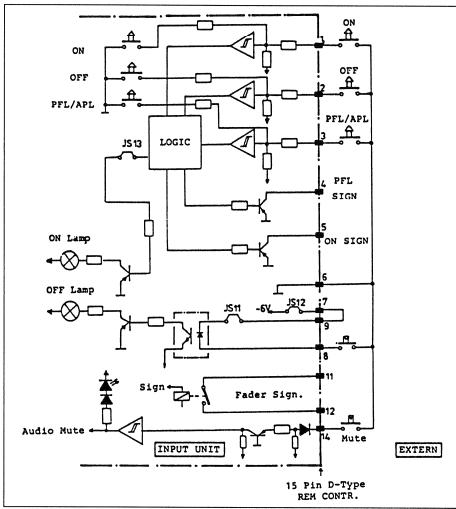


Fig. 1

Version 2

APL ON OFF

 Gleiche Funktion wie in Version 1, mit der Ausnahme, dass anstelle des Vorhörsignales vor Flachbahnregler, dasjenige nach Regler (APL) durchgeschaltet wird.

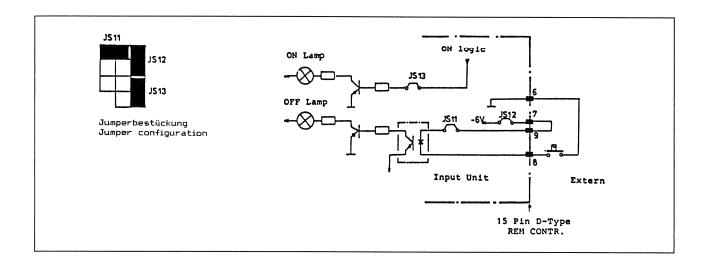
Version 3

AUDITION

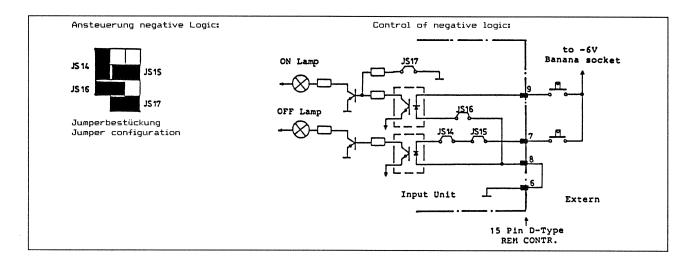
- Schaltet den Kanal durch und wählt die Summen Σ3+Σ4 an (Eingangseinheiten dieser Version sind nicht mit Sammelschienenwahltasten ausgerüstet).
- AUDITION-Lampe wird eingeschaltet.
- Signalisation wird aktiviert.
- Timer Restart.

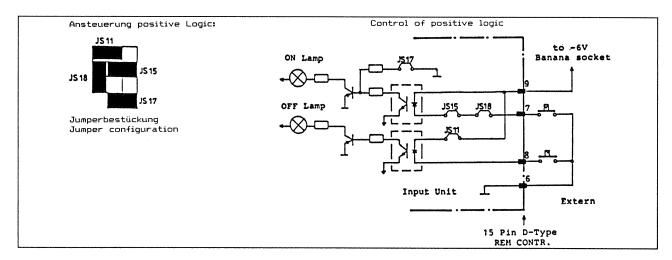
ON AIR

- Schaltet den Kanal durch und wählt die Summen $\Sigma 1 + \Sigma 2$ an.
- Die ON AIR Lampe wird eingeschaltet.
- Signalisation wird aktiviert
- Timer Restart.


0FF

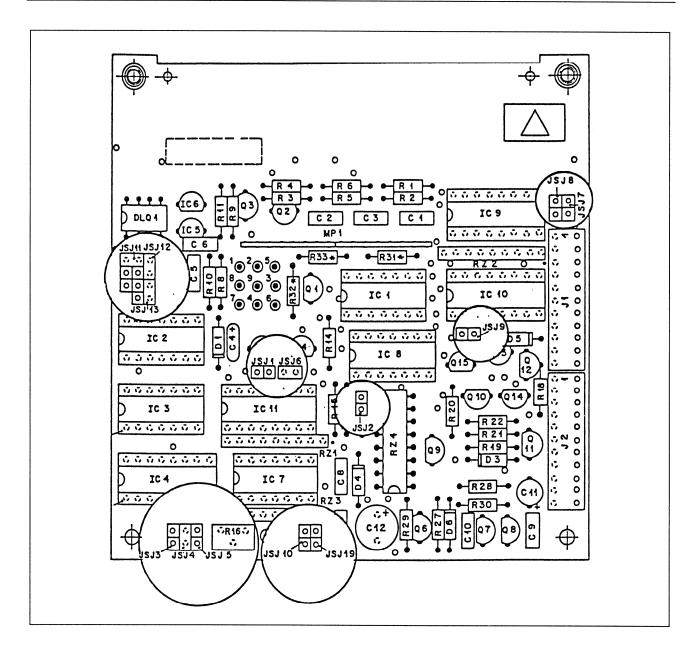
- Setzt sowohl AUDITION- als auch ON AIR-Taste zurück.
- Signalisation wird inaktiv.

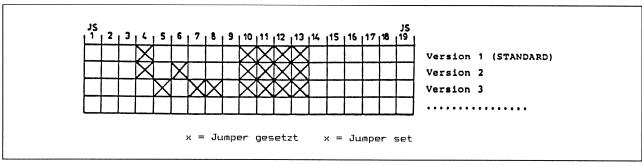

EDITION: 5. Oktober 1990 4/5


Codierung für externe OFF-Lampensteuerung

(Standard)

Codierung für externe ON- und OFF-Lampensteuerung





4/6

Jumpercodierung für Extension Unit

1.970.792

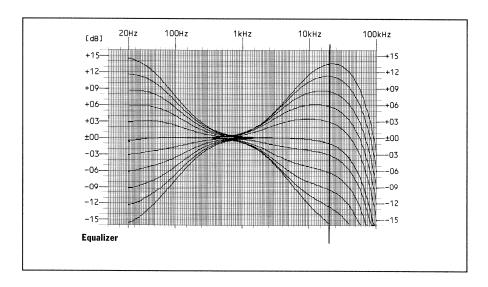
EDITION: 5. Oktober 1990 4/7

STUDER AUDIO CONSOLE 970

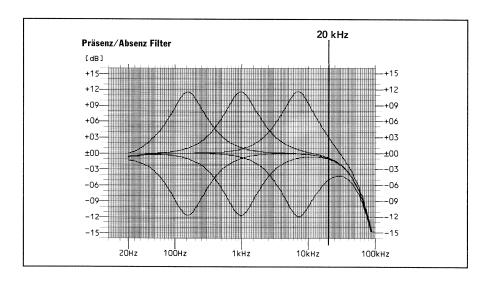
MONO INPUT UNIT

Optionen

Ort	Jumper	Funktionen
JS1	gesetzt frei	OFF Lampe leuchtet, wenn ON-Taste ausgeschaltet ist. Keine Funktion
JS1 und JS2	gesetzt frei	OFF Lampe leuchtet, wenn ON-Taste und PFL/APL-Taste ausgeschaltet sind. Keine Funktion
JS3	gesetzt frei	PFL/APL-Taste <u>nur</u> einschaltend PFL/APL-Taste selbstauslösend (Toggle switch)
JS4	gesetzt frei	ON-Taste <u>nur</u> einschaltend ON-Taste selbstauslösend (Toggle switch)
JS5	gesetzt frei	OFF-Taste setzt die PFL/APL-Taste zurück Keine Funktion
JS6	gesetzt frei	APL (After Pan Listening) Version 2 PFL (Pre Fader Listening) Version 1 STANDARD
JS7	gesetzt frei	ON AIR-Taste schaltet $\Sigma 1+2$ durch. AUDITION-Taste schaltet $\Sigma 3+4$ durch. Version 3 Keine Funktion
JS9	gesetzt frei	PFL/APL-Taste steuert direkt das Line Relay an. Nur für Version 1+2! Keine Funktion
JS19	gesetzt frei	Timer-Restart Funktion ist ausgeschaltet. Timer-Restart Funktion ist eingeschaltet.


4/8 EDITION: 5. Oktober 1990

1.4 Entzerrer


Der Entzerrerteil ist mit der Drucktaste EQ IN überbrückbar. Die Tiefensperre ist davon nicht betroffen.

Fächerentzerrer für Höhen und Tiefen.

Bereich ±15 dB bei 20 Hz / 20 kHz.

Parametrisches Glockenkurven-Filter mit einstellbarer Mittenfrequenz von 150 Hz...7 kHz. (Q=1) Anhebung/Abschwächung ± 11 dB

EDITION: 5. Oktober 1990 4/9

1.5 Einschleifpunkt

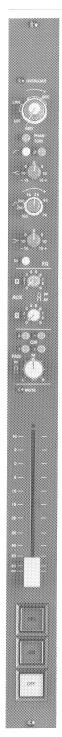
Vor dem Flachbahnregler wird das Tonsignal elektronisch symmetriert und über zwei auf der Pultrückseite befindliche Bantam Jack Buchsen geführt. Der Einschleifpegel beträgt +6 dBu.

1.6 Signalisation und Faderstart

Steht der Eingangswahlschalter in MIC-Position, dann wird auf der Signalisationssammelschiene ein logisches Signal gegeben, sobald folgende Kriterien erfüllt sind:

- Kanalregler geöffnet
- Summenregler geöffnet
- Summenwahltaste betätigt
- Mute Funktion nicht aktiv
- Kanal mit ON-Taste eingeschaltet

Das summierte Signal wird in der Monitoreinheit zur Steuerung der Studiosignalisierung weiterverwendet.


Steht der Eingangswahlschalter unter gleichen Bedingungen in Stellung LINE, so wird das im Eingangskanal eingebaute Fernsteuerrelais aktiviert. Der auf dem fünfzehnpoligen D-Type Stecker (REM-CONTR) greifbare Arbeitskontakt des Relais kann zur Fernsteuerung von Plattenspielern oder Tonbandgeräten eingesetzt werden.

4/10 EDITION: 5. Oktober 1990

Input Unit Mono 1.

1.970.741

1.1 **Operating Elements**

OVERLOAD: The LED labelled "overload" turns on as soon as the

maximum level before or after the fader has been

exceeded.

INPUT SECTION: MIC: Balanced, floating Microphone input. Sensitivity

-70...10 dBu, switchable in four 15 dB steps, continuously variable between steps from 0...15 dB by means of potentiometer. The maximum input must not

exceed +6 dB.

PHANTOM: Switchable 48V supply voltage.

LINE: High-level input, balanced and floating input. Input

sensitivity -10...+20 dBu, switchable in two 15 dB steps. continuosly variable between steps from 0...15 dB.

GEN: Tone generator input, supplied via bus from the built-in

tone generator

Ø: Phase inversion switch, influence all inputs.

FILTER: Switchable bass cut with 12 dB/oct., cut off frequency of

75 Hz.

EQUALIZER: See 1.4

AUXILIARY OUTPUTS

AUX 1 and AUX 2:

Two separately adjustable auxiliary outputs can be connected before or after the linear fader by means of

the push-pull switches on each potentiometer.

PAN. POT AND:

The panorama potentiometer can be activated with the

push-bull switch.

MASTER SELECTION: Stereo and 2CH mixers are equiped with two push

buttons for individual selection of master $\Sigma 1$ and $\Sigma 2$. 4CH mixers are equiped with four push buttons

Σ1 ... Σ4.

MUTE FUNCTION:

The channel can be muted without switching clicks on

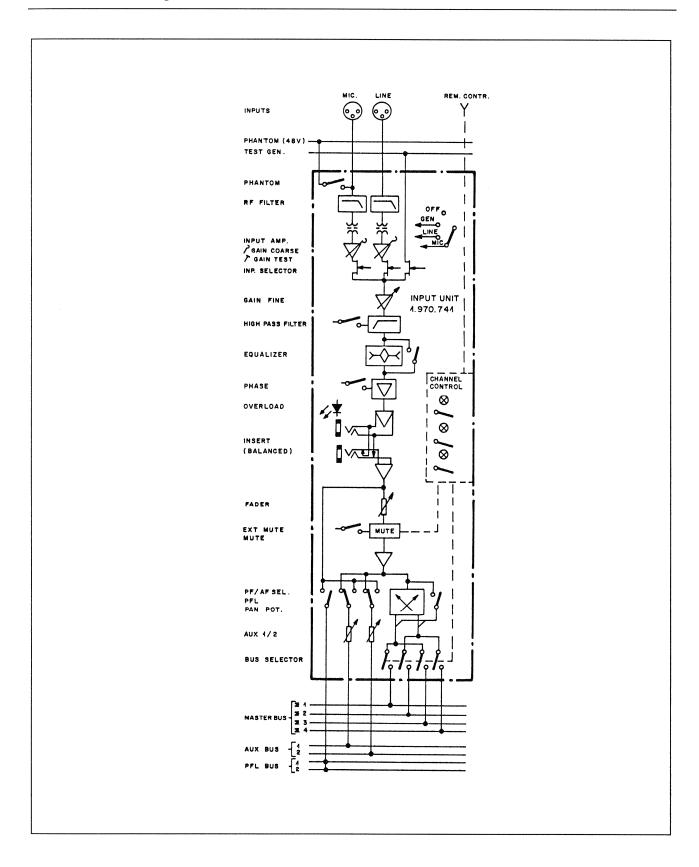
the 15-pin D-type connector (REM-CONTR). The mute

LED indicates that the function is active.

LINEAR FADER:

The linear fader is equiped with a resistive film made of

conductive plastic.


CONTROL KEYS:

See 1.3

4/11 EDITION: 5. Oktober 1990

1.2 Block Diagram

1.970.741

4/12 EDITION: 5. Oktober 1990

1.3 Control Keys

Three low-noise keys with signal lamps are located before the fader. The functions of the keys can be altered by changing the position of the mini-jumpers on this unit.

Three basic versions are available:

Version 1 (Fig.1)

- The prefader listening signal (PFL) is connected to the prelistening speaker and to the headphones. The signal is interrupted when this key is pressed a second time.
- At the same time the signal lamp is turned on or off.

- Trough-connects the modulation path, provided the bus is selected and the fader is opened.
- ON lamp is turned on.
- PFL is interrupted, however the PFL lamp remains switched on to signal the previously selected state.
- Signalization or fader start relay is through-connected, provided the other criteria are satisfied. (see 1.6, signalization and fader start)
- Automatic stopwatch is reset (option)

OFF

- Modulation is interrupted.
- Signalization and fader start relay droped out.
- If the PFL-key was selected, prelistening is again through-connected.
- ON lamp turns off.

OFF-Lamp:

Is activated externally and can signal the ready state of the source.

Remote Control:

 All key and lamp signals are available on a 15-pin D-type connector. The above functions can also be remote-controlled.

Block diagram of remote controls:

(Standard)

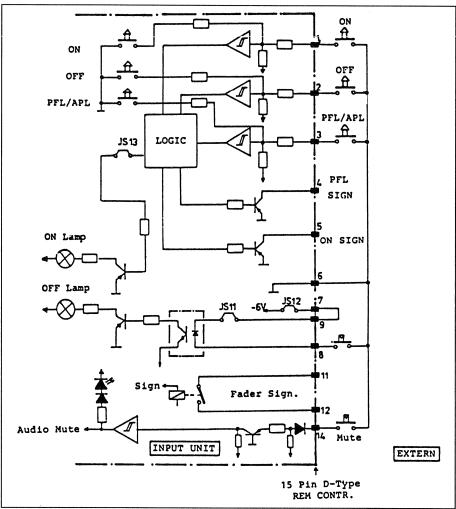


Fig. 1

Version 2

APL ON OFF

Same function as version 1, except that the prelistening signal after the panorama potentiometer (APL) is connected rather than the signal before the fader.

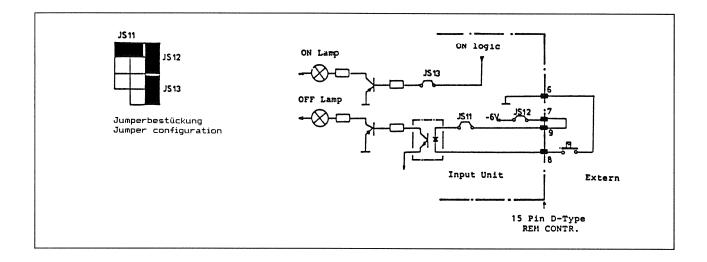
Version 3

AUDITION

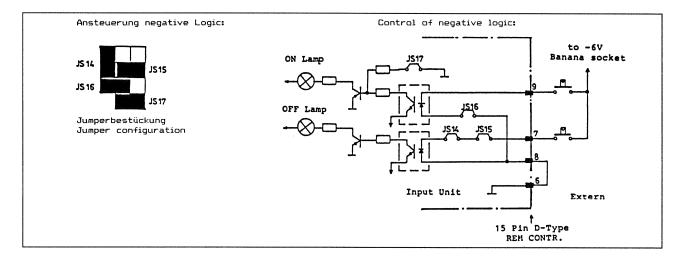
- Through–connects the channel and selects master $\Sigma 3 + \Sigma 4$ (the input units of this version are not equiped with bus selection buttons).
- AUDITION lamp is turned on.
- Signalization is enabled.
- Timer restart.

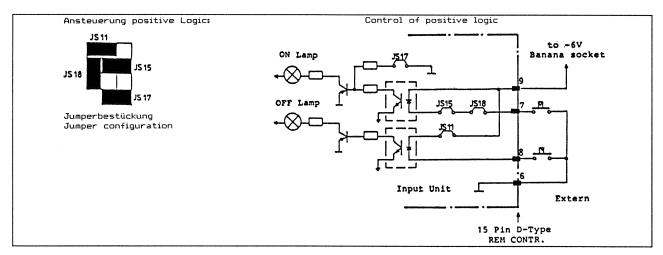
ON AIR

- Trough-connects the channel and selects the master $\Sigma 1 + \Sigma 2$.
- The ON AIR lamp is turned on.
- Signalization is enabled.
- Timer restart.


OFF

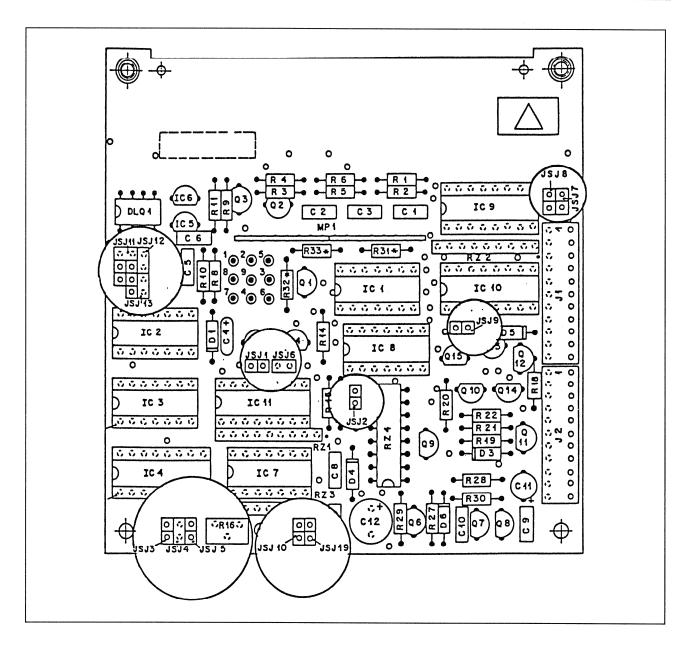
- Resets not only the AUDITION but also the ON AIR key.
- Signalization is disabled.


EDITION: 5. Oktober 1990


Coding for external OFF lamp control

(Standard)

Coding for external ON and OFF lamp control





4/16 EDITION: 5. Oktober 1990

Jumper coding for extension unit

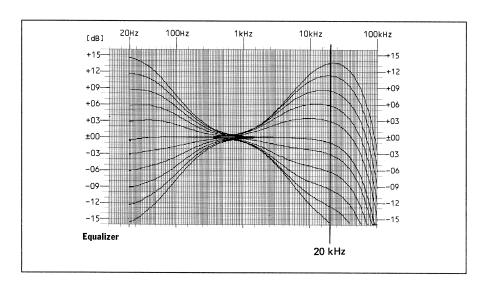
1.970.792

EDITION: 5. Oktober 1990 4/17

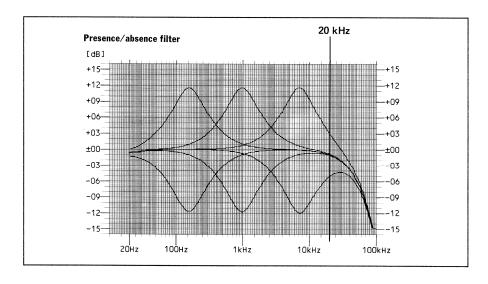
STUDER AUDIO CONSOLE 970

MONO INPUT UNIT

Options


Location	Jumper	Function
JS1	Set Not set	OFF lamp is light when the ON keys switched off. No function
JS1 und JS2	Set Not set	OFF lamp is light when the ON key and the PFL/APL key are switched off. No function
JS3	Set Not set	PFL/APL key only on-switching PFL/APL key self-releasing (toggle switch)
JS4	Set Not set	ON key only on-switching ON key self-releasing (toggle switch)
JS5	Set Not set	OFF key resets the PFL/APL key No function
JS6	Set Not set	APL (after pan listening) version 2 PFL (prefader listening) version 1 STANDARD
JS7	Set Not set	ON AIR key enables $\Sigma 1+2$. AUDITION key enables $\Sigma 3+4$. Version 3 No function
JS9	Set Not set	PFL/APL key directly controls the line relay. Only for version 1+2! No function
JS19	Set Not set	Timer restart, function is disabled. Timer restart, function is enabled.

4/18 EDITION: 5. Oktober 1990


1.4 Equalizer

The entire equalizer section is only enabled if the EQUALIZER IN key is pressed. The bass cut filter is not affected by this.

Shelving equalizer for treble and bass. Range at 20 Hz / 20 kHz: ± 15 dB.

Parametric filter with adjustable center frequenzy: 150 Hz...7 kHz (Q=1) Emphasis / de-emphasis: ± 11 dB

EDITION: 9. November 1990 4/19

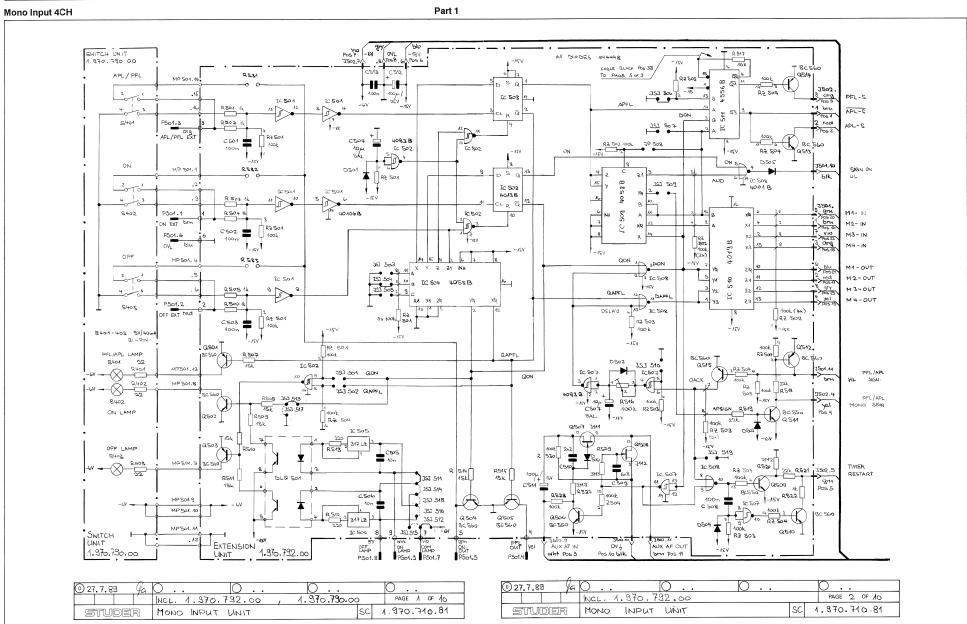
1.5 Insertion Point

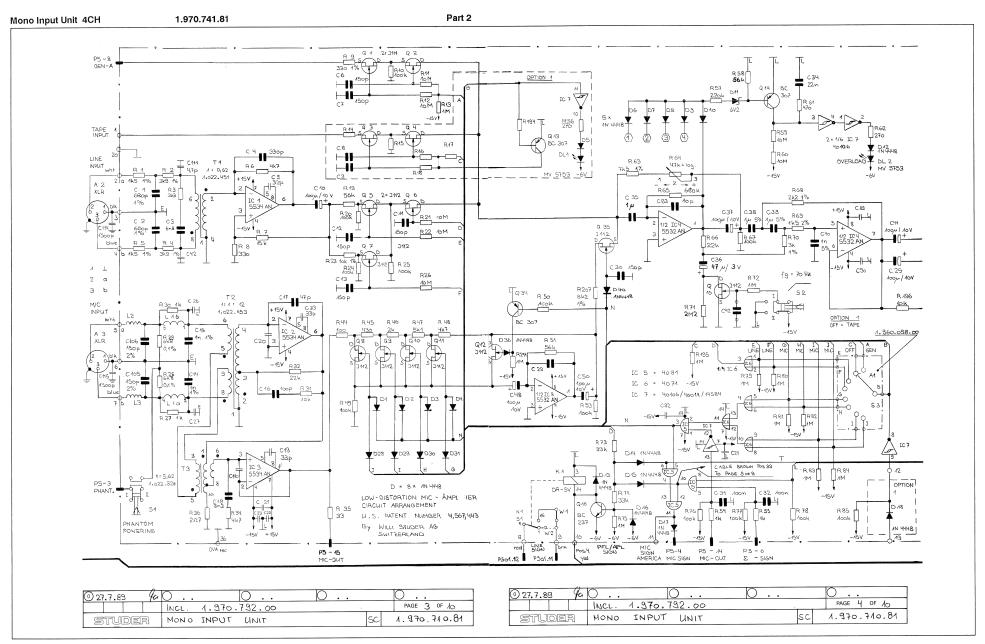
Before the linear fader the audio signal is electronically balanced and taken to two rearpanel bantam jack sockets. The insertion level is +6 dBu.

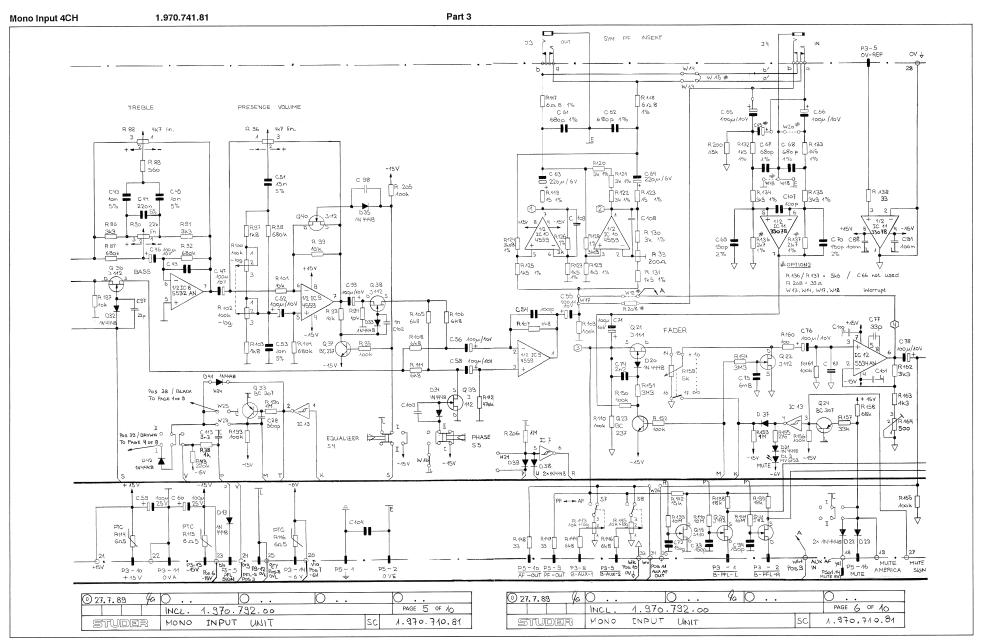
1.6 Signalization and Fader Start

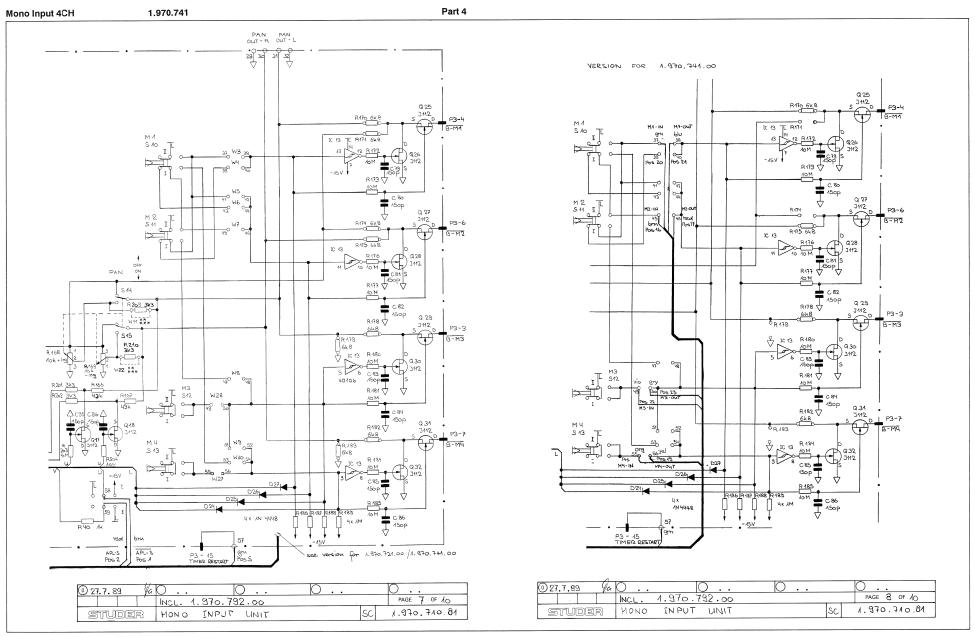
When the input selector switch is in the MIC position, a logical signal is applied to the signalization bus as soon as the following criteria are satisfied:

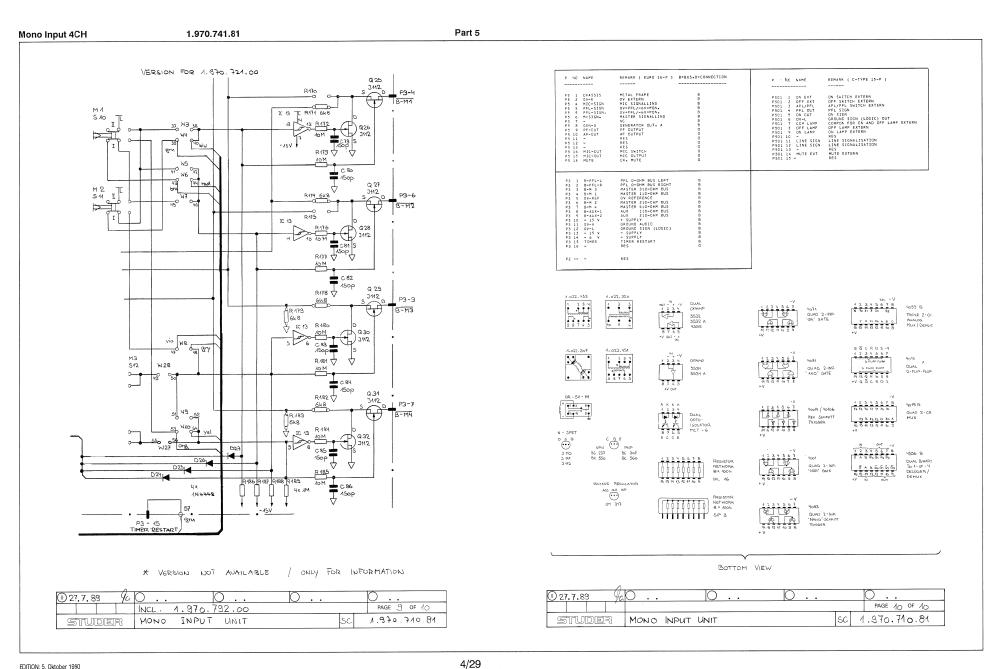
- Channel fader open
- Master fader open
- Master selection key pressed
- Mute function not active
- Channel enabled with ON key.

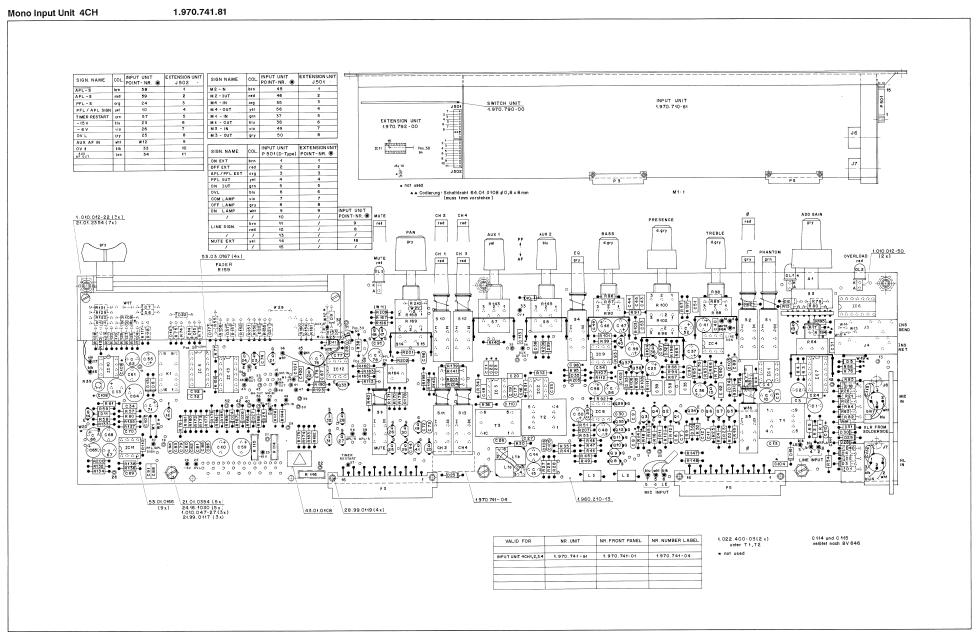

The aggregate signal is used in the monitor unit for controlling the studio signalization.


If under the same conditions the input selector is in the LINE position, the remote control relay built into the input channel is activated. The relay make contact available on the 15-pin D-type REM-CONTR connector can be used for the remote control of turntables or tape recorders.


4/20 EDITION: 5. Oktober 1990


1.7 Schemateil / Circuit Diagrams


1.970.741.81



EDITION: 5. Oktober 1990

Mono-In	put-Unit	970					1.970.71	0.81			
AdP0\$	REF.No	DESCRIPT	ION			MANJFACTURER	AdPOS	REF.No	DESCRIPTION	DN	MANUFACTURER
A1 A2 A3 C1 C2 C3 C3	1.960.098.00 1.012.301.00 1.012.301.00 59.05.1681 59.05.1681 59.06.0682 59.34.4331 59.34.2330	3 pin 3 pin 680 pF 680 pF 6.8 nF 330 pF 33 pF 150 pF	SWITCH XLR fe XLR fe 1% 1% 10%	I-BOARD male male 500V 500V	PP PP PE CE CE CE	St St St	C102 C103 C104 C105 C106 C107 C108 C109 C110	59.06.5102 59.34.7151 59.34.7151 59.34.4101	1 nF not used not used 150 pF 150 pF 100 pF not used not used not used	PE 2% CE CE CE	
C6 C7 C8 C9 C10	59.34.4151 59.34.4151 59.22.3101	not used not used not used 100 uF	-20%	100	EL		C111 C112 C113 C114 C115	59.34.0479 59.06.0332 59.99.0625 59.99.0625	4.7 pF not used 3.3 nF 1500 pF 1500 pF	CE PE 400V CE 400V CE	
C11 C12 C13 C14 C15 C16 C17 C18 C19 C20	59.34.4151 59.34.4151 59.34.4151 59.05.1102 59.05.1102 59.34.4101 59.34.2470 59.06.0332 59.34.2330	150 pF 150 pF 150 pF 1 nF 1 nF 100 pF 47 pF 3.3 nF 33 pF not used	1% 1% 10%	500V 500V	CE CE PP CE CE PE CE		D1 D2 D3 D4 D5 D6 D7 D8 D9 D10	50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125	1N4448 1N4448 1N4448 1N4448 not used 1N4448 1N4448 1N4448 1N4448 1N4448		any any any any any any any any any
C21 C22 C23 C24 C25 C26 C27 C28 C29 C30	59.22.3101 59.34.5561 59.34.4151	not used not used not used 100 uf not used not used 560 pf not used 150 pf	-20%	107	CE		D11 D12 D13 D14 D15 D16 D17 D18 D19	50.04.1118 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125	Z 6.2V 1N4448 1N4448 1N4448 1N4448 1N4448 not used 1N4448 1N4448	400mM BZX83C 6.2,B	ZX55C 5.2,ZPD 6.2 Ses,ITT any any any any any any any any any any
C31 C32 C33 C35 C36 C37 C38 C39	59.06.0104 59.06.0104 59.34.233 59.06.0223 59.06.5105 59.30.2470 59.22.3101 59.06.5105 59.06.5105 59.06.5105	100 nF 100 nF 33 pF 22 nF 1 uF 47 uF 100 uF 1 uF 1 uF	-20% -20% 5% 5% 5%	6.3V 10V	PE PE PE TA EL PE PE PE		D21 D22 D23 D24 D25 D26 D27 D28 D28	50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125	1N4448 1N4448 1N4448 1N4448 1N4448 1N4448 1N4448 1N4448 1N4448		any any any any any any any any any
C41 C42 C43 C45 C46 C47 C48 C49 C50	59.22.3101 59.06.5103 59.06.5224 59.06.5103 59.22.3101 59.22.3101 59.22.3101 59.22.3101	100 uF not used 10 nF 220 nF 10 nF 100 uF 100 uF 100 uF not used 100 uF	-20% 5% 5% 5% -20% -20% -20%	10V 10V 10V 10V	PE PE PE EL EL EL		D31 D32 D33 D34 D35 D36 D37 D38 D39 D40	50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125	1N4448 1N4448 1N4448 1N4448 1N4448 1N4448 1N4448 1N4448 1N4448		any any any any any any any any any
C51 C52 C53	59.06.5153 59.22.3101 59.06.5103	15 nF 100 uF 10 nF	5% -20% 5%	100	PE EL PE CE		D41 D42	50.04.0125 50.04.0125	1N4448 1N4448		any any
C53 C54 C55 C56 C57	59.34.4101 59.22.3101 59.22.3101	100 pF 100 uF 100 uF not used 100 uF	-20% -20% -20%	10V 10V	EL		DL1 DL2 DL3	50.04.2111 50.04.2111	not used MV5753 MV5753	red red	GI,HP GI,HP
C60 C61 C62 C63 C64	59.22.3101 59.22.4101 59.22.4101 59.05.1681 59.05.1681 59.22.2221 59.22.3101 59.22.3101 59.05.1681 59.05.1681	100 uF 100 uF 680 pF 680 pF 220 uF 220 uF 100 uF 100 uF 680 pF 680 pF	-20% -20% -20% -20% -20% -20% -20% -20%	16V 16V 500V 500V 6V 6V 10V 500V	PP PP EL EL EL PP	option 2	IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 IC10	50.05.C244 50.05.C244 50.05.C244 50.09.C106 50.07.C081 50.07.C022 50.07.C014 50.09.0106 50.09.0107	NE5534NB NE5534NB NE5534NB NE5532AN CD4081 CD4071 CD40106 NE5532AN RC4559 RC4559	hex.schmitt-trig. dual op.amp. dual op.amp. dual op.amp.	Dow noise
C66 C67 C68 C69 C70	59.34.7151 59.34.7151 59.22.3101	150 pF 150 pF 100 uF	2% 2% -20%	500V	CE		IC11 IC12 IC13	50.09.0117 50.05.0244 50.07.0014	MC33078 NE5534NB CD40106	dual op. amp. single op. amp. hex.schmitt-trig.	low offset Mot low noise Sig,Ra CMOS MC14584; 40014 Fc,Mot
C72 C73 C74 C75 C77 C77 C78 C79	59.34.4151 59.34.4151 59.06.0222 59.06.0682 59.22.3101 59.34.2330 59.22.3101 59.34.4151	150 pF 150 pF 2.2 nF 6.8 nF 100 uF 33 pF 100 uF 150 pF	-20% -20%		PE PE EL CE		J1 J2 J3 J4 J5	54,24.0105 56.04.0190	not used not used not used DR-5V-H1	BANTAM- dual jack combined with J3	Switchcraft,ACE
C80	59.34.4151	150 pF			CE			1.022.207.00 62.01.0115 62.01.0115	DK-04 H2	hf-sym.choke hf-choke hf-choke	SI SI SI
C82 C83 C84 C85	59.34.4151 59.34.4151 59.34.4151 59.34.4151	150 pF 150 pF 150 pF 150 pF 150 pF			CE CE CE CE		MP1 MP2	53.03.0166 53.03.0167	11 pcs 4 pcs		
C86 C87 C88 C89	59.06.0104	not used 100 nF not used not used			PE		P1 P2 P3 P4 P5	54.11.2007 54.11.2007	not exist not used 2*8 pin not exist 2*8 pin	euroconnector euroconnector	Bi Bi
C91 C92 C93 C94 C95	59.06.0104 59.34.1100 59.34.4151	not used			CE CE		Q1 Q2 Q3	50.03.0216 50.03.0216	J 111 J 111 not used	N-JFET N-JFET	NS,Mot,Si NS,Mot,Si
C95 C96 C97 C98 C95 C100	59.34.4151 59.34.4151 59.34.4151 59.34.2220 59.22.3101 59.06.0104	150 pF 22 pF not used 100 uF 100 nF	-209	s 10°	CE CE CE CE PE		Q4 Q5 Q6 Q7 Q8 Q9	50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350	not used J 112 J 112 J 112 J 112 J 112 J 112 J 112	N-JFET N-JFET N-JFET N-JFET N-JFET N-JFET	NS,Mot,Si NS,Mot,Si NS,Mot,Si NS,Mot,Si NS,Mot,Si NS,Mot,Si

C...101 59.06.0104 100 nF PE 4...12 59.09.0950 5 112 n-3rE: INSTRUCTION S. Oktober 1990

Mono-Input-Unit 970 1.970.710.81

 	REF.No			MANUFACTURER	AdPOS		DESCRIPTION 33 kOhm	5% 0.25W	MANUFACTUE	RER
Q13 Q14 Q15 Q16 Q17 Q18 Q18	50.03.0350 50.03.0350 50.03.0515 50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.1130	J 112 J 112 not used BC 307 J 112 BC 237 J 112 J 112 J 110	N-JFET N-JFET PNP N-JFET NPN N-JFET N-JFET N-JFET	NS,Mot,Six NS,Mot,Six IC>100mA, B>100 any NS,Mot,Six IC>100mA, B>100 Ns, any NS,Mot,Six NS,Mot,Six NS,Mot,Six NS,Mot,Six NS,Mot,Six NS,Mot,Six	R73 R74 R75 R76 R77 R78 R79 R80	57.11.3333 57.11.3303 57.11.3105 57.11.3104 57.11.3104 57.11.3105 57.11.3105	33 kOhm 33 kOhm 1 MOhm 100 kOhm 100 kOhm 1 MOhm 1 MOhm	5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W		
Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q27 Q28 Q29	50.03.0350 50.03.0216 50.03.0350 50.03.0436 50.03.0515 50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350	J 112 J 111 J 112 BC 237 BC 307 J 112 J 112 J 112 J 112 J 112 J 112 J 112	N-JFET N-JFET N-JFET NPN N-JFET N-JFET N-JFET N-JFET N-JFET N-JFET N-JFET	NS, Mot, Six NS, Mot, Six NS, Mot, Six IC-100mA, B-100 NS, Mot, Six NS, Mot, Six	R82 R83 R85 R86 R87 R88 R89 R90	57.11.3105 57.11.3105 57.11.3105 57.11.3104 57.11.3302 57.11.3684 1.010.013.58 57.11.3561 1.010.014.58	1 MOhm 1 MOhm 1 MOhm 100 kOhm 3.3 kOhm 680 kOhm 4.7 kOhm 560 Ohm 22 kOhm 3.3 kOhm	5% 0.25W 5% 0.25M 5% 0.25M 5% 0.25M 5% 0.25M 5% 0.25W 5% 0.25W 10% 1in. 5% 0.25W 10% 1in.	variable resistor variable resistor	St St
Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q38 Q38	50.03.0350 50.03.0350 50.03.0350 50.03.0515 50.03.0515 50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350	J 112 J 112 BC 307 BC 307 J 112 J 112 BC 237 J 112 J 112 J 112 J 112	N-JFET N-JFET PNP PNP N-JFET N-JFET N-JFET N-JFET N-JFET N-JFET	NS, Mot, Six NS, Mot, Six	R92 R93 R94	57.11.3684 57.11.3103 57.11.3103 57.11.3104 1.010.005.58 57.11.3182 57.11.3684 57.11.3103	680 k0hm 10 k0hm 10 k0hm 100 k0hm 4.7 k0hm 1.8 k0hm 680 k0hm 10 k0hm	5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 10% 1in. 5% 0.25W 5% 0.25W 5% 0.25W 10% neg.log.	combined with R100/R102 see R96	? St
Ç40	50.03.0350	J 112	N-JFET	NS,Mot,Six	R102 R103 R104	57 11 3182	100 kOhm 1.8 kOhm 680 kOhm	10% neg.log. 5% 0.25W 5% 0.25W	see R96	
R1 R2 R3 R4 R5 R6 R7	57.11.3152 57.11.3392 57.11.3392 57.11.3392 57.11.3152 57.11.3472 57.11.3153	1.5 kOhm 3.9 kOhm 3.9 kOhm 3.9 kOhm 1.5 kOhm 4.7 kOhm 15 kOhm	1% 0.25W 1% 0.25W 5% 0.25W 1% 0.25W 1% 0.25W 5% 0.25W		R105 R106 R107 R108 R109 R110	57.11.3684 57.11.3682 57.11.3682 57.11.3682 57.11.3682 57.11.3104 57.11.3104	6.8 kOhm 6.8 kOhm 6.8 kOhm 6.8 kOhm 100 kOhm 100 kOhm	5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W		
R10 R11	57.11.3331 57.11.3331 57.11.3104 57.11.5106	330 Ohm 330 Ohm 100 kOhm	5% 0.25W 1% 0.25W 5% 0.25W 5% 0.25W		R111 R112 R113 R114 R115	57.11.3682 57.11.3474 57.11.3224 57.92.1271 57.92.1271	6.8 kOhm 470 kOhm 220 kOhm 6.5 Ohm	5% 0.25W 5% 0.25W 5% 0.25W I= 270mA PTC I= 270mA PTC I= 270mA PTC	Philips Nr.2322 662 12 Philips Nr.2322 662 12 Philips Nr.2322 662 12	2711 2711 2711
R12 R13 R14 R15 R16	57.11.5106 57.11.3105	10 M0hm 1 M0hm not used not used not used	5% 0.25W 5% 0.25W		R116 R117 R118 R119 R120	57.92.1271 57.11.3689 57.11.3689 57.11.3150 57.11.3302	6.5 Ohm 6.8 Ohm 6.8 Ohm 15 Ohm 3 kOhm	1% 0.25W 1% 0.25W 1% 0.25W 1% 0.25W	FIII 11 PS 111 12 SEE VOL. 24	-,
R17 R18 R19 R20	57.11.3563 57.11.3104	not used not used 56 kOhm 100 kOhm	2% 0.25M 5% 0.25W		R121 R122 R123 R124 R125	57.11.3302 57.11.3302 57.11.3150 57.39.3091 57.11.3152	3 kOhm 3 kOhm 15 Ohm 3.09 kOhm 1.5 kOhm	1% 0.25W 1% 0.25W 1% 0.25W 1% 0.25W 1% 0.25W		
R21 R22 R23 R24 R25 R26 R27 R28	57.11.5106 57.11.5106 57.11.3103 57.11.3104 57.11.3104 57.11.5106 57.11.3102 57.99.0250	10 M0hm 10 k0hm 100 k0hm 100 k0hm 10 M0hm 1 k0hm 6.8 k0hm	5% 0.25W 1% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 0.1% 0.25W 0.1% 0.25W		R126 R127 R128 R129 R130	57.11.3152 57.11.3302 57.11.3152 57.39.3091 57.11.3152 57.11.3302 57.11.3152 57.11.3152	3 kOhm 1.5 kOhm 1.5 kOhm	1% 0.25W 1% 0.25W 1% 0.25W 1% 0.25W 1% 0.25W 1% 0.25W		
R30 R31 R32 R33 R34	57.99.0250 57.11.3102 57.11.3103 57.11.3223 57.11.3472	10 kOhm 10 kOhm 22 kOhm not used 4.7 kOhm	5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W		R132 R133 R134 R135 R136 R137 R138	57.11.3152 57.11.3392 57.11.3392 57.11.3272 57.11.3272 57.11.3272	1.5 kOhm 3.9 kOhm 3.9 kOhm 2.7 kOhm 2.7 kOhm	1% 0.25W 1% 0.25W 1% 0.25W 1% 0.25W 1% 0.25W 5% 0.25W	option 2 option 2	
R35 R36	57.11.3330 57.11.3279	2.7 Ohm	5% 0.25W 5% 0.25W		R139 R140	57.11.5106 57.11.5106	10 MOhm 10 MOhm	5% 0.25W 5% 0.25W		
R37 R38 R39 R40	57.11.3102 58.11.6201 57.11.3102	not exis 1 k0hm 200 0hm 1 k0hm	30% 5% 0.25W	trimpot cermet	R141 R142 R143 R144 R145	1 369 150 03	10 M0hm 15 k0hm 10 k0hm 6.8 k0hm 10 k0hm 6.8 k0hm	5% 0.25W 2% 0.25W 20% pos.log. 5% 0.25W 20% pos.log. 5% 0.25W	variable resistor	St St
R42 R43 R44 R45 R46	57.11.3101 57.11.3431 57.11.3202 57.11.3512	not exis not exis 100 Ohm 430 Ohm 2 kOhm 5.1 kOhm	t 1% 0.25W 1% 0.25W		R146 R147 R148 R149 R150	57.11.3330 57.11.3330 57.11.3104	33 Ohm 33 Ohm not used 100 kOhm	5% 0.25W 5% 0.25W 5% 0.25W		
R47 R48 R49 R50	57.11.3512 57.11.3472 57.11.3104 57.11.3563	4.7 k0hm 100 k0hm 100 k0hm	1% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W		R151 R152 R153 R154 R155	57.11.3104 57.11.3105 57.11.5335 57.11.3271	3.3 MOhm 100 kOhm 1 MOhm 3.3 MOhm 270 Ohm	5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W		
R52 R53 R54 R55 R56	57.11.3104 57.11.3102 57.11.3102	not exis 100 k0hm 1 k0hm 1 k0hm	t 5% 0.25W 5% 0.25W 5% 0.25W		R156 R157 R158 R159 R160	57.11.3104 57.11.3333 57.11.3683 1.960.011.00	100 kOhm 33 kOhm 68 kOhm 5 kOhm 100 Ohm	5% 0.25W 5% 0.25W 5% 0.25W pos.log 5% 0.25W	mono fader	St
R57 R58 R59 R60	57.11.3224 57.11.3563 57.11.5106 57.11.5106	56 kOhm 10 MOhm 10 MOhm	5% 0.25W 5% 0.25W 5% 0.25W		R161 R162 R163 R164 R165	57.11.3332 57.11.3132 58.01.8501	100 kOhm 3.3 kOhm 1.3 kOhm 500 Ohm 100 kOhm	5% 0.25W 5% 0.25W 5% 0.25W 10% 5% 0.25W		
R62 R63 R64 R65 R66	57.11.3471 57.11.3271 57.11.3752 1.010.022.58 57.11.3684 57.11.3223	270 Ohii 7.5 kOhii 47 kOhii 680 kOhii 22 kOhi	5% 0.25W 1% 0.25W 20% pos.log. 5% 0.25W 5% 0.25W	variable resistor St	R166 R165 R169 R170	57.11.3433 57.11.3433	43 k0hm 43 k0hm 10 k0hm 10 k0hm	2% 0.25W 2% 0.25W pos.log. neg.log. 5% 0.25W	see note A) combined with R168 ****/*****	St
R67 R68 R69 R70	57.11.3104 57.11.3222 57.11.3152 57.11.3302	2.2 k0hr 2.2 k0hr 1.5 k0hr 3 k0hr	1% 0.25W n 2% 0.25W n 1% 0.25W		R17 R17 R17 R17 R17	57.11.5106 57.11.5106 57.11.3682	6.8 kOhm 10 MOhm 10 MOhm 6.8 kOhm 6.8 kOhm	5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W	*/**/*** **/*** ****/****	
R71 R72	57.11.5225 57.11.3105	2.2 MOhi 1 MOhi	n 5% 0.25W n 5% 0.25W		R17	57.11.5106	10 MOhm	5% 0.25W		

STUDER AUDIO CONSOLE 970

Mono-Input-Unit 970 1.970.710.81

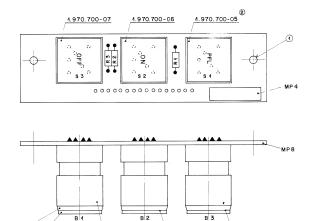
AdPOS	REF.No	DESCRIPT	ION	MANUFAC	TURER	AdPOS	REF.No	DESCRIPT	IONMANUF	ACTURER
R177 R178 R179	57.11.5106 57.11.3682 57.11.3682	10 MOhm 6.8 kOhm 6.8 kOhm	5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W	**/***/****/****		R401 R402 R403	57.11.3220 57.11.3220 57.11.3220	22 Ohm 22 Ohm 22 Ohm	5% 0.25W 5% 0.25W 5% 0.25W	
R180 R181 R182 R183	57.11.5106 57.11.5106 57.11.3682 57.11.3682	10 MOhm 10 MOhm 6.8 kOhm 6.8 kOhm	5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W	**/***/****/**** **/***		S401 S402 S403	55.15.0232 55.15.0232 55.15.0232	2* a 2* a 2* a	Push button switch Push button switch Push button switch	EAO EAO
R184 R185 R186 R187 R188 R189 R190	57.11.5106 57.11.5106 57.11.3105 57.11.3105 57.11.3105 57.11.3105 57.11.3105	10 M0hm 10 M0hm 1 M0hm 1 M0hm 1 M0hm 1 M0hm 1 M0hm	5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W			C501 C502 C503 C504 C505 C506 C507 C508	59.06.0104 59.06.0104 59.06.0104 59.06.0103 59.06.0103 59.06.0103 59.26.2100 59.06.0104	100 nF 100 nF 100 nF 10 uF 10 nF 10 nF	10% PE 10% PE 10% PE 20% 16V SAL 10% PE 10% PE 20% 16V SAL	
R191 R192 R193 R194	57.11.3104	not used not used 100 k0hm not used 1 M0hm	5% 0.25W			C509 C510	59.06.0682 59.06.0222	100 nF 6.8 nF 2.2 nF	10% PE 10% PE 10% PE	
R195 R196 R197 R198	57.11.3105 57.11.3103 57.11.3103 57.11.3183	10 k0hm 10 k0hm 18 k0hm	5% 0.25W 5% 0.25W 5% 0.25W 2% 0.25W			C511 C512 C513	59.22.3101 59.22.5101 59.06.0104	100 uF 100 uF 100 nF	-20% 10V EL -20% 25V EL 10% PE	
R199 R200 R201 R202 R203 R204	57.11.3183 57.11.3183 57.11.3153 57.11.3332 57.11.3332 57.11.5106 57.11.5106 57.11.3104	18 kOhm 15 kOhm 3.3 kOhm 3.3 kOhm 10 MOhm 10 MOhm 100 kOhm	2% 0.25W 5% 0.25W 2% 0.25W 2% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W			D501 D502 D503 D504 D505 D506 DL0.501	50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.99.0111	1N4448 1N4448 1N4448 1N4448 1N4448 1N4448 MCT - 6	Dual Optokoppler	any any any any any any
R205 R206 R207 R208 R209 R210	57.11.3104 57.11.3105 57.11.3822 57.11.3332 57.11.3332 57.11.3105	100 kOhm 1 MOhm 8.2 kOhm not used 3.3 kOhm 3.3 kOhm	5% 0.25W 1% 0.25W	option 2 t used; **/*** repl. t used; **/*** repl.	by W11 by W22	IC501 IC502 IC503 IC504 IC505 IC506	50.07.0014 50.07.0008 50.07.0013 50.07.0015 50.10.0108 50.10.0108 50.07.0008	401068 40938 40138 40538 LM 317L LM 317L 40938	Hex Schmitt Trigger Nand Schmitt Trigger D-Flip-Flop Mux-Demux Voltage Regulator Voltage Regulator Nand Schmitt Trigger	
R211 S1 S2	55.15.0019 55.15.0019	2*U 2*U	button: green button: grey (196009801 ; use		IIT IIT	IC508 IC509 IC510	50.07.0006 50.07.0015 50.07.0019	4001B 4053B 4019B	Quad Nor Gate Mux-Demux Quad 2-Input Mux	
S3 S4 S5 S6 S7 S8 S9	55.15.0019 55.15.0019	1*8U 2*U 2*U not used 2*U 2*U not used	button: grey button: red	combined with R143	St ITT ITT	J501 J502 JSJ.501 JSJ.502 JSJ.503	50.07.0004 54.01.0291 54.01.0291	4556B not used not used	Decoder CIS-Connector 11 pin CIS-Connector 11 pin option 6 option 6 option 4	
S10 S12 S13 S14 S15 S16	55.15.0019 55.15.0019 55.15.0019 55.15.0019	2*U 2*U 2*U 2*U 1*U 1*U not used	button: red button: red button: red button: red	***/***** ***** see note A) see note A)	111 111 111 111	JSJ.503 JSJ.504 JSJ.505 JSJ.506 JSJ.507 JSJ.508 JSJ.509 JSJ.510 JSJ.510	54.01.0021 54.01.0021	not used not used not used not used not used	Jumper option 4 option 5 Jumper option 10 option 13 option 14 option 9	ion 11
T1 T2 T3 W1 W2	1.022.451.00 1.022.453.00 1.022.320.00 57.11.3000	not used	input trafo input trafo cutput trafo	1:0.62 1:1:12 5.67:1	St St St	JSJ.510 JSJ.511 JSJ.512 JSJ.513 JSJ.514 JSJ.516 JSJ.516	54.01.0021 54.01.0021 54.01.0021	not used not used not used not used	Jumper option 8 Jumper option 7 / option 8 Jumper option 7 / option 8 Jumper option 7 / option 8 option 7 option 7 option 7 option 8 option 7 / option 8 option 7 / option 8	
W3 W4 W5 W6 H7 W8 W9		not used not used not used not used not used not used not used not used				JSJ.518 JSJ.519	1.010.300.64 64.03.0502 53.03.0168 53.03.0168	nct used nct used 2 pcs 2 pcs 4 pcs 3 ncs	option 8 option 12 Flat-band-cable 40mm Flat-band-cable 40mm IC-socket 15 pin IC-socket 15 pin IC-socket 14 pin	
W11 W12 W13 W14 W15 W16	57.11.3000	not used	conductor-track conductor-track	**/*** option 2 option 2 option 2 option 2		MP503 MP504 MP505 MP506 MP507 MP508 MP509	53.03.0167 1.970.792.11 54.01.0020 1.010.014.22 1.970.792.04 43.01.0108	5 pcs 1 pcs 33 pcs not exist 2 pcs 0 pcs 1 pcs	Extension unit PLB	St St St
W17 W18 W19 W20 W21	57.11.3000	not used not used not used	conductor-track conductor-track	option 2 option 2 option 2 option 2 (replaced by D39)		Q501 Q502 Q503 Q504 Q505 Q506	50.03.0496 50.03.0496 50.03.0496 50.03.0496 50.03.0496	BC 560 BC 560 BC 560 BC 560 BC 560 BC 550	PNP IC-100mA, B-200 NPM IC-100mA, B-200 NPM IC-100mA	any any any any any
W24 W25 W25 W26 W27	57.11.3000	not used not used not used not used not used not used		,		Q507 Q508 Q509 Q510	50.03.0216 50.03.0350 50.03.0497 50.03.0496	J 111 J 112 BC 550 BC 560	J-FET J-FET NPN IC>100mA, B>200 PNP IC>100mA, B>200	any Six Six any any
W29 XDL1 XDL2 XDL3	57.11.3000 1.010.012.50 1.010.012.50	not used	LED-holder LED-holder		St St	Q512 Q513 Q514 Q515	50.03.0496 50.03.0496 50.03.0496 50.03.0496	BC 560 BC 560 BC 560 BC 560	PNP IC-1COMA, B>200 PNP IC-1COMA, B>200 PNP IC-1COMA, B>200 PNP IC-1COMA, B>200 PNP IC-1COMA, B>200	any any any any
B401 B402 B403	51.02.0154 51.02.0154 51.02.0154		5V 40mA 5V 40mA 5V 40mA		Osh Osh Osh	R501 R502 R503 R504	57.11.3102 57.11.3102 57.11.3102 57.11.3102	1 kOhm 1 kOhm 1 kOhm 1 kOhm	5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W	
MP401 01 MP402 MP402 01 MP403 01 MP403	21.01.0354 24.16.1030 1.010.025.27 1.970.790.04	2 pcs not exist 2 pcs not exist 2 pcs not exist	lotted pan head screw locking de hexagon post H3*	vices D3.2 / 5.5 * 0 25	0.45 ST ST	R505 R506 R507 R508 R509 R510	57.11.3102 57.11.3102 57.11.3153 57.11.3153 57.11.3153 57.11.3153	1 kOhm 1 kOhm 15 kOhm 15 kOhm 15 kOhm 15 kOhm	5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W	
MP404 MP405 MP406 MP407 MP408 MP409 MP410	55.15.0202 55.15.0221 55.15.0228	0 pcs 3 pcs 3 pcs 3 pcs 1 pcs 1 pcs 1 pcsp	push-button asse push-button asse push-button knob Switch unit PCB ush-button-assem	mbly mbly	EAO EAO EAO	R511 R512 R513 R514 R515 R516 R517	57.11.3153 57.11.3221 57.11.3221 57.11.3153 57.11.3153 58.01.9104	15 kOhm 220 Ohm 220 Ohm 15 kOhm 15 kOhm 100 kOhm not exist	5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 10% var. resistor	

EDITION: 5. Oktober 1990 4/33

Mono-Input-Unit 970 1.970.710.81

POS	REF.No	DESCRIPTI			MANUFACTURER	AdPOS	REF.No	DESCRIPTION	
R517 R518 R519 R520	57.11.3103 57.11.3223 57.11.3223 57.11.5225	10 kOhm 22 kOhm 22 kOhm 2.2 MOhm	5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W						
R521 R522 R523 R524 R525 R526	57.11.3223 57.11.3102	22 k0hm 1 k0hm not exist not exist not exist not exist	5% 0.25W 5% 0.25W						
R527 R528 R529 R530	57.11.5335 57.11.3104 57.11.5335 57.11.3104	3.3 MOhm 100 kOhm 3.3 MOhm 100 kOhm	5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W						
R531 R532 R533	: :	not used not used not used							
RZ501 RZ502 RZ503 RZ504	57.88.4104 57.88.4104 57.88.4104 57.88.3104	100 kOhm 100 kOhm	5% single 5% single 5% single 5% dual	e line e line					
88/06/1	fader clo additiona	ey activ : n -> PFL audio sed -> PFL aud l D41/D42 1N4 poslst 1.970.7	liosignal on 1448	06/17					
88/11/1	8 – click sup	pression	: IC11 R138	MC33078 33 Ohm					
89/07/2	7 - click sup pass filt the conso	pression of hi er after start le	gh : C35 :ing C36 R71	1uF 47uF 6.3V 2.2M0hm	TA				
	- overload	threshold	: R58	56k0hm					
	- improveme	nt of facerswi	tch : R153	1M0hm					
	- oscillati insert se	ng suppression nd	of : R124 R128	3.09k0hm 3.09k0hm					
 ATTENTI 	ON : EXTENSION elements	N UNIT contair	ns electro s	tatic sensitiv	tly				
	y 1 CH y 2 CH 1+2 y 2 CH 1,2 y 4 CH 1+2 y 4 CH 1.2	1.970.7 1.970.7 1.970.7 1.970.7 3.44 1.970.7	710.XX wird 720.XX wird 721.XX wird 740.XX wird 741.XX	nicht hergest nicht hergest nicht hergest nicht hergest	111t 111t 111t 111t				
Optionen		ionenliste							
A) pan ********** Version:	- pot (R16 ** R16 ** R16 *** R16 *** R16 *** R16 **** R16 ***** R16	88/R169) 88/R169 no 88/R169 1 88/R169 1 88/R169 1 88/R169 1	ot used .010.004.58 .010.004.58 .010.021.58 .010.021.58	without swi without swi with \$14/\$ with \$14/\$	cch cch				
=Coramic	CE=Carbon Fil	m, EL=Electro	lytic. MF=Me	tal Film.					
	R: Bu=Burndy, HP=Hewlett {Matsushite	Packard, ITT= a}, NS=Nationa n, Sig=Signeti nstrument	airchild, GI Intermetall, 1 Semiconduc cs, Six=Sili	antal =General Instr Mot=Motorola, tors, Ph=Phili conix, St=Stud	Nat=National os, er,				

MP6 MP5 (3x) (3x)


Numbers of positions are 4..

MP7 (3 x)

INPUT UNITS

1.8 Switch Unit

1.970.790.00

MP9 (red)

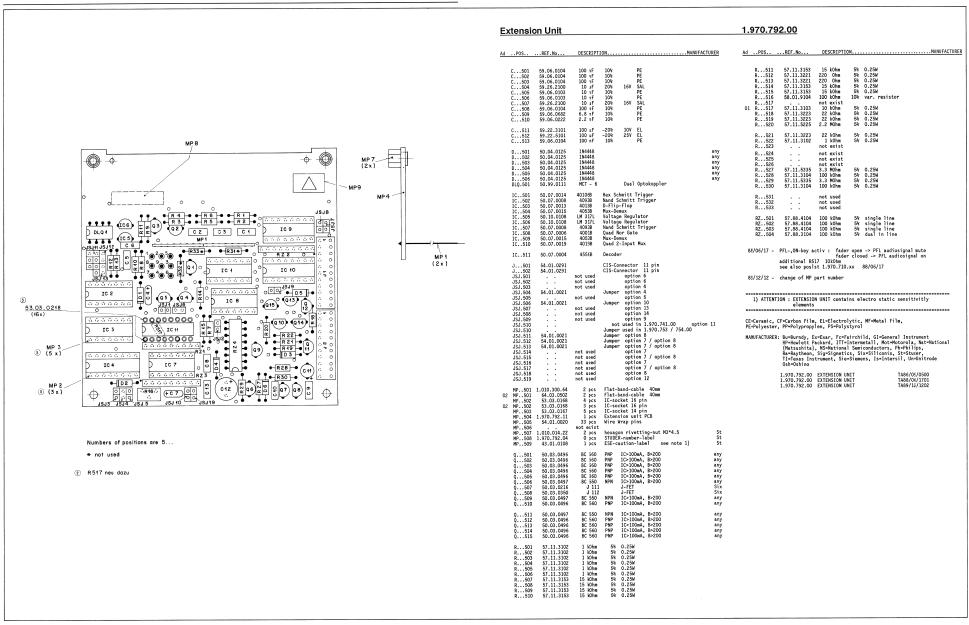
MP 10 (green)

Switch Unit

1.970.790.00

MANUFACT	ON	DESCRIPT	REF.No	POS	Ad
	5V 40mA		51.02.0154	B401	
	5V 40mA			B402	
	5V 40mA			B403	
*6	lotted pan head screw Mi	2 pcs	21.01.0354	MP401	
		not exist		MP401	01
D3.2 / 5.5 * 0.4	screw locking devices	2 pcs	24.16.1030	MP402	
		not exist		MP402	01
	hexagon post M3*25	2 pcs	1.010.025.27	MP403	
		not exist		MP403	01
	Studer-number-label	0 pcs	1.970.790.04	MP404	
	push-button assembly	3 pcs	55.15.0202	MP405	
	push-button assembly	3 pcs	55.15.0221		
	push-button knob	3 pcs		MP407	
	Switch unit PCB	1 pcs	1.970.790.11		
	ush-button-assembly red	1 pcsp		MP409	
	ush-button-assemblygree	1 pcsp	55.15.0215	MP410	
	5% 0.25W	22 Ohm		R401	
	5% 0.25W	22 Ohm		R402	
	5% 0.25W	22 Ohm	57.11.3220	R403	
	Push button switch	2* a	55.15.0232	S401	
	Push button switch	2* a	55.15.0232	S402	
	Push button switch	2* a	55.15.0232	S403	

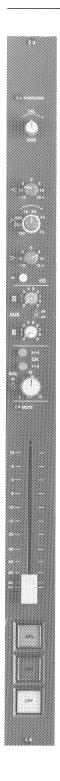
CE-Ceramic, CF-Carbon Film, EL-Electrolytic, MF-Metal Film, PE-Polyester, PP-Polypropylen, PS-Polystyrol


MANUFACTURER: Bu-Burndy Ex-Exar, Fc-Fairchild, GI-General Instrument
HF-Hewlett Backard, ITF-Internetial, Not-Motorola, Mat-Mational
Ba-Baytheno, Sig-Signetics, Six-Siliconia, St-Studer,
IT-Toxas Instrument, Sie-Siemens, Is-Intersil, Un-Unitrode
Gsh-Oshino

1.970.790.00 SWITCH UNIT 1.970.790.00 SWITCH UNIT

4/34 EDITION: 5. Oktober 1990 INPUT UNITS

1.9 Extension Unit ESE


1.970.792.00

2. Stereo Hochpegeleinheit ohne Entzerrer Stereo Hochpegeleinheit mit Entzerrer

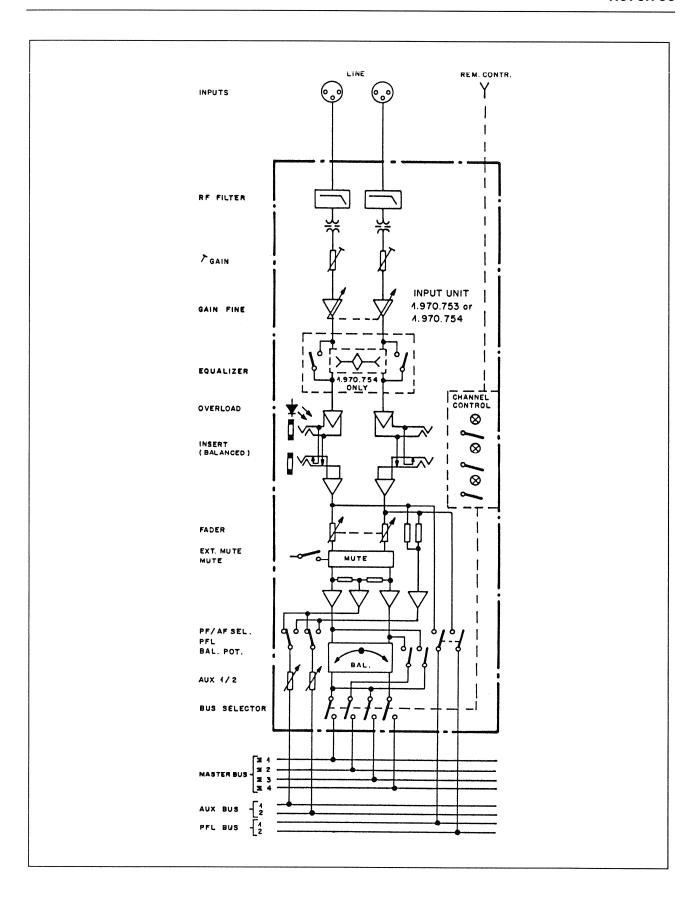
1.970.753 1.970.754

2.1 Bedienungselemente

OVERLOAD: Die mit Overload bezeichnete LED leuchtet auf, sobald der maximal zulässige Pegel vor oder nach dem Flachbahnregler überschritten wird. **EINGANGSTEIL:** Stereophonischer Hochpegeleingang, symmetrisch und erdfrei. Eingangsempfindlichkeit wird auf kundenspezifischen Nennpegel abgeglichen. Eine Verstärkungsänderung um ±10 dB ist am Gain-Potentiometer möglich. ENTZERRER: Siehe 2.4 HILFSAUSGÄNGE Zwei getrennt regelbare Hilfsausgänge sind über die an AUX 1 und AUX 2: den Potentiometer angebauten Zug-Druckschaltern vor oder nach Flachbahnregler schaltbar. PAN. POT. kann Das Panorama Potentiometer mit dem SUMMENWAHL: Zug-Druckschalter aktiviert werden. Stereo und 2 Kanal-Pulte sind mit einer Taste zur gemeinsamen Anwahl der Sammelschienen $\Sigma 1$ und $\Sigma 2$ bestückt. 4-Kanal Pulte sind mit zwei Tasten zur getrennten Anwahl der Sammelschiene $\Sigma 1 + \Sigma 2$ und $\Sigma 3 + \Sigma 4$ bestückt.

MUTE-FUNKTION:

Auf dem fünfzehnpoligen D-Type Stecker (REM-CONTR) kann der Kanal knackfrei stummgeschaltet werden. Die Mute LED-Anzeige signalisiert die aktivierte Funktion.


FLACHBAHN-REGLER: Der Flachbahnregler ist mit einer Widerstandsschicht aus leitendem Kunststoff ausgerüstet. Beide Kanäle werden über einen Reglerknopf gemeinsam bedient.

STEUERTASTEN:

Siehe 2.3

2.2 Blockschaltbild

1.970.753

2.3 Steuertasten

Vor dem Flachbahnregler sind drei geräuscharme Drucktasten mit Signallampen angebracht. Die Funktionen dieser Tasten können im Einschub durch Umstecken von Miniatur-Brückensteckern verändert werden.

Es sind 3 Grundversionen vorgesehen:

Version 1 (Fig.1)

- Das Vorhörsignal PFL (Pre fader listening) wird zum Vorhörlautsprecher und zum Kopfhörer durchgeschaltet. Ein weiterer Tastendruck unterbricht dieses Signal wieder.
- Gleichzeitig wird die Signallampe ein- oder ausgeschaltet.

- Schaltet den Modulationsweg durch, sofern eine Summe angewählt und der Flachbahnregler geöffnet ist.
- ON-Lampe leuchtet.
- PFL wird unterbrochen, wobei aber die PFL-Lampe weiterleuchtet um den vorher angewählten Zustand anzuzeigen.
- Signalisation resp. Faderstart-Relais wird durchgeschaltet, sofern die übrigen Kriterien erfüllt sind (siehe 2.6 Sign. und Faderstart).
- Automatische Stoppuhr wird zurückgesetzt. (Option)

OFF

- Modulation wird unterbrochen.
- Signalisation und Faderstart-Relais fallen ab.
- Falls die PFL-Taste angewählt war, wird nun das Vorhören wieder durchgeschaltet.
- ON-Lampe erlöscht.

OFF-Lampe:

Wird von Extern aktiviert und kann den Bereitschaftzustand der Quelle signalisieren.

Fernsteuerung:

Alle Tasten- und Lampensignale sind auch auf einem fünfzehnpoligen D-Type Stecker verfügbar. Obige Funktionen können also auch ferngesteuert werden.

Version 2

APL ON OFF

Gleiche Funktionen wie in Version 1, mit der Ausnahme, dass anstelle des Vorhörsignales vor Flachbahnregler, dasjenige nach Regler (APL) durchgeschaltet wird.

Version 3

AUDITION

- Schaltet den Kanal durch und wählt die Summen 3+4 an. (Eingangseinheiten dieser Version sind nicht mit Sammelschienenwahltasten ausgerüstet).
- AUDITION-Lampe wird eingeschaltet.
- Signalisation wird aktiviert.
- Timer Restart.

ON AIR

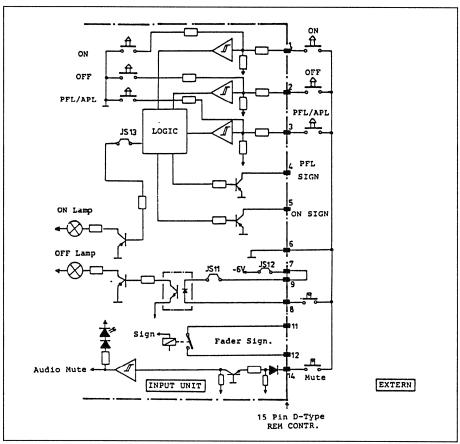
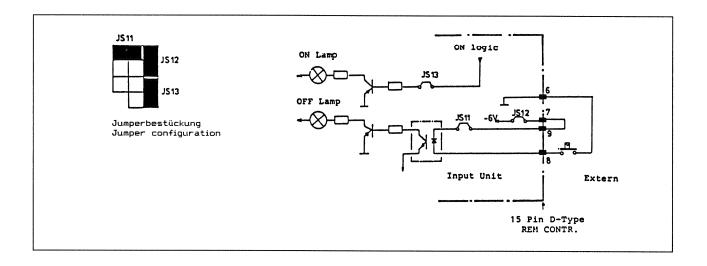
- Schaltet den Kanal durch und wählt die Summenwahlschienen 1+2 an.
- ON AIR-Lampe wird eingeschaltet.
- Signalisation wird aktiviert.
- Timer Restart.

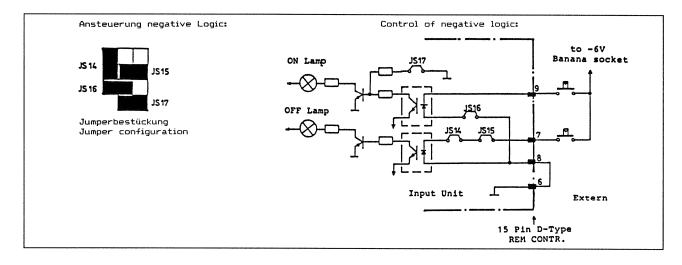
OFF

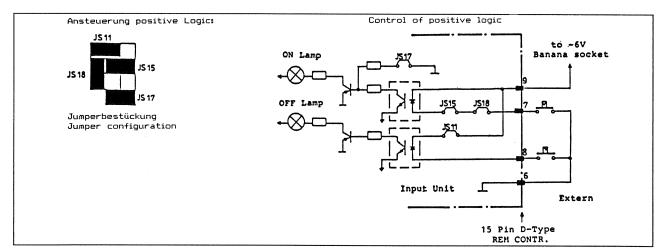
- Setzt sowohl AUDITION- als auch ON AIR-Taste zurück.
- Signalisation wird inaktiv.

Blockschema Remote Control:

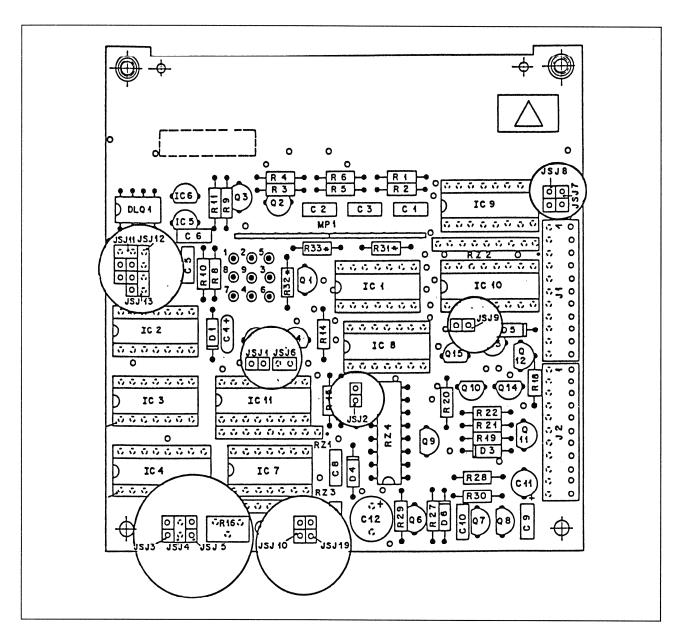
(Standard)

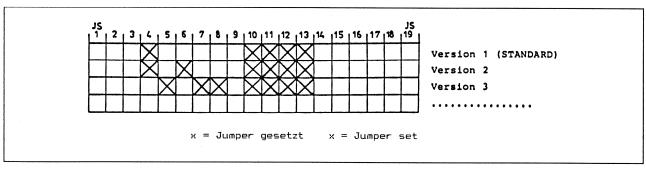




Fig. 1


Codierung für externe OFF-Lampensteuerung

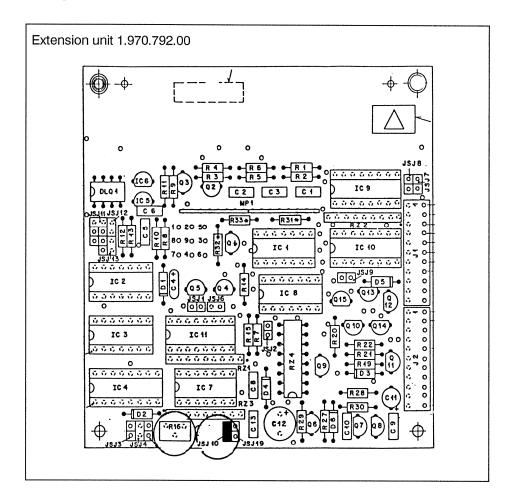
(Standard)


Codierung für externe ON- und OFF-Lampensteuerung



Jumpercodierung für Extension Unit

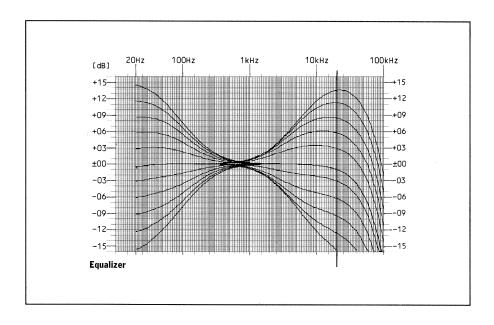
1.970.792


4/42 EDITION: 5. Oktober 1990

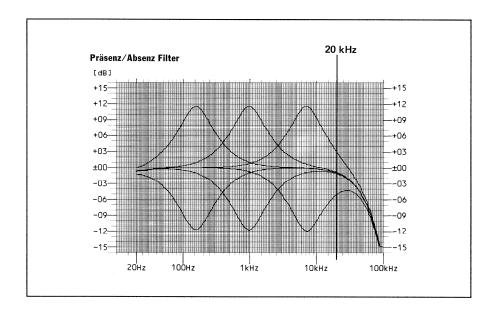
Optionen

Ort	Jumper	Funktionen
JS1	gesetzt frei	OFF Lampe leuchtet, wenn ON-Taste ausgeschaltet ist. Keine Funktion
JS1 und JS2	gesetzt frei	OFF Lampe leuchtet, wenn ON-Taste und PFL/APL-Taste ausgeschaltet sind. Keine Funktion
JS3	gesetzt frei	PFL/APL-Taste <u>nur</u> einschaltend PFL/APL-Taste selbstauslösend (Toggle switch)
JS4	gesetzt frei	ON-Taste <u>nur</u> einschaltend ON-Taste selbstauslösend (Toggle switch)
JS5	gesetzt frei	OFF-Taste setzt die PFL/APL-Taste zurück Keine Funktion
JS6	gesetzt frei	APL (After Pan Listening) Version 2 PFL (Pre Fader Listening) Version 1 STANDARD
JS7	gesetzt	ON AIR-Taste schaltet Σ 1+2 durch. AUDITION-Taste schaltet Σ 3+4 durch. Version 3
JS7 und JS8	gesetzt frei frei	AUDITION-Taste steuert die Signalisation des HL-Einganges an. Nur Version 3 Keine Funktion Keine Funktion
JS9	gesetzt frei	PFL/APL-Taste steuert direkt das Line Relay an. Nur für Version 1+2! Keine Funktion
JS10	gesetzt frei	Time Delay justierbar mit R16 zwischen 0 1 sec. Keine Verzögerung
JS19	gesetzt frei	Timer-Restart Funktion ist ausgeschaltet. Timer-Restart Funktion ist eingeschaltet.

Zeit-Verzögerung


Diese Funktion ist nur für die Hochpegel Eingangseinheit 1.970.753/754.81 verfügbar.

Zwischen dem Faderstart und dem Durchschalten des Audiosignals kann eine Verzögerungszeit von 0...1 sec. mit R16 (PCB 1.970.792) eingestellt werden. Der Jumper J10 muss wie oben dargestellt gesetzt sein (=Zeit-Verzögerung aktiv).


2.4 Entzerrer

Der ganze Entzerrer ist mit der Drucktaste EQUALIZER IN überbrückbar. Fächerentzerrer für Höhen und Tiefen. Bereich ±15 dB.

Parametrisches Glockenkurven-Filter mit einstellbarer Mittenfrequenz von 150~Hz...7~kHz~(Q=1)

Anhebung / Abschwächung ±11 dB. Beide Kanäle werden gemeinsam beeinflusst.

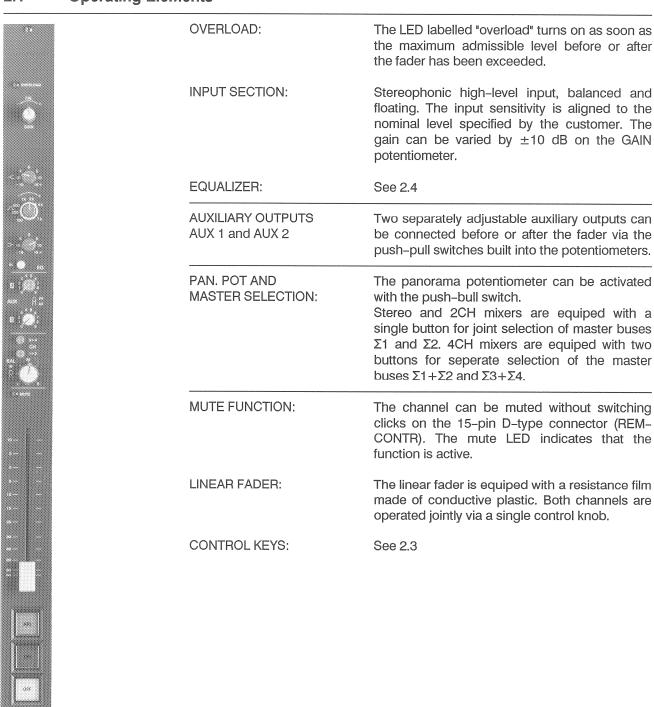
2.5 Einschleifpunkt

Vor dem Flachbahnregler werden die Tonsignale elektronisch symmetriert und über je zwei auf der Pultrückseite befindliche Bantam Jack Buchsen geführt. Der Einschleifpegel beträgt +6 dBu.

2.6 Signalisation und Faderstart

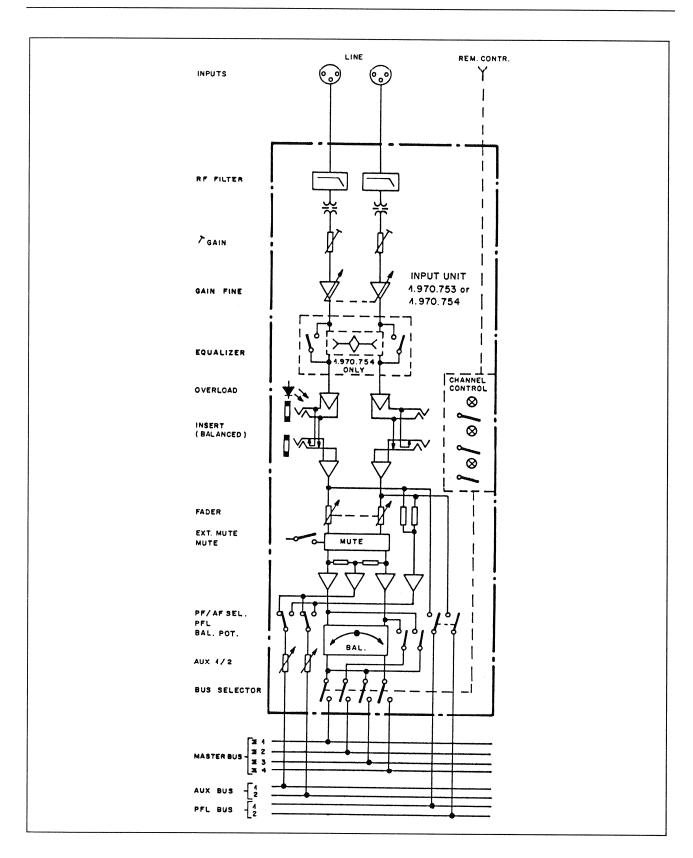
Das im Einschub untergebrachte Fernsteuerrelais wird aktiviert, sobald folgende Kriterien erfüllt sind:

- Kanalregler geöffnet
- Summenregler geöffnet
- Summenwahltaste betätigt
- Mute Funktion nicht aktiv
- Kanal mit ON-Taste eingeschaltet


Der auf dem 15 poligen D-Type Stecker (REM-CONTR.) greifbare Arbeitskontakt des Relais kann zur Fernsteuerung von Plattenspielern oder Tonbandgeräten eingesetzt werden.

4/46 EDITION: 5. Oktober 1990

2. Stereo High-Level Unit without Equalizer Stereo High-Level Unit with Equalizer


1.970.753 1.970.754

2.1 Operating Elements

2.2 Block Diagram

1.970.753

2.3 Control Keys

Three low-noise push keys with signal lamps are located before the fader. The functions of the keys can be altered by changing the position of the mini-jumpers on this unit.

Three basic versions are available:

Version 1 (Fig.1)

- The prefader listening signal (PFL) is connected to the prelistening speaker and to the headphones. The signal is interrupted when this key is pressed a second time.
- At the same time the signal lamp is switched on or off.

- Through-connects the modulation path, provided the bus is selected and the fader opened.
- ON lamp is turns on.
- PFL is interrupted, however the PFL lamp remains switched on to signal the previously selected state.
- Signalization or fader start relay is through-connected, provided the other criteria are satisfied. (see 2.6, signalization and fader start).
- Automatic stopwatch is reset (option).

OFF

- Modulation is interrupted.
- Signalization and fader start relays drop out.
- If the PFL-key was activated, prelistening is again through-connected, if the PFL key has been actuated.
- ON lamp turns off.

OFF-Lamp:

Is activated externally and can signal the ready state of the source.

Remote control:

All key and lamp signals are available on a 15-pin D-type connector. The above functions can also be remote-controlled.

Version 2

APL ON OFF

 Same function as version 1, except that the prelistening signal after the panorama potentiometer (APL) is connected rather than the signal before the fader.

Version 3

AUDITION

- Through-connects the channel and selects master buses 3+4 (the input units of this version are not equiped with bus selection buttons).
- AUDITION lamp is turned on.
- Signalization is enabled.
- Timer restart.

ON AIR

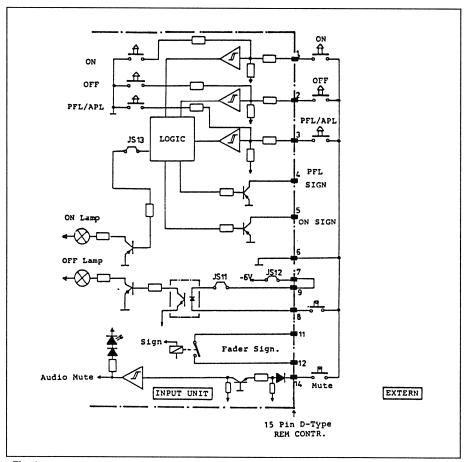
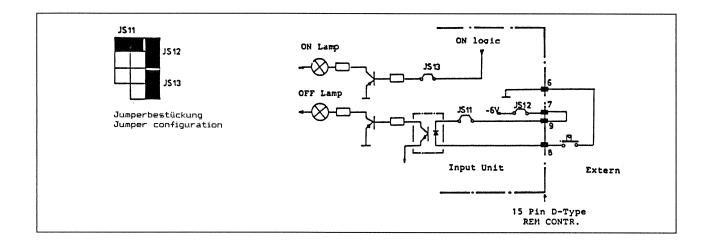
- Through-connects the channel and selects master buses 1+2.
- ON AIR lamp is turned on.
- Signalization is enabled.
- Timer restart.

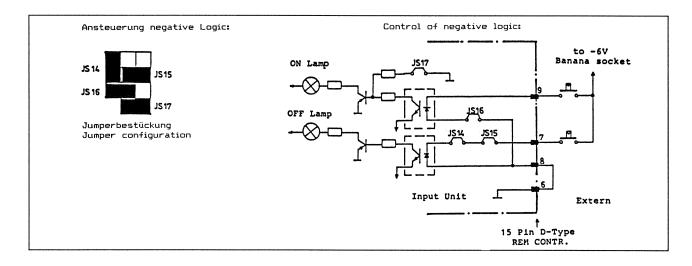
OFF

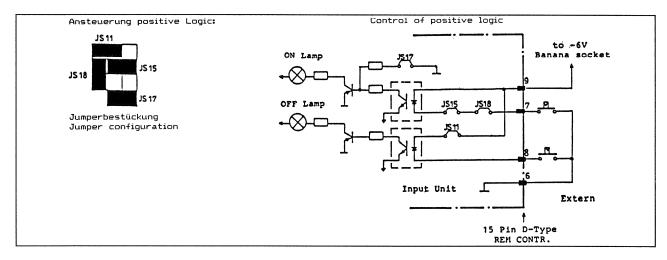
- Resets not only the AUDITION but also the ON AIR key.
- Signalization is disabled.

Block diagram of remote controls:

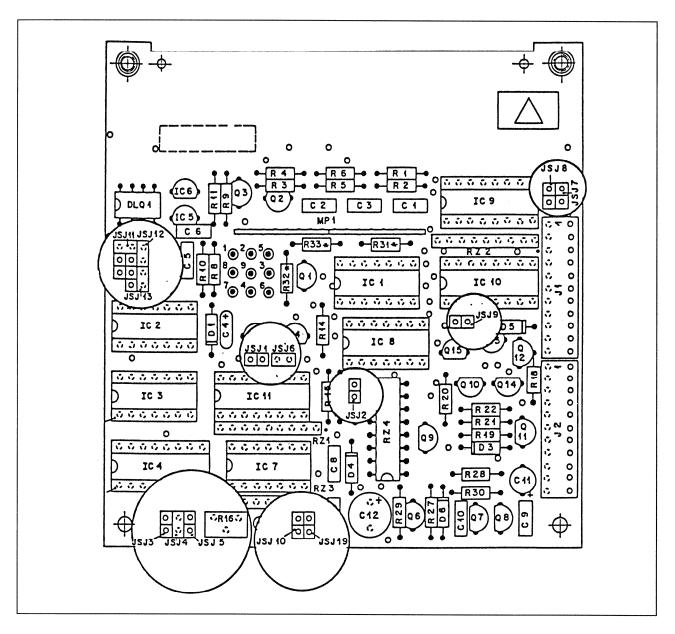
(Standard)

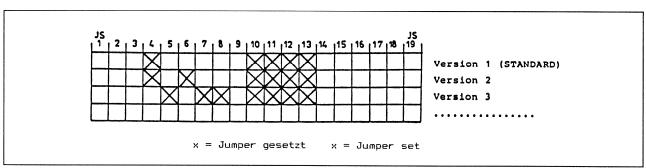




Fig. 1


Coding for external OFF lamp control

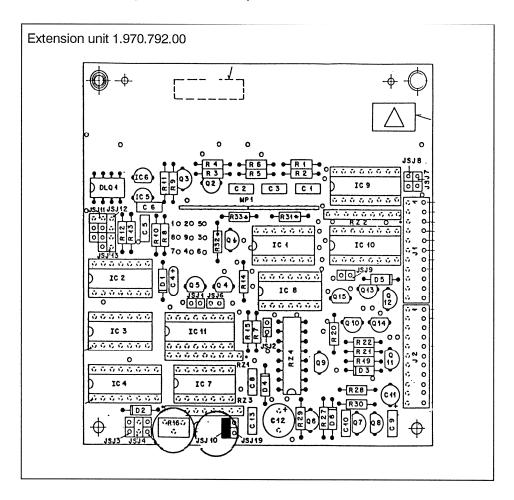
(Standard)


Coding for external ON and OFF lamp control



Jumper coding for extension unit

1.970.792

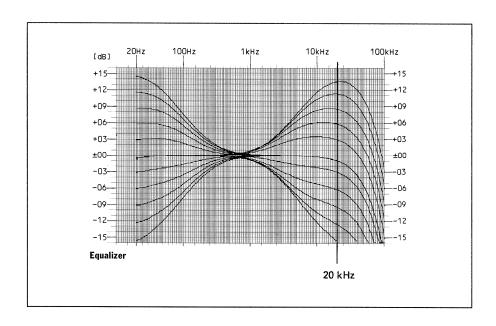


Options

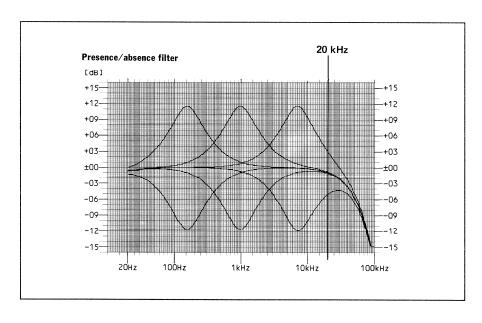
Location	Jumper	Functionen
JS1	Set Not set	OFF lamp is light when the ON keys switched off. No function
JS1 und JS2	Set Not set	OFF lamp is light when the ON key and the PFL/APL key are switched off. No function
JS3	Set Not set	PFL/APL key only on-switching PFL/APL key self-releasing (toggle switch)
JS4	Set Not set	ON key only on-switching ON key self-releasing (toggle switch)
JS5	Set Not set	OFF key resets the PFL/APL key No function
JS6	Set Not set	APL (after pan listening) version 2 PFL (prefader listening) version 1 STANDARD
JS7	Set Not set	ON AIR key enables $\Sigma 1+2$. AUDITION key enables $\Sigma 3+4$. Version 3 No function
JS7 and JS8	Set Not set	AUDITION key controls the signalization of the HL input (ONLY version 3) No function
JS9	Set Not set	PFL/APL key directly controls the line relay. (Version 1+2) No function
JS10	Set Not set	Time delay adjustable with R16 batween 01 sec. No delay
JS19	Set Not set	Timer restart, function is disabled. Timer restart.

Time delay

This function is only available for HL input unit 1.970.753/754.81



The time delay between the faderstart and the switching on of the audio signal is adjustable between 0...1 sec. with R16 (PCB 1.970.792)


Jumper 10 must be set as shown! (Time delay = activ)

2.4 Equalizer

The entire equalizer section is only enabled if the EQUALIZER IN key is pressed. Shelving equalizer for treble and bass. Range at 20 Hz/20 kHz: ±15 dB.

Parametric filter with adjustable center frequenzy: 150 Hz...7 kHz (Q=1). Emphasis / de-emphasis: ± 11 dB. Both channels are jointly influenced.

EDITION: 9. November 1990 4/55

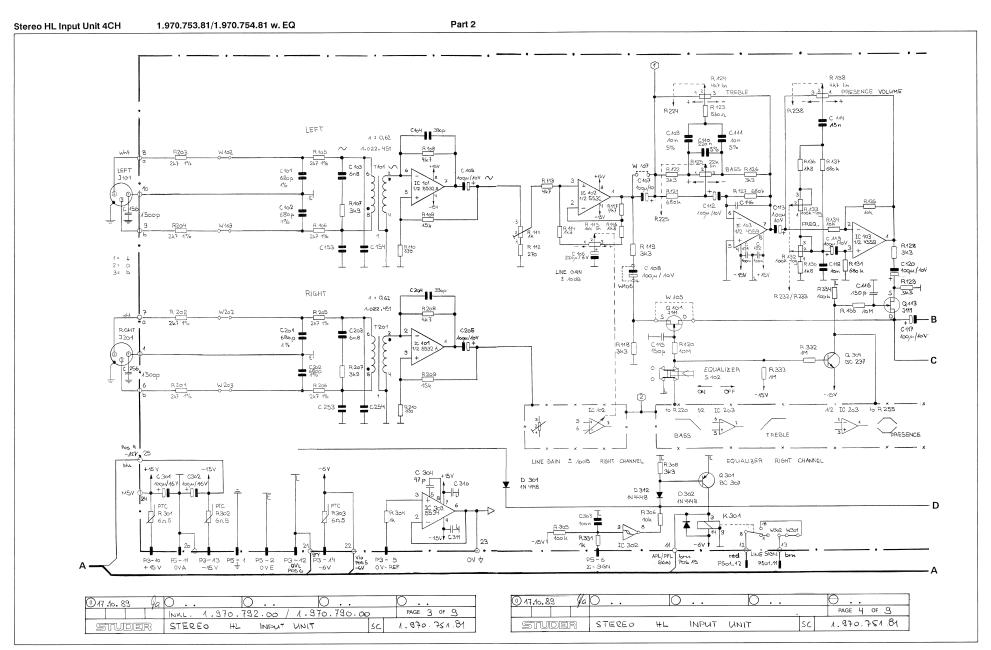
2.5 Insertion Point

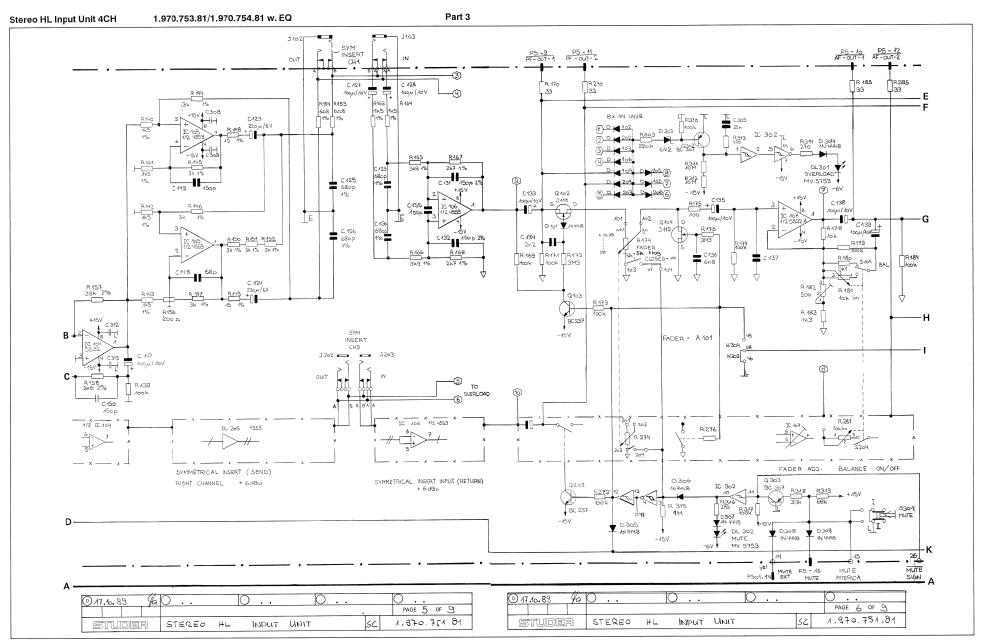
The audio signals are electronically balanced before the stereo fader and taken to two bantam jack sockets each, located on the rear panel of the unit. The insertion level is +6 dBu.

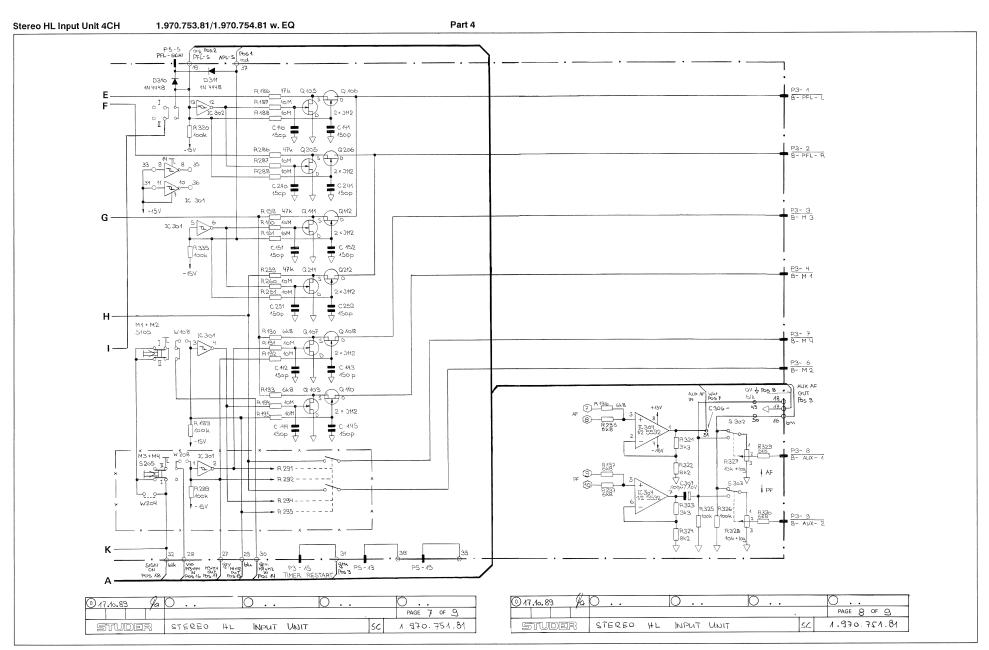
2.6 Signalization and Fader Start

The remote control relay of this module is activated as soon as the following criteria are satisfied:

- Channel fader open
- Master fader open
- Master selection button actuated
- Mute function not active
- Channel enabled with ON key.

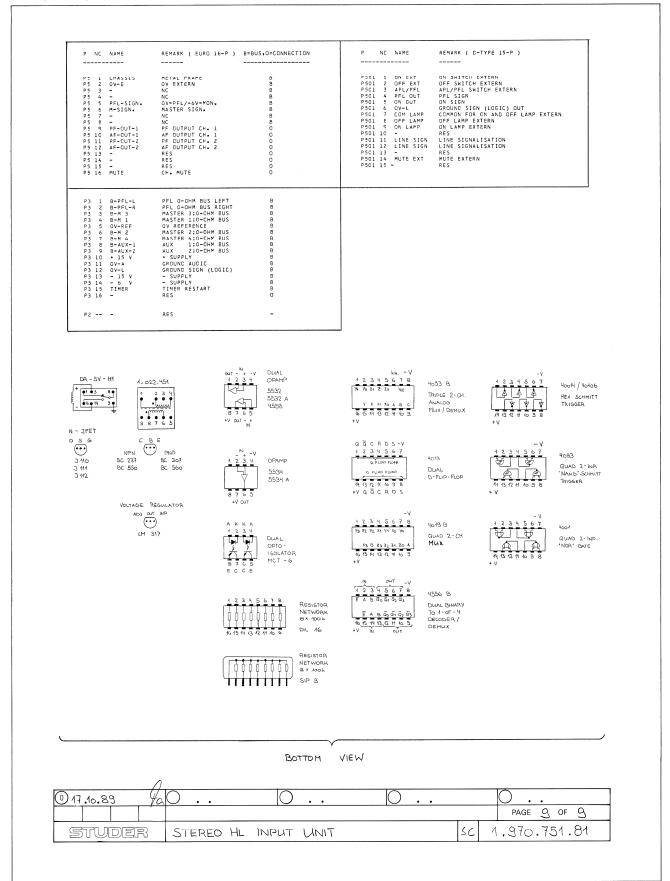

The relay make contact available on the 15-pin D-type REM-CONTR connector can be used for the remote control of turntables or tape recorders.

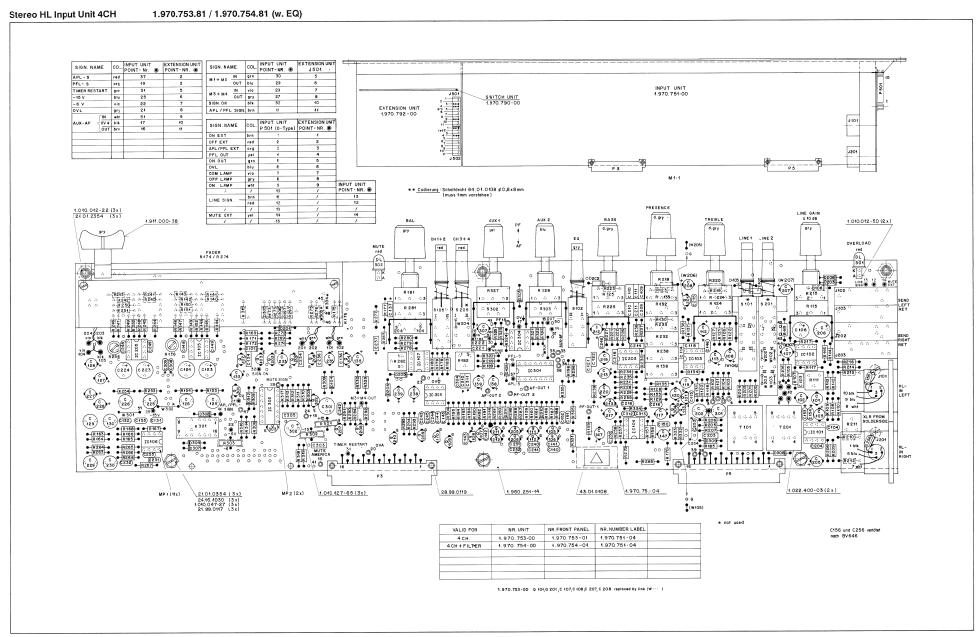

4/56 EDITION: 5. Oktober 1990


2.7 Schemateil / Circuit Diagrams

1.970.753/754.81

Part 1 Stereo HL Input Unit OULY UNIT UNIT SWITCH UNIT All DIODES 1N4448 970.790.00 1.370.741 J BC 560 APL/PFL MP 504.4 IC 503 14 PFL-S IC SO 1 10501 * 2-19A R502 1 5401 P5o1.3 APL-S 임 C 501 4083B 100k Ec 502 IC 502 R2 504 -4ZV D505 3504.40 ON SIGN ON R532 blk Pos 18 THIC 508 AUD 252 509 Ic 503 IC 501 IC 501 HOASE IC 502 M1+ M2-IN \$402 P5o1.1 R 504 1 40106B M2-IN * ON EXT PL C502 ALZ-ACV P501.6 M3-M4-IN R2 502 100k (3×) 100n M4 - IN * Ыи OFF R 533 QON POS 15 MP 501. M1 + M2 - OUT 2 read TO 508 M2-OUT # TC 504 8 10 8 IC 504 4053 B <u>°</u> M 3+ M4 - OUT 22 QAPFL , DAPFI Yel. 23 M4-0UT * P501.2 OFF EXT red 8403 13 IC 208 JR2.502 R2 503 100 k -15V 1000 B401-403 54/40WA V21-R2 501 Q512. 0.504 PELIAPL LAMP 100k QAPFL R2 504 BHOA 22 10502 APL/PFL SIGN 757 501 QON QoN MP 501.8 2402 JSJ 502 QAPFL 40938 # PFL/APL R516 100k 100k R2503 - VLA 1 40h = 8402 MONO SIGN 1St APSIGN_ R549 BC 550 ON LAMP 2502 R509 -/sv RZ 504 29k UR2 503 0508 ★ 72N-151 . 518 0503 2529 OFF LAMP 13402 2M2 R520 IC 508 22k R621 17502.5 R2 501 RS15 [RSM DLQ 501 353 511 15k 15k 📗 PNS 1212 3M3 R527 0809 2528 100k C506 JSJ 548 MP 504.9 100k 353 516 353 512 MP 504 40 2 317 LZ Q506 2080 Q504 BC560 BC 550 BC 560 MP501. M 100k IC 506 R2 503 SWITCH 7502 44 * UNIT PFL AUX AF IN AUX AF OUT EXTENSION 1.970.792.00 wht Pos 7 1.970.790.00 UNIT P5o1.4 @17 .1o.89 INCL. 1.970.792,00 PAGE 2 OF 9 1.970.790.00 PAGE / OF S 1.970.792.00 1.970.751.81 1.970.751.81 INPUT UNIT STUDER STEREO HL STUDER STEREO HL INPUT UNIT SC





Stereo HL Input Unit 4CH

1.970.753.81 / 1.970.754.81 (w. EQ)

Part 5

Stereo HL Input Unit 970 1.970.751.81 Stereo HL Input Unit 970

Stereo HL Input Unit 970							1.970.751.81					
AdPOS	REF.No	DESCRIPTI	[ON		MANUFA	CTURER Ad	POS	REF.No	DESCRIPTI	IONMANUFACTURER		
A101 C101	1.960.012.00 59.05.1681		stereo	fader 2*5k	Ohm pos.log. see R174	/R274	C247 C248 C249	59.22.3101 59.34.4680 59.34.4151	100 uF 68 pF 150 pF	-20% 10V EL CE CE		
C101 C102 C103 C104	59.05.1681 59.06.0682 59.34.5391	680 pF 680 pF 6.8 nF 390 pF	1%	500V PP PE CE			C250	59.34.4151 59.34.4151	150 pF	CE CF		
C105	59.22.3101 59.22.2221 59.22.3101	100 uF 220 uF 100 uF	-20% -20% -20%	10V EL 6V EL 10V EL	**/***		C252 C253 C254	59.34.4151	150 pF not used not used	ČĒ		
C107 C108 C109 C110	59.22.3101 59.06.5103 59.06.5224	100 uF 10 nF 220 nF	-20% 5% 5%	10V EL PE PE	**/**** **/**** **/****		C255 C256 C301	59.34.4101 59.99.0625 59.22.4101	100 pF 1500 pF	CE 400V CE -20% 16V EL		
C111 C112 C113	59.06.5103 59.22.3101 59.22.3101	10 nF 100 uF 100 uF 15 nF	5% -20% -20%	PE 10V EL 10V EL	**/*** **/*** **/***		C302 C303 C304	59.22.4101 59.22.4101 59.06.0104 59.34.2470	100 uF	-20% 16V EL PE CF		
C114	1.960.252.06 59.34.4151 59.34.4151	15 nF 150 pF 150 pF 100 uF 10 nF		PE CE CF	**/**** **/**** matched with **/**** **/****	C214	C305 C306 C307	59.06.0223 59.22.3101	47 pF 22 nF not used 100 uF	10% PE -20% 10V EL		
C116 C117 C118 C119	59.22.3101 1.960.252.05 59.22.3101	100 uF 10 nF 100 uF 100 uF	-20% -20%	10V EL PE 10V EL 10V EL	**/**** matched with	C218	C308 C309 C310	: :	not used not used not used			
C120 C121 C122	59.22.3101 59.06.0104 59.06.0104 59.22.2221	100 nF	-20%	PE	**/****		C311 C312 C313	: :	not used not used not used			
C123 C124 C125	59.22.2221 59.05.1681	100 nF 220 uF 220 uF 680 pF	-20% -20% 1% 1%	6V EL 6V EL 500V PP 500V PP			D101 D102 D103	50.04.0125 50.04.0125	1N4448 1N4448	any any any		
C126 C127 C128 C129	59.05.1681 59.22.3101 59.22.3101 59.05.1681	680 pF 680 pF 100 uF 100 uF 680 pF 680 pF	-20% -20% -20% 1%	10V EL 10V EL 500V PP 500V PP			D104 D105 D106	50.04.0125 50.04.0125 50.04.0125 50.04.0125	1N4448 1N4448 1N4448 1N4448 1N4448	any any any any		
C130 C131 C132	59.05.1681 59.34.7151 59.34.7151	150 pF 150 pF 150 uF	2% 2%	Œ Œ			D201 D202 D203 D204	50.04.0125 50.04.0125 50.04.0125 50.04.0125	1N4448 1N4448 1N4448	any any any any		
C133 C134 C135 C136	59.22.3101 59.06.0222 59.22.3101	2.2 nF 100 uF	-20% -20%	PE 10V EL			D204 D205 D206	50.04.0125 50.04.0125 50.04.0125	1N4448 1N4448 1N4448	any any any		
C136 C137 C138 C139	59.06.0682 59.22.3101 59.22.3101	6.8 nF not used 100 uF 100 uF	-20% -20%	10V EL 10V EL			D301 D302 D303	50.04.0125 50.04.0125 50.04.1118	1N4448 1N4448 7 6.2V	any 400mW BZX83C 6.2,BZX55C 6.2,ZPD 6.2 Ses,ITT		
C140	59.34.4151	150 pF 150 pF	200	CE CF			D304 D305 D306	50.04.0125 50.04.0125 50.04.0125 50.04.0125	Z 6.2V 1N4448 1N4448 1N4448 1N4448	any any any		
C142 C143 C144	59.34.4151 59.34.4151 59.34.4151	150 pF 150 pF 150 pF 150 pF		CE CE CE			D307 D308 D309 D310	50.04.0125 50.04.0125 50.04.0125 50.04.0125	1N4448 1N4448 1N4448 1N4448	any any any any		
C145 C146 C147 C148 C149	59.34.4151 59.22.3101 59.34.4680 59.34.4151	not used 100 uF 68 pF 150 pF	-20%	10V EL			D311 D312	50.04.0125 50.04.0125	1N4448 1N4448	any any		
C149 C150	59.34.4151 59.34.4151 59.34.4151	150 pF 150 pF 150 pF		CE CE			DL301 DL302	50.04.2111 50.04.2111	MV5753 MV5753	red GI,HP		
C151 C152 C153 C154	59.34.4151	150 pF not used not used		ČĒ			IC101 IC102 IC103 IC104 IC105	50.09.0106 50.09.0106 50.09.0107 50.09.0106	NE5532AN NE5532AN RC4559NB	dual op. amp. low noise Sig.Ex.Ra dual op. amp. low noise Sig.Ex.Ra dual op. amp. **/**** NEC.Ra		
C155 C156		100 pF 1500 pF		400V CE				50.09.0107 50.09.0107	NE5532AN RC4559NB RC4559NB NE5532AN	dual op. amp. low noise Sig,Ex,Ra dual op. amp. NEC,Ra dual op. amp. NEC,Ra		
C201 C202 C203	59.05.1681 59.05.1681 59.06.0682 59.34.5391	680 pF 680 pF 6.8 nF 390 pF	1% 1% 5%	500V PP 500V PP PE CE			IC201 IC202	50.09.0106	not exist not exist RC4559NB			
C204 C205 C206 C207	59.22.3101 59.22.2221 59.22.3101 59.22.3101	100 uF 220 uF 100 uF 100 uF	-20% -20% -20%	10V EL 6V EL 10V FI	**/***		IC202 IC203 IC204 IC205	50.09.0107 50.09.0107	not exist RC4559NB	dual op. amp. **/*** NEC,Ra dual op. amp. NEC,Ra		
C208 C209 C210	59.22.3101 59.06.5103 59.06.5224	100 uF 10 nF 220 nF	-20% 5% 5%	10V EL PE PE	**/**** **/**** **/****		IC206 IC207 IC301	50.07.0014	not exist not exist CD40106	hex.schmitt-trig.CMOS MC14584 Fc.Mot.RCA		
C211 C212 C213	59.06.5103 59.22.3101 59.22.3101	10 nF 100 uF 100 uF 15 nF	5% -20% -20%	PE 10V EL 10V EL	**/**** **/****		IC302 IC303 IC304	50.07.0014 50.05.0243 50.09.0106	CD40106 NE5534N NE5532AN	hex.schmitt-trig.CMOS MC14584 Fc,Mot,RCA hex.schmitt-trig.CMOS MC14584 Fc,Mot,RCA single op. amp. TI,Sig,Ra dual op. amp. low noise Sig,Ex,Ra		
C214 C215 C216 C217 C218	59.34.4151 59.34.4151	15 nF 150 pF 150 pF 100 uF 10 nF	-20%	PE CE CE 10V EL	**/**** see C114 **/**** **/****		J101 J102 J103	1.012.301.00 54.24.0105	3 pin	XLR female (option 1) St BANTAM dual jack Switchcraft,ACD combined with J102 Switchcraft,ACD		
C219 C220	59.22.3101 59.22.3101	100 uF 100 uF	-20% -20%	10V EL 10V EL	**/**** see C118 **/**** **/****		J201 J202 J203	1.012.301.00 54.24.0105	3 pin	XLR female (option 1) St BANTAM dual jack Switchcraft,ACD combined with J202 Switchcraft,ACD		
C221 C222 C223 C224	59.06.0104 59.22.2221 59.22.2221	100 nF 100 nF 220 uF 220 uF	-20% -20%	PE PE 6V EL 6V EL 500V PP	**/****		J301 J302 J303	: :	not used not used not used			
C225 C227 C227	59.05.1681 59.05.1681	680 pF 680 pF 100 uF	1% 1% -20%	SOOV PP			K301	56.04.0190 1.960.251.14 53.03.0166	DR-5V-H1 1 pcs 11 pcs	Stereo-HL-PCB St		
C228 C230	59.05.1681	100 uF 680 pF 680 pF	-20% 1% 1%	10V EL 10V EL 500V PP 500V PP			MP4 MP5 P1	53.03.0167	2 pcs	IC-socket 8 pin IC-socket 14 pin		
C231 C232 C233	59.34.7151	150 pF 150 pF 100 uF	2% 2% -20%	CE CE 10V EL			P2 P3 P4	54.11.2007 54.11.2007	not used 2*8 pin not exist 2*8 pin	euroconnector Bu		
C235 C235 C236	59 22 3101	2.2 nF 100 uF 6.8 nF not used	-20%	10V EL PE			P5 Q101 Q102	50.03.0216	J 111 J 111	N-JFET **/**** NS, Mot, Six		
C238 C239 C240	59.22.3101 59.22.3101	100 uF 100 uF 100 uF 150 pF	-20% -20%	10V EL 10V EL CE			Q103 Q104 Q105	50.03.0216 50.03.0436 50.03.0350 50.03.0350	BC 237 J 112 J 112	NPN IC>100mA, B>100		
C24: C24: C24:	59 34 4151	150 pF 150 pF 150 pF		CE			Q106 Q107 Q108	50.03.0350 50.03.0350 50.03.0350 50.03.0350	J 112 J 112 J 112 J 112	N-JFET NS,Mot,Six N-JFET NS,Mot,Six N-JFET NS,Mot,Six N-JFFT NS,Mot,Six		
C244 C244 C241	59.34.4151 59.34.4151	150 pF 150 pF 150 pF not used		CE CE CE CE			Q109 Q110 Q111	50.03.0350	J 112 J 112	N-JFET NS,Mot,Six N-JFET NS,Mot,Six		
		noc used					4					

DESCRIPTION......MANUFACTURER Ad ...POS.. ...REF.No... ...REF.No... DESCRIPTION.... .MANUFACTURER 58.01.8501 57.11.3132 57.11.4104 57.11.4330 57.11.4473 57.11.5106 57.11.5106 57.11.4104 57.11.4682 R...182 R...183 R...184 R...185 R...186 R...187 R...188 R...189 R...190 10% 5% 0.25W J 112 N-JFET J 111 N-JFET not exist 50.03.0350 50.03.0216 J 111 J 111 BC 237 J 112 0...201 0...202 0...203 0...204 0...205 0...206 0...207 0...208 0...208 0...209 50.03.0216 50.03.0216 50.03.0436 50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350 N-JFET
N-JFET
N-JFET
N-JFET
N-JFET
N-JFET
N-JFET
N-JFET
N-JFET NS,Mot,Six 1C>100mA, B>100 57.11.5106 57.11.5106 57.11.4682 57.11.5106 57.11.5106 57.11.4682 57.11.4682 10 MOhm 10 MOhm 6.8 kOhm 10 MOhm 10 MOhm 6.8 kOhm 6.8 kOhm 0.25W 0.25W 0.25W 0.25W 0.25W 0.25W R...191 R...192 R...193 R...194 R...195 R...196 R...197 Q...211 Q...212 Q...213 Q...214 50.03.0350 50.03.0350 50.03.0216 NS,Mot,Six NS,Mot,Six NS,Mot,Six R...201 R...202 R...203 R...204 R...205 R...206 R...207 R...208 R...209 R...210 57.11.3272 57.11.3272 57.11.3272 57.11.3272 57.11.3272 57.11.3272 57.11.4392 57.11.4393 57.11.4353 57.11.4331 2.7 kOhm 2.7 kOhm 2.7 kOhm 2.7 kOhm 2.7 kOhm 2.7 kOhm 3.9 kOhm 4.7 kOhm 15 kOhm 330 Ohm 0.25W 0.25W 0.25W 0.25W 0.25W 0.25W 0.25W 0.25W 0.25W BC 307 BC 307 BC 307 BC 237 0...301 0...302 0...303 0...304 50.03.0515 50.03.0515 50.03.0515 50.03.0436 PNP PNP PNP NPN [C>100mA, B>100 [C>100mA, B>100 [C>100mA, B>100 [C>100mA, B>100 R...101 R...102 R...103 R...104 R...105 R...106 R...107 R...108 R...109 R...110 2.7 kOhm 2.7 kOhm 2.7 kOhm 2.7 kOhm 2.7 kOhm 2.7 kOhm 3.9 kOhm 4.7 kOhm 15 kOhm 330 Ohm 1% 0.25W 1% 0.25W 1% 0.25W 1% 0.25W 1% 0.25W 1% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 57113272 57113272 57113272 R...211 R...212 R...213 R...214 R...215 R...216 R...217 1 k0hm 270 0hm 4.7 k0hm 1.3 k0hm 10 k0hm 1.3 k0hm 4.7 k0hm 3.3 k0hm 3.3 k0hm 10% 5% 0,25W 2% 0,25W 2% 0,25W 10% 1in. 2% 0,25W 5% 0,25W 5% 0,25W 5% 0,25W 5% 0,25W 57.11.3272 57.11.3272 57.11.4392 57.11.4472 57.11.3153 57.11.4331 58.01.8102 57.11.4271 57.11.4472 57.11.3132 see R115 57.11.3132 57.11.4472 57.11.4332 57.11.4332 57.11.5106 58.01.8102 57.11.4271 57.11.4472 57.11.3132 1.010.007.58 57.11.3132 57.11.4472 57.11.4332 57.11.4332 57.11.4332 57.11.5106 1 kOhm 270 Ohm 4.7 kOhm 1.3 kOhm 10 kOhm 1.3 kOhm 4.7 kOhm 3.3 kOhm 3.3 kOhm 10%
5% 0,25W
2% 0.25W
2% 0.25W
10% 1in.
2% 0.25W
2% 0.25W
5% 0.25W
5% 0.25W
5% 0.25W R. . 111 R. . 112 R. . 113 R. . 114 R. . 115 R. . 116 R. . 117 R. . 118 R. . 119 R. . 120 5% 0.25W 5% 0.25W 5% 0.25W 10% lin. 10% lin. 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 680 kOhm 3.3 kOhm 560 Ohm 4.7 kOhm 22 kOhm 3.3 kOhm 680 kOhm 3.3 kOhm 3.3 kOhm 1.8 kOhm combined with R215 St R...221 R...222 57.11.4684 57.11.4332 57.11.4561 R...222 R...223 R...224 R...225 R...226 R...227 R...228 R...229 R...230 **/*** see R124 see R125 **/*** **/*** **/*** **/*** 57.11.4332 57.11.4684 57.11.4332 57.11.4332 57.11.4382 **/*** 57.11.4684 57.11.4332 57.11.4561 1.010.018.58 1.010.017.58 57.11.4332 57.11.4332 57.11.4332 57.11.4332 **/****

/*

/*

/*

/*

/*

/*

/*

/**

/** R...121 R...122 R...123 R...124 R...125 R...126 R...127 R...128 R...129 R...130 680 kOhm 3.3 kOhm 560 Ohm 4.7 kOhm 22 kOhm 3.3 kOhm 680 kOhm 3.3 kOhm 3.3 kOhm 1.8 kOhm 5% 0.25W 5% 0.25W 5% 0.25W 10% lin. 10% lin. 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W combined with R224 combined with R225 R. . . 231 R. . . 232 R. . . 233 R. . . 234 R. . . 235 R. . . 236 R. . . 237 R. . . 238 R. . . 239 R. . . 240 680 kOhm 100 kOhm 100 kOhm 10 kOhm 10 kOhm 1.8 kOhm 4.7 kOhm 1.5 kOhm 5% 0.25W 10% neg.log. 10% neg.log. 5% 0.25W 5% 0.25W 5% 0.25W 10% lin. 5% 0.25W 1% 0.25W 57.11.4684 **/**** see R 132 see R 132 57.11.4103 57.11.4103 57.11.4182 57.11.4684 **!*** \$ 0.25W | 10k reg. log. 133/138/232/233/238 ***** St 10k reg. log. see R132 **** St 10k reg. log. see R132 **** St 0.25W | 10k reg. log. see R132 ****

55 0.25W | 10k reg. see R132 ****

10 0.25W | 10k reg. see R132 ****

10 0.25W | 10k reg. see R132 ****

10 0.25W | 10k reg. see R132 *****

10 0.25W | 10k reg. see R132 ****

10 0.25W | 10k reg. see R132 ***

10 0.25W | 10k r 680 kOhm 100 kOhm 100 kOhm 10 kOhm 10 kOhm 1.8 kOhm 680 kOhm 4.7 kOhm 1.5 kOhm R. . . 131 R. . . 132 R. . . 133 R. . . 134 R. . . 135 R. . . 136 R. . . 137 R. . . 138 R. . . 139 R. . . 140 see R132 57.11.4684 1.010.016.58 57.11.4104 57.11.3152 57.11.4103 57.11.4103 57.11.4182 57.11.4684 1% 0.25W R. . 241 R. . 242 R. . 243 R. . 244 R. . 245 R. . 246 R. . 247 R. . 248 R. . 249 R. . 250 1.5 kOhm 1.5 kOhm 1.5 kOhm 3 kOhm 3 kOhm 3 kOhm 15 Ohm 15 Ohm 3 kOhm 57.11.3152 57.11.3152 57.11.3152 57.11.3302 57.11.3302 57.11.3302 57.11.3302 57.11.3302 57.11.3150 57.11.3150 57.11.4104 57.11.3152 1.5 kOhm 1.5 kOhm 1.5 kOhm 3 kOhm 3 kOhm 3 kOhm 15 Ohm 15 Ohm 3 kOhm 1% 0.25W R. . . 141 R. . . 142 R. . . 143 R. . . 144 R. . . 145 R. . . 146 R. . . 147 R. . . 148 R. . . 149 R. . . 150 57.11.3152 57.11.3152 57.11.3302 57.11.3302 57.11.3302 57.11.3302 57.11.3302 57.11.3150 57.11.3150 57.11.3150 R...251 R...252 R...253 R...254 R...255 R...256 R...257 R...258 R...259 R...260 57.11.3302 57.11.3302 57.11.3689 57.11.3689 57.11.5106 58.11.6201 57.11.4333 57.11.3362 57.11.4473 57.11.5106 3 kOhm 3 kOhm 6.8 Ohm 10 MOhm 200 Ohm 39 kOhm 3.6 kOhm 47 kOhm 1% 0.25W 1% 0.25W 1% 0.25W 1% 0.25W 5% 0.25% 30% 2% 0.25W 2% 0.25W 2% 0.25W 5% 0.25W trimpot cermet R. . . 151 R. . . 152 R. . . 153 R. . . 154 R. . . 155 R. . . 156 R. . . 157 R. . . 158 R. . . 159 R. . . 160 3 kOhm 3 kOhm 6.8 Ohm 6.8 Ohm 10 MOhm 200 Ohm 39 kOhm 3.6 kOhm 47 kOhm 10 MOhm 1% 0.25W 1% 0.25M 1% 0.25M 1% 0.25W 5% 0.25W 30% 2% 0.25W 2% 0.25W 2% 0.25W 5% 0.25W R...261 R...262 R...263 R...264 R...265 R...266 R...267 R...268 R...269 R...270 10 MOhm not exist 1.5 kOhm 1.5 kOhm 3.9 kOhm 2.7 kOhm 2.7 kOhm 100 kOhm 33 Ohm 57.11.5106 5% 0.25W trimpot cermet 57.11.3152 57.11.3152 57.11.3392 57.11.3392 57.11.3272 57.11.3272 57.11.4104 57.11.4330 1% 0.25W 1% 0.25W 1% 0.25W 1% 0.25W 1% 0.25W 1% 0.25W 5% 0.25W 5% 0.25W 10 MOhm not exist 1.5 kOhm 1.5 kOhm 3.9 kOhm 3.9 kOhm 2.7 kOhm 2.7 kOhm 100 kOhm 33 Ohm R. . . 161 R. . . 162 R. . . 163 R. . . 164 R. . . 165 R. . 166 R. . . 167 R. . . 168 R. . . 169 R. . . 170 57.11.5106 5% 0.25W 57.11.3152 57.11.3152 57.11.3392 57.11.3392 57.11.3272 57.11.3272 57.11.4104 57.11.4320 1% 0.25W 1% 0.25W 1% 0.25W 1% 0.25W 1% 0.25W 1% 0.25W 5% 0.25W 5% 0.25W R...271 R...272 R...273 R...274 R...275 R...276 R...277 R...278 R...279 R...280 100 kOhm 3.3 MOhm 100 kOhm 5 kOhm 100 Ohm 3.3 MOhm 100 kOhm 100 kOhm 5.1 kOhm 5% 0.25W 0.25W 0.25W pos.log 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 57.11.4104 57.11.5335 57.11.4104 fader see A102 St 57.11.4101 57.11.5335 57.11.4104 57.11.4103 57.11.4104 57.11.3512 R...171 R...172 R...173 R...174 R...175 R...176 R...177 R...178 R...179 100 kOhm 3.3 MOhm 100 kOhm 5 kOhm 100 Ohm 3.3 HOhm 100 kOhm 100 kOhm 100 kOhm 5% 0.25W 5% 0.25W pos.log 5% 0.25W 57.11.4104 57.11.5335 57.11.4104 fader see A102 St R...281 R...282 R...283 R...284 R...285 R...286 R...287 R...288 10 kOhm 500 Ohm 1.3 kOhm 100 kOhm 33 Ohm 47 kOhm 10 MOhm 10 MOhm 10% lin.
10%
5% 0.25W
5% 0.25W
5% 0.25W
5% 0.25W
5% 0.25W
5% 0.25W 57.11.4101 57.11.5335 57.11.4104 57.11.4103 57.11.4104 57.11.3512 see R181 58.01.8501 57.11.3132 57.11.4104 57.11.4330 57.11.4473 57.11.5106 57.11.5106 10% lin. comb. with R281/S104/S204 St R...181 1.010.019.58 10 kOhm

1.970.751.81

4/68 EDITION: 5. Oktober 1990

Stereo HL Input Unit 970

1.970.751.81

Ad	POS	REF.No	DESCRIPTI	ON	MANUFACTU	RER	Ad	POS	REF.No	DESCRIPT	ION	MANUFACTURER
	R289 R290	57.11.4104 57.11.4682	100 k0hm 6.8 k0hm	5% 0.25W 5% 0.25W				R401 R402 R403	57.11.3220 57.11.3220 57.11.3220	22 Ohm 22 Ohm 22 Ohm	5% 0.25W 5% 0.25W 5% 0.25W	
	R291 R292 R293 R294 R295 R296	57.11.5106 57.11.5106 57.11.4682 57.11.5106 57.11.5106 57.11.4682	10 MOhm 10 MOhm 6.8 kOhm 10 MOhm 10 MOhm 6.8 kOhm	5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W				S401 S402 S403 C501	55.15.0232 55.15.0232 55.15.0232 59.06.0104	2* a 2* a 2* a 100 nF	Push button switch Push button switch Push button switch 10% PE	EAO EAO EAO
	R297 R301 R302 R303 R304 R305 R306 R307 R308	57.11.4682 57.92.1271 57.92.1271 57.92.1271 57.11.4102 57.11.4103 57.11.4332	6.5 Ohm 6.5 Ohm 6.5 Ohm 6.5 Ohm 1 kOhm 100 kOhm 10 kOhm not exist 3.3 kOhm	5% 0.25W I = 270mA PTC I = 270mA PTC I = 270mA PTC 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W	Philips Nr.2322 662 12 Philips Nr.2322 662 12 Philips Nr.2322 662 12	711		C502 C503 C504 C505 C506 C507 C508 C509 C510	59.06.0104 59.06.0103 59.06.0103 59.06.0103 59.06.0103 59.26.2100 59.06.0104 59.06.0682 59.06.0222 59.22.3101	100 nF 100 nF 10 uF 10 nF 10 nF 10 nF 100 nF 6.8 nF 2.2 nF	10% PE 10% PE 20% 16V SAL 10% PE 10% PE 20% 16V SAL 10% PE 10% PE 10% PE -20% 10V EL	
	R309 R310 R311	57.11.4224 57.11.4104 57.11.5106	220 kOhm 100 kOhm 10 MOhm	5% 0.25W				C512 C513	59.22.5101 59.06.0104	100 uF 100 nF	-20% 25V EL 10% PE	
	R312 R313 R314 R315 R316 R317	57.11.5106 57.11.4471 57.11.4271 57.11.3105 57.11.4271 57.11.4104 57.11.4333	10 MOhm 470 Ohm 270 Ohm 1 MOhm 270 Ohm 100 kOhm 33 kOhm	5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W				D501 D502 D503 D504 D505 D506	50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125	1N4448 1N4448 1N4448 1N4448 1N4448 1N4448		any any any any any
	R318 R319 R320	57.11.4683 57.11.4104	68 kOhm 100 kOhm	5% 0.25W 5% 0.25W				DLQ.501	50.99.0111	MCT - 6	Dual Optokoppler	
		57.11.4332 57.11.4822 57.11.4322 57.11.404 57.11.4104 1.369.150.03 1.369.150.03 57.11.4682 57.11.4682	3.3 kOhm 8.2 kOhm 3.3 kOhm 8.2 kOhm 100 kOhm 10 kOhm 10 kOhm 10 kOhm 6.8 kOhm 6.8 kOhm		mbined with S302 mbined with S303	St St		IC501 IC502 IC503 IC504 IC505 IC506 IC507 IC508 IC509 IC510	50.07.0014 50.07.0008 50.07.0013 50.07.0015 50.10.0108 50.10.0108 50.07.0008 50.07.0005 50.07.0015	40106B 4093B 4013B 4053B LM 317L LM 317L 4093B 4001B 4053B 4019B	Hex Schmitt Trigger Nand Schmitt Trigger D-Flip-Flop Mux-Demux Voltage Regulator Voltage Regulator Nand Schmitt Trigger Quad Nor Gate Mux-Demux Quad 2-Input Mux	
	R331 R332 R333 R334 R335	57.11.4102 57.11.4105 57.11.4105 57.11.4104 57.11.4104	1 kOhm 1 MOhm 1 MOhm 100 kOhm 100 kOhm	5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W	**/*** **/****			J501 J502 JSJ.501 JSJ.502	50.07.0004 54.01.0291 54.01.0291	4556B not used not used	Decoder CIS-Connector 11 pin CIS-Connector 11 pin option 6 option 6	
	S101 S102 S103 S104 S105	55.15.0019 55.15.0019	4*U 2*U not exist 1*U 2*U	au button: grey BAL on/off button: red	(option 1) **/**** see R181	St		JSJ.503 JSJ.504 JSJ.505 JSJ.506 JSJ.507 JSJ.508	54.01.0021 54.01.0021	not used not used not used not used	Jumper option 5 Jumper option 10 option 10 option 13 option 14	
	S201 S202 S203 S204 S205	55.15.0019	6*U not exist not exist 1*U 2*U	BAL on/off button: red	see \$101 see R181 ***/****	ITT		JSJ.509 JSJ.510 JSJ.510 JSJ.511 JSJ.512	54.01.0021 54.01.0021 54.01.0021	not used	option 9 not used in 1.970.741.00 Jumper used in 1.970.753 / 75 Jumper option 8 Jumper option 7 / option 8 Jumper option 7 / option 8	option 11 4.00
	S301 S302 S303 S304	: :	not used 1*U 1*U not used	AUX AF/PF AUX AF/PF	see R327 see R328			JSJ.513 JSJ.514 JSJ.515 JSJ.516 JSJ.517 JSJ.518	54.01.0021 	not used not used not used not used not used	option 7 option 8 option 7 option 7 option 7 option 7 option 8 option 7 option 8 option 8 option 8 option 12	
		1.022.451.00		input trafo 1:0.6		St St	02		1.010.300.64 64.03.0502	not used 2 pcs 2 pcs	Flat-band-cable 40mm Flat-band-cable 40mm	
	W101 W102 W103 W104 W105 W106 W107 W108	· · · · · · · · · · · · · · · · · · ·	not exist		option 1 not used option 1 not used */*** */*** replaces C107		02	MP505 MP506 MP507	53.03.0168 53.03.0168 53.03.0167 1.970.792.11 54.01.0020 1.010.014.22 1.970.792.04 43.01.0108	4 pcs 3 pcs 5 pcs 1 pcs 33 pcs not exist 2 pcs 0 pcs 1 pcs	IC-socket 16 pin IC-socket 16 pin IC-socket 14 pin Extension unit PCB Wire Wrap pins hexagon rivetting-nut M3*4.5 STUDER-number-label ESE-caution-label see note	\$t \$t \$t \$1) \$t
	W201 W202 W203 W204 W205 W206 W207 W208 W301 W302		not used		option 1 not used option 1 not used */** */*** */*** */*** */*** */*** option 2 not used			Q501 Q502 Q503 Q504 Q505 Q506 Q507 Q508 Q509 Q510	50.03.0496 50.03.0496 50.03.0496 50.03.0496 50.03.0496 50.03.0497 50.03.0216 50.03.0350 50.03.0497	BC 560 BC 560 BC 560 BC 560 BC 550 J 111 J 112 BC 550 BC 560		any any any any any Six Six any
	W303 W304 XDL.301 XDL.302 B401	1.010.012.50	not used 5mm link not used	LED holder LED holder 5V 40mA	(option 3) option 3)	St St Osh		Q511 Q512 Q513 Q514 Q515	50.03.0497 50.03.0496 50.03.0496 50.03.0496 50.03.0496	BC 550 BC 560 BC 560 BC 560 BC 560	NPN IC-100mA, B-200 PNP IC-100mA, B-200 PNP IC-100mA, B-200 PNP IC-100mA, B-200 PNP IC-100mA, B-200	any any any any any
01 01	B402 B403 MP401 MP402 MP402 MP403 MP403 MP404 MP404	51.02.0154 51.02.0154 21.01.0354 24.16.1030 1.010.025.27 1.970.790.04 55.15.0202	2 pcs not exist 2 pcs not exist 2 pcs not exist 0 pcs 3 pcs	5V 40mA 5V 40mA lotted pan head: screw locking de' hexagon post M3*; Studer-number-lal push-button asse	vices D3.2 / 5.5 * 0.4 25 bel mbly	Osh Osh 5 ST ST EAO		R501 R502 R503 R505 R505 R506 R507 R508 R509 R510	57.11.3102 57.11.3102 57.11.3102 57.11.3102 57.11.3102 57.11.3102 57.11.3153 57.11.3153 57.11.3153	1 kOhm 1 kOhm 1 kOhm 1 kOhm 1 kOhm 1 kOhm 15 kOhm 15 kOhm 15 kOhm	5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W	·
	MP406 MP407 MP408 MP409 MP410	55.15.0221 55.15.0228 1.970.790.11 55.15.0212 55.15.0215		push-button asser push-button knob Switch unit PCB ush-button-assem ush-button-assem	bly red	EAO EAO		R511 R512 R513 R514 R515	57.11.3153 57.11.3221 57.11.3221 57.11.3153 57.11.3153	15 kOhm 220 Ohm 220 Ohm 15 kOhm 15 kOhm	5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W	4/60

Stereo HL Input Unit 970

1.970.751.81

Ad	P0	s	F	EF.N	lo	DE	SCRIP	TION					MANUFA	CTURER
	R	516	58	3.01.	9104	100	k0hm	10%	var.	res	istor			
	R	517					exist							
01	R				3103		kOhm		0.25					
	R	518	57	.11.	3223		k0hm		0.25					
	R	519	57	7.11.	3223		k0hm		0.25					
	R	520	57	7.11.	5225	2.2	MOhm	5%	0.25	N				
	R	521	57	7.11.	3223	22	kOhm	5%	0.25	W				
	R		57	7.11.	3102	1	k0hm	5%	0.25	W				
	R	523				not	exist							
	R	524				not	exist							
	R	525				not	exist							
	R	526				not	exist							
	R	527	57	7.11.	5335	3.3	MOhm	5%	0.25	W				
	R	528	57	7.11.	3104	100	k0hm	5%	0.25	W				
	R	529	57	7.11.	5335	3.3	MOhm	5%	0.25	W				
	R	530	57	7.11.	3104	100	kOhm	5%	0.25	W				
	R	531				not	used							
	Ř			: :			used							
	R			: :			used							
				•	,									
	R7.	501	5	7.88	4104	100	kOhm	5%	sing	le 1	ine			
		502			4104	100	kOhm		sing					
		503			4104		kOhm	5%	sing	le 1	ine			
	RZ.		5	7.88	3104	100	k0hm	5%	dual	in	line			
222	*	1		Cu			1	070 751	VV			hergeste		
	**	only		CH	with	EΛ		970.752				hergeste		
	***	only		CH	with	LŲ		970.752		milu	michic	nei geste		
	****	only		CH	with	FΛ		970.754						
1		only			#1 CII					====	=====	=======		
225														

| Optionen : siehe Optionliste |

CE=Ceramic, CF=Carbon Film, EL=Electrolytic, MF=Metal Film, PE=Polyester, PP=Polypropylen, PS=Polystyrol

MANUFACTURER: Bu=Burndy, Ex=Exar, Fc=Fairchild, GI=General Instrument
HP=Hewlett Packard, ITT=Intermetall, Mot=Motorola, Nat=National
{Matsushita}, NS=National Semiconductors, Ph=Philips,
Ra=Raytheon, Sig=Signetics, Six=Siliconix, St=Studer,
TI=Texas Instrument

1.970.751.81 STEREO HL INPUT UNIT 970 TA89/10/1700

MASTER UNIT

Master Unit 3. 1.970.841

3.1 Bedienungselemente

LIMITER/ KOMPRESSOR: Die Summen-Einheit vereinigt drei Funktionsblöcke:

- Summenteil
- Limiter/Kompressor-Stufe mit eigenem Einschleifpfad
- Hochpegeleingang

Über Potentiometer sind folgende Parameter einstellbar:

Ratio: Kompressionsverhältnis: 1:1.5...1:20 (Limiter)

Release: Rücklaufzeit programmabhängig beeinflussbar am

Potentiometer.

Gain: Der Limiter/Kompressor-Einschleifpfad verfügt am

Eingang über eine eigene, an Potentiometer GAIN einstellbare Kanalverstärkung. Bei ausgeschaltetem Limiter/Kompressor kann dieser Verstärker für beliebige

Pegelanpassungen verwendet werden.

Der Regelteil des Kompressor / Limiters arbeitet auf dem Puls-Dauer-Modulations (PDM) Prinzip. Ein- und Ausgang sind elektronisch symmetriert. Der Nennpegel

beträgt +6 dBu.

Funktionsbeschreibung unter Punkt 3.2.

HL INPUT:

Jeder Summenkanal ist mit einem zusätzlichen HOCH-PEGELEINGANG ausgerüstet. Eine PFL-Taste erlaubt das Vorhören des Eingangssignales. Zur Lautstärkeregulierung ist ein Potentiometer eingesetzt. Analog zu den Eingangseinheiten sind zwei Hilfsausgänge AUX 1 und AUX 2 vorhanden. Nebst Sammelschienenanwahl und Panoramasteller verfügt der Eingang auch über

eine MUTE-Taste zur Stummschaltung.

SUMMENTEIL:

Null-Ohm-Verstärker An einem wird das Sammelschienensignal summiert und auf den elektronisch symmetrierten Einschleifpunkt (Bantam-Jack Buchsen) gebracht. Das zurückkommende Signal gelangt auf die Vorhörtaste und auf den Summenregler. Über den Schalter zum Einschleifen des Limiters gelangt das Signal auf den Ausgangsverstärker mit

symmetrischem, erdfreiem Ausgang.

PFL Master: Das unabhängig von der Flachbahnregler-Stellung abgegriffene Vorhörsignal wird mittels Tastendruck auf beide PFL-Sammelschienen geleitet. Dies ermöglicht ein Abhören des Summenkanals, auch bei geschlos-

senem Flachbahnregler.

4/71 EDITION: 22. November 1990

MASTER UNIT

3.2 Limiter / Kompressor

Die Limiter / Kompressorstufe, mittels Taste IN zuschaltbar, wird zur Pegel- (Limiter) und Dynamik-(Kompressor) Begrenzung eingesetzt. Sie kann wahlweise dem Summenkanal zugeschaltet, oder für externe Anwendungen in den separaten LIMITER/ COMPR-Einschleifpfad eingeschaltet werden (Taste Σ /INSERT):

STEREOKOPPLUNG LINK

Über die eingerastete Taste LINK werden die Limiter-Regelkreise der Summeneinheiten, über welche ein Signal verarbeitet wird, miteinander gekoppelt. Dies bewirkt eine Verstärkungsregelung, bei der die Regelgrösse vom Kanal mit dem jeweils höheren Pegel bestimmt wird.

SUMMENKANAL **S**

Die ausgerastete Vorwahltaste (Position Σ) schaltet den Limiterteil in den Summenkanal (LED LIMITER leuchtet) und dient der Pegelbegrenzung, zum Schutze der Ausgangsleitung vor Übersteuerung. Der RATIO- und der GAIN-Regler sind bei dieser Anwendung nicht wirksam. Der Pegelgrenzwert liegt bei +6dBu und lässt sich schaltungsintern abgleichen.

LIMITER/KOMPRESSOR -EINSCHLEIFPFAD

INSERT Bei eingerasteter vorwahltaste [4] (Stellung INSERT) steht der Limiter/Kompressor-Schaltkreis zum Einschleifen in den PF-Einschleifpfad einer beliebigen Eingangs- oder Summeneinheit zur Verfügung. Folgende Parameter der Limiter-/Kompressorfunktion können verändert werden:

Master Unit 3. 1.970.841

3.1 **Operating Elements**

LIMITER/ COMPRESSOR: The master unit comprises three functional blocks:

- Master section
- Limiter/compressor stage with separate insertion path
- High-level input

The following parameters can be adjusted via potentiometers:

Ratio: Compression ratio: 1:1.5...1:20 (LIMITER)

Release: Program dependent release time, adjustable with the

potentiometer.

Gain: The gain of the limiter/compressor insertion path can be

varied on the input with the GAIN potentiometer. This amplifier is also available for any other application when

the limiter/compressor is switched off.

The control section of the compressor/limiter employs the pulse duration modulation (PDM) principle. The input and the output are electronically balanced. The

nominal level is +6 dBu.

HIGH-LEVEL INPUT: Each master channel is equiped with an additional

high-level input. A PFL button is available for prelistening the input signal. The volume can be controlled with a potentiometer. Two auxiliary output units AUX 1 and AUX 2 are available, analogously to the input units. The buses are selected in the same way as on the input units and differ in the arrangement and

design of the selection keys.

MASTER SECTION:

The bus signal is added by a zero-ohm amplifier and taken to the electronically balanced insertion point (bantam jack socket). The return signal is taken to the prelistening key and to the master fader. Via the limiter

insertion switch the signal is taken to the output amplifier which has a balanced and floating output.

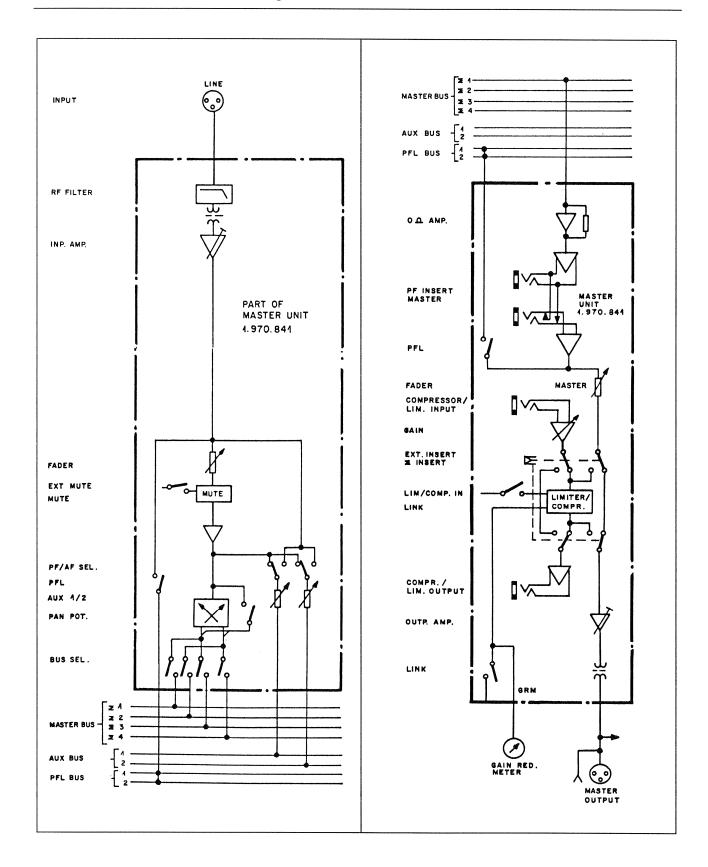
PFL Master: The PFL signal which is tapped independently of the fader setting can be connected to the two PFL buses by pressing button which means that the master channel can also be prelistened when the linear fader is closed.

3.2 Limiter / Compressor

The limiter/compressor stage which can be brought into the circuit with the IN button, is used for limiting the level (limiter) and the dynamic range (compressor). For external applications it can be connected to the separate LIMITER/COMPR insertion path (with button Σ /INSERT):

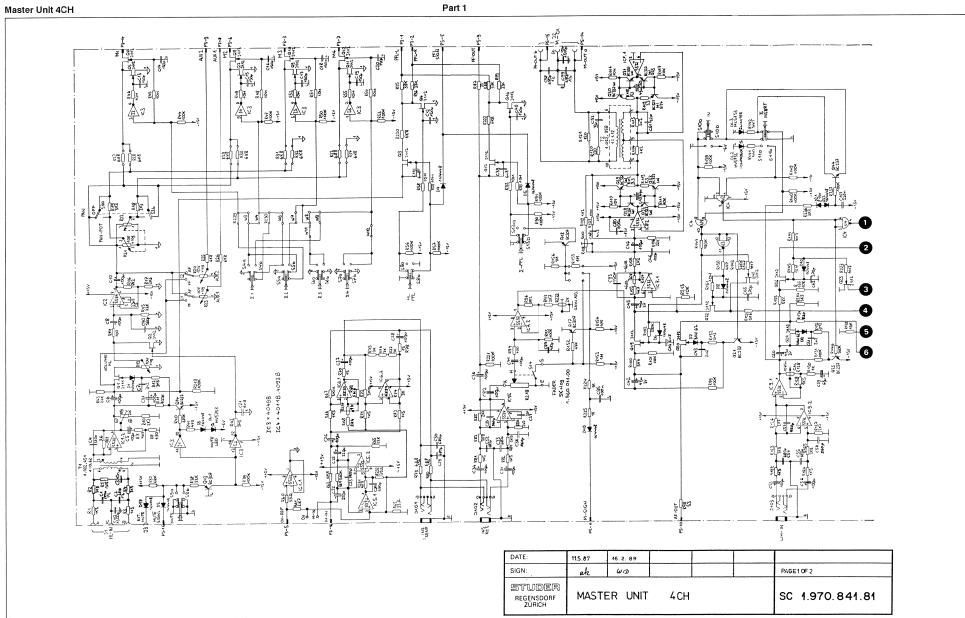
STEREO COUPLING LINK When the LINK button is engaged, the limiter control circuits of the master unit processing a signal are coupled. This results in a gain control in which the controlled variable is determined by the channel on which the higher control voltage is available.

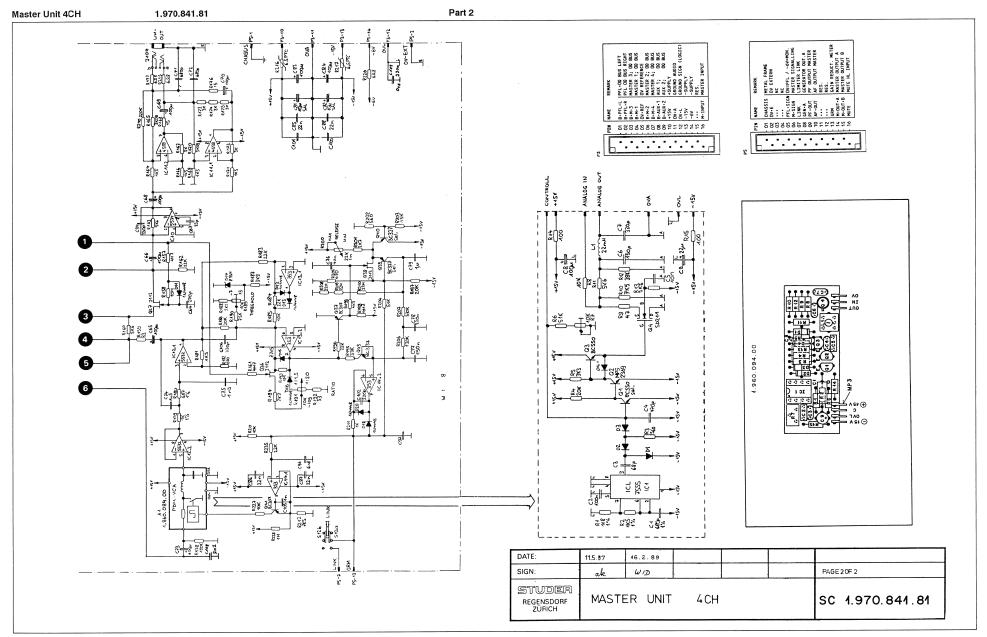
MASTER CHANNEL Σ When the preselection button is released (position Σ), the limiter section connects the master channel (LIMITER LED is on) and serves as a level limiter for protecting the output line from overloads. The RATIO and the GAIN controls are disabled in this application. The level limit is +6 dBu and can be aligned internally.

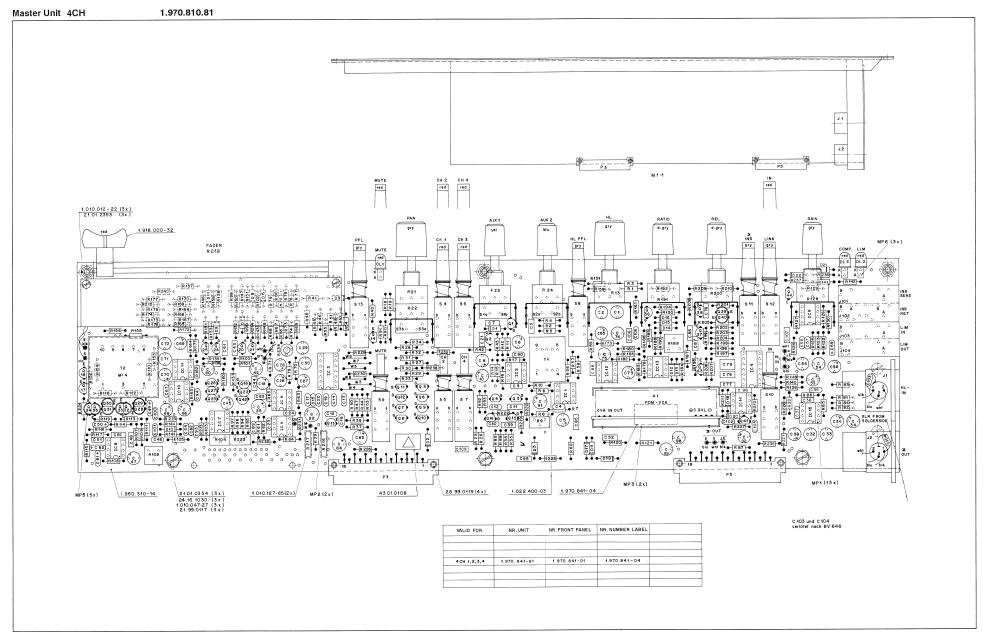

LIMITER/COMPRESSOR

-INSERTION PATH

INSERT When the preselection button is engaged (INSERT position), the limiter/compressor circuit is available on the balanced jack sockets [C] for insertion into the PF insertion path of any input or master module.


The following parameters of the limiter/compressor function can be altered:


3.3 Blockschaltbild / Block Diagram



3.4 Schemateil / Circuit Diagrams

1.970.841.81

Master U	Master Unit 970						10.81			
AdPOS	.REF.No	DESCRIPTION	ON		MANJFACTURER	AdP0S	REF.No	DESCRIPT	ION	MANUFACTURER
C2 C3	.960.094.00 59.05.1681 59.05.1681 59.06.0103 59.34.4331 59.22.3101 59.22.3101	680 pF 680 pF 10 nF 330 pF	PDM-VC/ 1% 1% 10% -20%	500V 500V	St PP PP PE EL EL EL EL	C103 C104 C105 C106 C107 C108 C109	59.99.0625 59.99.0625 59.32.4102 59.34.4331 59.06.0224 59.06.0222 59.06.0224	1500 pF 1500 pF 1 nF 330 pF 220 nF 2.2 nF 220 nF	400V CE 400V CE CE CE PE 10% PE PE	
C/ C8 C9 C10 C11 C12 C13 C14 C15	59.06.0222 59.22.3101 59.34.2330 59.22.3101 59.06.0682 59.34.4151 59.34.4151 59.34.4151 59.34.4151 59.34.4151	100 uF 33 nF	-20% 10% -20% -20%	10V 10V	PRE ELLE ELLE ELLE ELLE ELLE ELLE ELLE E	D1 D2 D3 D4 D5 D6 D7 D8 D9 D10	50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0132 50.04.0132 50.04.0132 50.04.0132	1N4448 1N4448 1N4448 1N4448 1N4448 BAW 62 1N4448 BAW 62 1N4448 BAW 62		any any any any any Ph any Ph any
C17 C18 C19 C20 C21 C22 C23 C24	59.34.4151 59.34.4151 59.34.4151 59.34.4151 59.06.0682 59.30.1221 59.34.4101 59.32.2681 59.30.1221	150 pF 150 pF 150 pF 150 pF 150 pF 6.8 nF 220 uF 100 pF 680 pF	-20% -20%	3V 3V	CE CE CE TA TA CE CE CE	D11 D12 D13 D14 D15 D16 D17 D18 D19 D20	50.04.0125 50.04.0125 50.04.0125 50.04.1112 50.04.1103 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125	1N4448 1N4448 2 5.1V 7 7.5V 1N4448 1N4448 1N4448 1N4448 1N4448	400mi BZX83C 5.1,BZX55 400mi BZX83C 7.5,BZX55	any any C 5.1,ZPD 5.1 Ses,ITT C 7.5,ZPD 7.5 Ses,ITT any any any any any
C25 C26 C27 C28 C29	59.22.3101 59.22.3101 59.22.3101 59.05.1681	100 uF	-20% -20% -20% 1%	10V 10V 500V	EL EL PP	D21 D22	50.04.1119 50.04.0125 50.04.2111	Z 15 V 1N4448 MV5753	400mW BZX83C 15, BZX55	C 15, ZPD 15 Ses,ITT any GI.HP
C30 C31 C32 C33 C34 C35 C36 C37 C38 C39 C39 C40	59.05.1681 59.02.3101 59.05.1681 59.05.1681 59.02.3101 59.34.5561 59.34.5561 59.34.2330 59.34.2330 59.06.0682 59.34.4151	100 uF 680 pF 680 pF 100 uF 560 pF 560 pF 33 pF	1% -20% 1% 1% -20% -20%	500V 10V	;P EL PP PP PP EL CC	DL1 DL2 DL3 IC1 O2 IC1 O4 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8	50.04.2111 50.04.2111 50.09.0105 50.09.017 1.010.051.50 50.05.0244 50.07.0014 50.07.1011 50.09.0105 50.09.0105 50.09.0105 50.09.0105	MV5/53 MV5753 MV5753 NE5532 MC33078 NE5532 NE5534NB CD40106 CD4011 NE5532 NE5532 NE5532 NE5532	red red	GI,HP
C41 C42 C43 C44 C45 C46 C47 C48 C49 C50	59.22.3101 59.30.1470 59.06.0222 59.06.0682 59.30.1470 59.34.4101 59.22.3101 59.06.0472 59.26.0470	100 uF 47 uF 2.2 nF 6.8 nF 47 uF 100 pF 100 uF 4.7 nF 47 uF 47 uF	-20% -20% -20% -20% -20%	3V 3V 10V 6.3V 6.3V	EL TA FE FE TA CE EL FE SAL SAL	IC9 IC10 IC12 IC13 IC14 IC15	50.05.0244 50.09.0107 50.09.0105 50.09.0101 50.09.0101 50.05.0244 1.012.301.00	NE5532 NE5534NB RC4559 NE5532 LF353 LF353 NE5534NB	dual op. amp. low dual op. amp. dual op. amp. dual op. amp. J-FE	Ra,NEC Sig,Ex,Ra T NS,TI T NS,TI T NS,TI T Sig,Ra
C51 C52 C53 C54 C55 C56 C57 C58	59.34.2220 59.06.0333 59.22.3101 59.05.1681 59.05.1681 59.22.3101 59.34.5561 59.34.5561	22 pF 33 nF 100 uF 680 pF 680 pF 100 uF 550 pF 550 pF 68 uF 47 uF	-20% 1% 1% -20%	10V 500V 500V 10V	CE PE PP PP EL CE CE	J2 J3 J101 J102 J103 J104	1.012.300.00 54.24.0105 54.24.0105 53.03.0166 53.03.0167	not used dual dual	BANTAM-JACK part of J101 BANTAM-JACK part of J103	
C60 C61 C62 C63 C64 C65	59.26.0680 59.30.1470 59.06.0222 59.34.4271 59.34.4271 59.34.4271 59.22.3101 59.22.3101 59.23.330	2.2 nF 270 pF 270 pF 270 pF 100 uF 100 uF	20% -20% -20% -20%	6.3V 3V	SAL PE CE	MP2 MP3 MP4 MP5 MP6 P2 P3	53.03.00.01 1.960.300.01 1.960.300.02 50.20.2001 1.010.012.50 54.11.2007 54.11.2007	2 pcs 2 pcs 1 pce 5 pcs 3 pcs not used 2*8 pin 2*8 pin	IC-Socket 14 pin HF-Screen Magnetic-Shield clip 2* TO 92 LED-Holder euroconnector euroconnector	St Bu Bu NS.Mot.Six
C67 C68 C70 C71 C72 C73 C74 C75	59.34.2330 59.22.3101 59.22.3101 59.22.3101 59.05.1681 59.05.1681 59.05.2152 59.05.2152	33 pF 100 uF 100 uF 100 uF 100 uF 680 pF 680 pF 100 uF 1.5 nF	-20% -20% -20% 1% 1% -20% 2.5% 2.5%	10V 10V 10V 500V 500V 10V	EL EL PP PP EL PP	Q1 Q2 Q3 Q5 Q6 Q7 Q8 Q9	50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350	J 112 J 112 J 112 J 112 J 112 J 112 J 112 J 112 J 112 J 112	N-JEET N-JEET N-JEET N-JEET N-JEET N-JEET N-JEET N-JEET	NS, Mot, Six NS, Mot, Six
C76 C77 C78 C79 C80	59.06.0473 59.06.5154 59.06.0224 59.06.0105 59.06.0104 59.26.2100	170 nF 150 nF 220 nF 1 uF 100 nF 10 uF 10 uF	20%	16V	PP PE PE PE PE PE PE	Q11 Q12 Q13 Q14 Q15 Q16	50.03.0350 50.03.0350 50.03.0515 50.03.0436 50.03.0350	J 112 J 112 BC 307 BC 237 J 112	N-JFET N-JFET PNP NPN IC>100mA, B>100 N-JFET N-JFET PNP	NS,Mot,Six NS,Mot,Six any any NS,Mot,Six NS,Mot,Six
C82 C83 C85 C86 C87 C87 C89	59.26.2100 59.22.4101 59.22.4101 59.06.0223 59.06.0223 59.06.0223 59.06.0223 59.06.0223 59.34.5471 59.34.5561	10 uF 100 uF 100 uF 22 nF 22 nF 22 nF 22 nF 470 pF 560 pF	20% -20% -20%	16V 16V 16V	SAL EL EL PE PE PE PE CE CE	Q18 Q19 Q20 Q22 Q23 Q23 Q24	50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350 50.03.0350	BC 307 BC 307 J 112 J 112 BC 237 J 112 J 112 J 112 J 112	PNP N-JFET N-JFET NPN IC>100mA, B>100 N-JFET N-JFET N-JFET	any any NS,Mot,Six NS,Mot,Six any NS,Mot,Six NS,Mot,Six NS,Mot,Six
C91 C92 C93 C94 C95 C96	59.22.3101 59.22.3101 59.34.4151 59.34.4331 59.06.0104 59.06.0682	100 uF 100 uF 150 pF 330 pF 100 nF 6.8 nF	-20% -20%	10V 10V	EL EL CE CE PE PE	Q25 Q26 Q27 Q28 Q29 Q29 Q30 Q30	50.03.0436 50.03.0350 50.03.0350 1.010.037.50 50.03.0516 1.010.037.50 50.03.0516 1.010.037.50	BC 237 J 112 J 112 BC 337 BC 337 BC 337 BC 337 BC 337 BC 337	NPN IC>100mA, B>100 N-JEET N-JEET NPN selected NPN NPN selected NPN NPN selected NPN NPN selected	NS, Mot, Six NS, Mot, Six St St St St St St
C98 C99 C100	59.05.1681	not used 680 pF 680 pF not used not used	1%	500V 500V	PP	Q31 03 Q31 032	1.010.037.50 50.03.0516 1.010.036.50	BC 337 BC 337 BC 327	NPN selected NPN PNP selected	St St St St
C102	59.34.4221	220 pF			CE	03 Q32	50.03.0625	BC 327	PNP	St

4/82 EDITION: 13. November 1990

Master Unit 970 1.970.810.81

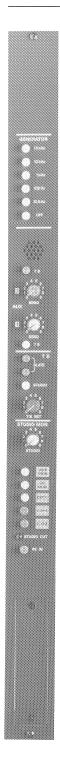
Master Unit 97)	1.970.810.81
Ad . POSREF.No		AdPOSREF.No DESCRIPTION
033 1.010.036.5 03 033 5.003.062 034 1.010.036.5 03 034 5.003.062 035 50.03.062 036 50.03.062 036 50.03.062 037 50.03.052 038 50.03.063 039 50.03.063 039 50.03.063 039 50.03.063 039 50.03.063 039 1.010.036.5 040 1.010.036.5	St. 247 PAP Selected St. 327 PAP Selected St. 327 PAP Selected St. 327 PAP St.	R87 57.11.4330 33 0km 54 0.25M R88 57.11.4333 33 0km 54 0.25M R88 57.11.4333 33 0km 54 0.25M R89 57.11.4333 33 0km 54 0.25M R90 57.11.4104 100 k0hm 54 0.25M R90 57.11.4104 100 k0hm 54 0.25M R91 57.11.4106 110 k0hm 54 0.25M R92 57.11.5106 110 k0hm 54 0.25M R94 57.11.4101 100 k0hm 54 0.25M R94 57.11.4101 100 k0hm 54 0.25M R94 57.11.4104 100 k0hm 54 0.25M R96 57.11.4104 100 k0hm 54 0.25M R96 57.11.4104 100 k0hm 54 0.25M R96 57.11.322 8.2 k0hm 14 0.25M R96 57.11.322 8.2 k0hm 54 0.25M R96 57.11.322 8.2 k0hm 54 0.25M R96 57.11.322 8.3 k0hm 54 0.25M R97 57.11.422 2.7 k0hm 54 0.25M R98 57.11.4333 33 0hm 54 0.25M R98 6.25M
0.41 50.03.064 0.03.064 0.03.064 0.03.064 0.03.064 0.03.064 0.03.065 0.03.0	1	R97 57.11.4272 2.7 kOhm R99 57.11.4303 3.0 hhm S91 57.11.4303 1.0 kOhm R100 57.11.4303 1.0 kOhm R100 57.11.4303 2.0 kOhm R101 57.11.4303 2.0 kOhm R102 57.11.4303 2.0 kOhm R103 57.11.4203 2.0 kOhm R104 48.0.19.203 2.0 kOhm R105 57.11.4223 2.2 kOhm R106 57.11.4223 2.2 kOhm R107 57.11.4223 2.2 kOhm R108 57.11.4223 2.2 kOhm R109 57.11.4223 2.2 kOhm R109 57.11.4223 2.2 kOhm R109 57.11.4323 3.3 Ohm R109 57.11.4323 2.2 kOhm R109 57.11.4323 2.2 kOhm R109 57.11.4323 2.2 kOhm R111 57.11.3303 1.0 kOhm R111 57.11.3303 1.0 kOhm R113 57.11.4329 3.3 Ohm S102 57.11.4339 3.3 Ohm S102 57.11.4339 3.3 Ohm S102 57.11.4339 3.3 Ohm S102 57.11.4331 3.3 Ohm S102 57.11.4341 3.3 Ohm S102 57.11.4341 3.3 Ohm S102 57.11.4341 3.3 Ohm S102 57.11.4341 3.4 Ohm S102 57.11.4341 3.3 Ohm S102 57.11.4341 3.4 Ohm S
2	10 10 10 10 10 10 10 10	R156 57.11.405 J Mohm 59 0.25M R157 57.11.5475 J Mohm 59 0.25M R158 57.11.5475 J Mohm 59 0.25M R161 57.11.5475 J J Mohm 59 0.25M R162 57.11.3452 J S Mohm 59 0.25M R163 57.11.3452 J S Mohm 59 0.25M R165 57.39.3091 3090 Ohm 19 0.25M R165 57.39.3091 3090 Ohm 19 0.25M R165 57.39.3091 3090 Ohm 19 0.25M R167 57.11.3352 J S Mohm 19 0.25M R168 57.11.3352 J S Mohm 19 0.25M R169 57.11.3352 J S Mohm 19 0.25M R170 57.11.3352 J S Mohm 19 0.25M R171 57.11.3352 J S Mohm 19 0.25M R172 57.11.3352 J S Mohm 19 0.25M R173 57.11.3352 J S Mohm 19 0.25M R174 57.11.3352 J S Mohm 19 0.25M R175 57.11.3352 J S Mohm 19 0.25M R177 57.11.3352 J S Mohm 19 0.25M R178 57.11.3352 J S Mohm 19 0.25M R179 57.11.3352 J S Mohm 19 0.25M R181 57.11.3352 J S Mohm 19 0.25M R183 57.11.3352 J S Mohm 19 0.25M R183 57.11.3352 J S Mohm 19 0.25M R183 57.11.3352 J S Mohm 19 0.25M R188 57.11.3353 J Mohm 19 0.25M

Master Unit 970

1.970.810.81

Ad	POS	REF.No	DESCRIPT	ION	MANUFA	CTURER	AdPOS	REF.No	DESCRIPTION	MANUFACTURER
	R191 R192 R193 R194 R195 R196 R197 R198 R199 R200	1.010.020.58 57.11.4330 57.11.4202 57.11.4223 57.11.4223 57.11.3203 57.11.5475 57.11.4472 1.010.014.58	10 kOhm 33 Ohm 1 MOhm 2,2 kOhm 33 kOhm 22 kOhm 20 kOhm 4.7 MOhm 4.7 kOhm 22 kOhm	10% neg.log. 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 1% 0.25W 5% 0.25W 5% 0.25W 1% 10.25W	variable resistor	St St		1.970.810.81	MASTER UNIT 970 MASTER UNIT 970 MASTER UNIT 970	TA 88.11.1802 TA 89.10.0503 WM 90.10.2404
	R201 R202 R203 R204 R205 R206 R206 R207 R208 R209 R210	57.11.4272 57.11.3561 57.11.3153 57.11.3613 57.11.3471 57.11.4124 57.11.4334 57.11.6226 57.11.6226	2.7 kOhm 560 Ohm 15 kOhm 51 kOhm 470 Ohm 120 kOhm 330 kOhm 22 MOhm 22 MOhm 22 MOhm	5% 0.25W 1% 0.25W 1% 0.25W 1% 0.25W 1% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W						
	R211 R212 R213 R214 R215 R216 R217 R218 R219 R220	57.11.4102 57.11.3752 57.11.4103 57.11.4332 57.11.3689 57.92.1271 57.92.1271 1.960.011.00 57.11.4104 57.11.4682	1 kOhm 7.5 kOhm 10 kOhm 6.8 Ohm 6.5 Ohm 5 KOhm 100 kOhm 6.8 kOhm	5% 0.25W 2% 0.25W 5% 0.25W 5% 0.25W 1% 0.25W 1 = 270mA PTC I = 270mA PTC FADER 5% 0.25W 5% 0.25W	Philips Nr.2322 662 Philips Nr.2322 662					
	R221 R222 R223 R224 R225 R226 R227 R228 R229 R230	57.11.4104 57.11.4682 57.11.5475 57.11.4102 57.11.4102 57.11.4103 57.11.4105 57.11.4000 57.11.4000	100 kOhm 6.8 kOhm 4.7 MOhm 1 kOhm 1 kOhm 10 kOhm 10 kOhm 1 MOhm 0 Ohm	5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 1% 0.25W 5% 0.25W 5% 0.25W						
	R231 R232 R233 R234 R235 R236 R237 R238 R239 R240	57.11.4472 57.11.4390 58.01.9202 58.11.6102 57.11.4223 57.11.4222 57.11.4000 57.11.4000 57.11.4000 57.11.4224	4.7 kOhm 39 Ohm 2 kOhm 1 kOhm 22 kOhm 2.2 kOhm 0 kOhm 0 Ohm 220 kOhm	5% 0.25W 5% 0.25W 10% variable re 10% variable re 5% 5%						
	S1 S2 S3 S4 S5 S6 S7 S8 S9	55.15.0019 55.15.0019 55.15.0019 55.15.0019 55.15.0019 55.15.0019 55.15.0019	2*U 2*U 2*U 2*U 2*U 2*U 2*U 2*U 2*U	button: red button: red button: red		ITT ITT ITT ITT ITT ITT ITT				
	S11 S12 S13 S14	55.15.0019 55.15.0019 55.15.0019	2*U 2*U 2*U 1*On	button: grey button: grey button: grey combined with	FADER R 218	ITT ITT ITT				
		1.022.451.00 1.022.359.00	not used		1:0.62 1:1.12	St St				
(1) (2) (3) (4)	change click s change	of PDM-VCA par uppresion : IC of transistor 090117 replace	t number 1 MC33078 part number d by 1010053							
	*** *****	only 2 CH 1 only 4 CH 1	,2 ,2,3,4,	1.970.821.81 1.970.841.81						
	Version:	***** R21	/ R22 1.01 / R22 1.01		ut switch S14/S15					
PE:	=Polyeste	r, PP=Polyprop R: Bu=Burndy, HP=Hewlett {Matsushita	ylen, PS=Pol Ex=Exar, Fc= Packard, IT1 }, NS=Natior , Sig=Signet	olytic, MF=Metal I ystyrol Fairchild, GI=Gene =Intermetall, Mot- al Semiconductors, ics, Six=Siliconi	eral Instrument =Motorola, Nat=N , Ph=Philips,					

EDITION: 22. Oktober 1990 4/83


WM 88.01.0401

1.970.810.81 MASTER UNIT 970

4. Studio Monitor, Aux Master- und Kommandoeinheit

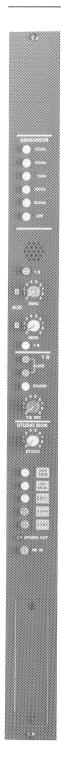
1.970.901

4.1 Bedienungselemente

TESTGENERATOR:	Der eingebaute Testgenerator wird über eine Sammelschiene allen Mono Eingangseinheiten zugeführt. Fünf Frequenzen können eingestellt werden (31.5 Hz, 100 Hz, 1 kHz, 10 kHz und 15 kHz).
KOMMANDO:	Dem Talk Back Mikrofon folgt ein Mikrofonverstärker mit integriertem Limiter. Über Drucktasten kann auf die beiden Hilfsausgänge, (TB Aux1; TB Aux2) die Summensammelschienen TB SLATE und auf den Studiolautsprecher TB STUDIO gesprochen werden.
HILFSSUMMEN AUX 1 und AUX 2:	Zwei Null-Ohm Verstärker summieren die Signale der AUX Sammelschienen. Der Ausgangspegel kann an zwei Potentiometern eingestellt werden.
	Zwei TB Drucktasten erlauben Kommandogabe auf die Hilfsausgänge.
	Die Ausgänge der Hilfssummen sind symmetrisch und erdfrei.
TB RETURN:	An den eingebauten TB Return Verstärker kann ein im Studio plaziertes Gegensprechmikrofon angeschlossen werden. Ein externes Steuersignal schaltet den Gegensprechweg auf den Vorhörlautsprecher.
STUDIO MONITOR:	Der Monitor Selector erlaubt die Anwahl folgender Quellen:
	Bei Stereopulten: Summen Σ1+2 C.R. Monitor den Hilfseinschub AUX Monitor 2 Externe Quellen Bei 4 Kanal Pulten: Summen Σ1+2 Summen Σ3+4 C.R. Monitor
	 den Hilfseinschub AUX Monitor 1 Externe Quelle
STUDIO CUT:	Nach dem Lautstärkepotentiometer folgt ein MUTE Schalter der das Studioabhören unterbricht, sobald ein Milrafonkansk geöffnet wird. Die DE IN Tagte selevit des

Mikrofonkanal geöffnet wird. Die RE IN Taste erlaubt das

Das Ausgangssignal wird elektronisch symmetriert.


Einspielen bei offenem Mikrofonkanal.

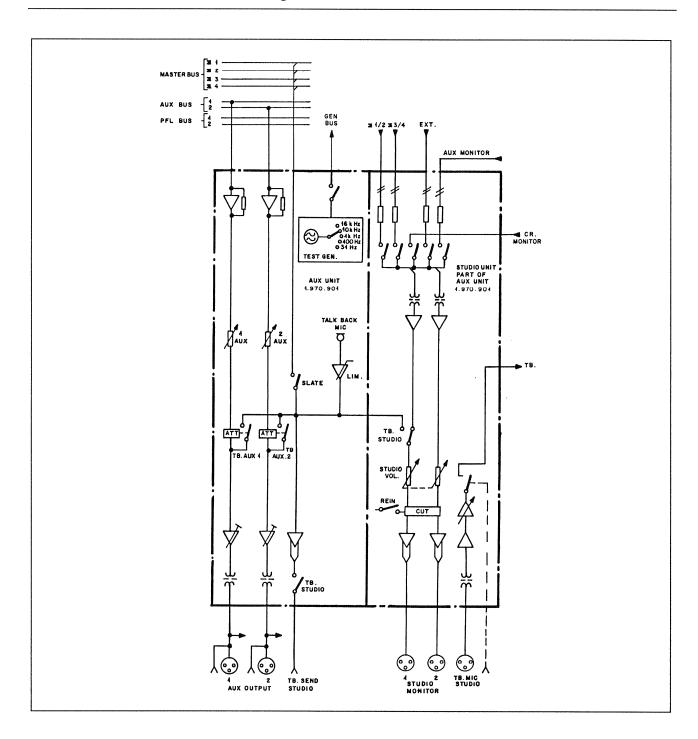
EDITION: 5. Oktober 1990 4/85

4. Studio Monitor, Aux Master and Talk-back Unit

1.970.901

4.1 Operating Elements

TEST GENERATOR:		tor is connected to all mono Five frequencies can be set 0 kHz and 15 kHz).
TALK-BACK:	amplifier with integrated auxiliary outputs, (TB Au	e is followed by a microphone limiter. Talkback on the two x1; TB Aux2) the master bus tudio speakers TB STUDIO is corresponding buttons.
AUXILIARY MASTERS AUX 1 AUX 4:		add the signals of the AUX I can be adjusted with two
	Two TB push buttons are auxiliary outputs.	available for talk-pack on the
	The outputs of the auxilia floating.	ary masters are balanced and
TB RETURN:	in TB return amplifier.	can be connected to the built– An external control signal th to the prelistening speaker.
STUDIO MONITOR:	The following sources car selector:	n be accessed with the monitor
	On stereo consoles:	 Masters Σ1+2 C.R. monitor Auxiliary module AUX Monitor 2 External sources
	On 4-channel consoles:	 Masters Σ1+2 Masters Σ3+4 C.R. monitor Auxiliary module AUX Monitor 1 External source
STUDIO CUT:	The volume potentiomete	r is followed by a MUTE switch

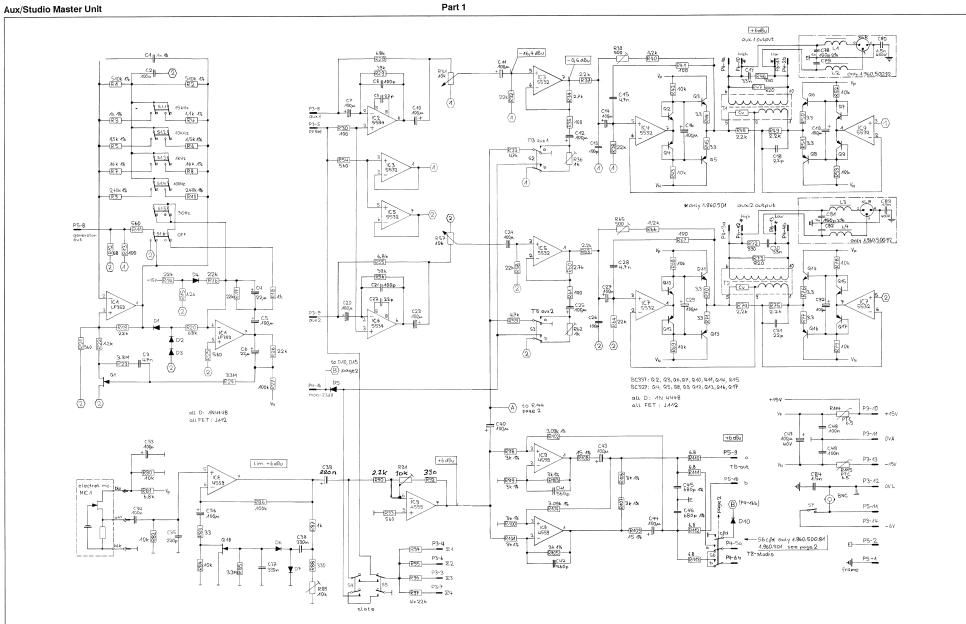

that interrupts studio monitoring as soon as a microphone channel is opened. Insertion with open microphone channel is possible with the RE IN button.

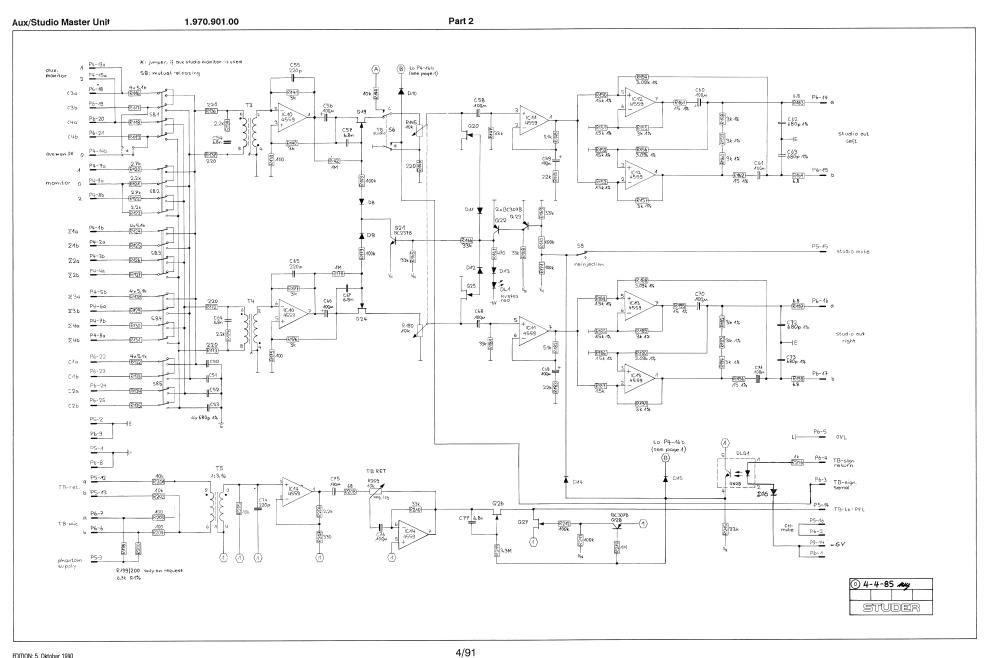
The output signal is electronically balanced.

4/86 EDITION: 5. Oktober 1990

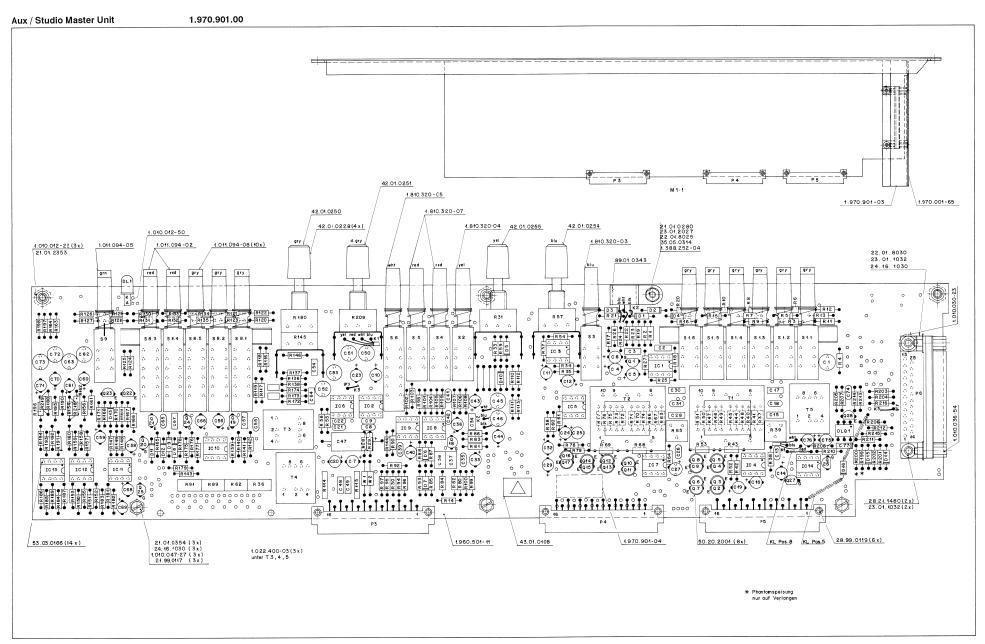
4.2 Blockschaltbild/Block Diagram

1.970.901




EDITION: 5. Oktober 1990 4/87

AUX, TB, STUDIO MON. 1.970.901.00


4.3 Schemateil / Circuit Diagrams

EDITION: 5. Oktober 1990

Aux Unit/Studio Monitor	1.970.901.00	Aux Unit/Studio Monitor	1.970.901.00
AdPOSREF.No. DESCRIPTION	AdPOSREF.NO DESCRIPTION	AdPOSREF.No DESCRIPTIONMANUFACTURER	AdPOSREF.No DESCRIPTION
C 1 59.05.1102	TC	R	R. 167 57.11.4471 470 Obm R. 168 57.11.4333 33 kOhm R. 177 57.11.4331 33 kOhm R. 177 57.11.4321 120 Obm R. 173 57.11.3221 220 Obm R. 173 57.11.3221 220 Obm R. 174 57.11.3221 230 Obm R. 175 57.11.3221 230 Obm R. 176 57.11.3221 230 Obm R. 177 57.11.3221 230 Obm R. 177 57.11.3221 230 Obm R. 177 57.11.3221 230 Obm R. 178 57.11.4031 21 Nohm R. 179 57.11.3332 3 kOhm R. 179 57.11.3333 33 Obm R. 179 57.11.3333 33 Obm R. 179 57.11.3333 33 Obm R. 183 57.11.4031 15 Kohm R. 184 57.11.3121 15 Kohm R. 185 57.11.3122 1.5 Kohm R. 186 57.11.3123 2.3 Kohm R. 187 57.11.3332 3 kohm R. 189 57.11.3332 3 kohm R. 199 57.11.3333 koh

4/94 EDITION: 5. Oktober 1990.

Kontrollraum (CR) Monitoreinheit 5.

1.970.920

5.1 Bedienungselemente

REGIEABHÖREN:

Über gegenseitig auslösende Drucktasten können 9 verschiedene Abhörquellen angewählt werden.

CR Monitor Die Lautstärke der Abhörlautsprecher kann an einem Potentiometer eingestellt werden. Das auf der gleichen Achse untergebrachte Balance Potentiometer erlaubt es, allfällige durch den Raum oder die Lautsprecher hervorgerufene Lautstärkeunsymmetrien auszugleichen.

Meter Mit der METER TO MONITOR Taste können die Aussteuerungsmesser 1 und 2 wahlweise an die Summenausgänge Σ1+2 oder parallel zu den Abhörlautsprechern geschaltet werden.

PFL to Monitor Bei eingeschalteter PFL-TO-MONITOR-Funktion wird automatisch das PFL-Signal auf den Monitor geschaltet, sobald eine PFL/APL-Taste gedrückt wird. Die laufende Aufnahme oder Sendung wird dabei nicht beeinflusst. Sobald alle PFL/APL Tasten wieder ausgeschaltet sind, wird das angewählte Monitorprogramm wieder hörbar.

> Die MONO-Taste erlaubt das abhören von Stereoguellen in Mono.

> Während der Kommandogabe über das eingebaute Mikrofon wird der Abhörpegel um 20 dB gedämpft.

SIGNALISATION:

Drei Drucktasten sind zur Signalgabe ins Studio vorgesehen. Der Signalisationszustand wird an drei LED auf dem Instrumentenpanel des Regiepultes angezeigt.

CALL Der Arbeitskontakt der Impulstaste kann ein Warnsignal (Gelb) im Studio steuern. Die gelbe LED im Instrumentenpanel von aussen (Taste im Studio) aktiviert werden.

READY Über den Arbeitskontakt der haltenden Drucktaste kann ein Achtung-Signal im Studio gesteuert werden. (Grün)

STUDIO ON Diese Taste aktiviert das Studio Rotlicht, wenn gleichzeitig wenigstens ein Mikrofonkanal geöffnet ist. Zur Rotlichtsteuerung steht ein Relaisarbeitskontakt zur Verfügung.

EDITION: 16. November 1990 4/95

CR MONITOR

KOPFHÖRER:

Über einen dreiteiligen Tastenschalter kann entweder das am Monitor Selector angewählte Signal (MON) oder das Vorhörsignal (PFL) abgehört werden. In der dritten Stellung ist das Monitorsignal solange hörbar, als keine PFL Taste angewählt ist (MON PFL). Nach dem Betätigen einer PFL Taste wird die Monomischung des Monitorsignales in der einen Hörmuschel und das PFL Signal in der anderen Muschel hörbar.

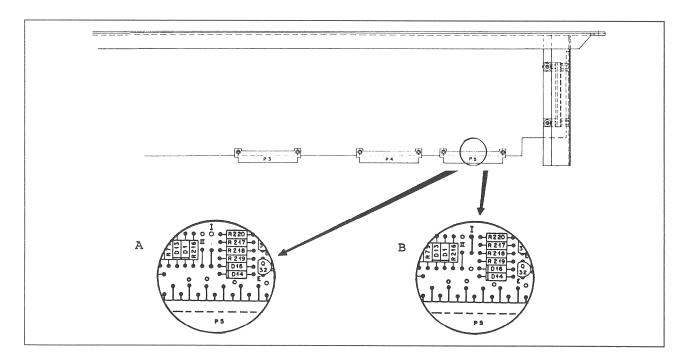
Wird in der oberen Kopfhörerbuchse kein Jack eingesteckt, so wird das Signal auch über den

eingebauten Vorhörlautsprecher hörbar.

STEUERTASTEN: Im Vorderteil des Einschubes können auf

Kundenwunsch bis zu drei Steuertasten eingebaut

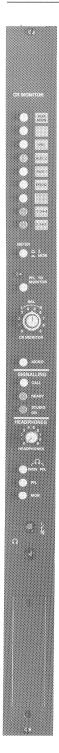
werden.


5.2 Option

Brücke I einlöten wie in Zeichnung A:

Bei DJ Betrieb wird das Abhörsignal automatisch unterbrochen, wenn an einer Eingangseinheit der Eingangswahlschalter auf MIC steht und der Flachbahnregler geöffnet ist.

Brücke I einlöten wie in Zeichnung B:


STUDIO ON Taste muss gedrückt werden, dann gleiche Funktion wie vorher beschrieben.

Control Room Monitor Unit 5.

1.970.920

5.1 **Operating Elements**

CONTROL ROOM MONITORING:

Nine different monitoring sources can be selected by means of interlocking push buttons.

CR Monitor The volume of the monitor speakers can be set with a potentiometer. Possible volume imbalances caused by the room characteristics or by the speakers can be compensated with the coaxial balance potentiometer. Stereo sources can be monitored in mono mode by pressing the MONO button.

Meter With the METER TO MONITOR button output meters 1 and 2 can be selectively connected to the master outputs $\Sigma 1+2$ or in parallel to the monitor speakers.

PFL to Monitor With the PFL TO MONITOR button, monitoring is interrupted and the selected PFL signal is connected to the monitor speakers as soon as one or more PFL or APL keys are pressed. The current recording or broadcast is not influenced. As soon as all PFL/APL keys are switched off again, the selected monitor program can be heard again.

> The monitoring level is attenuated by 20 dB, while commands are given trough the built-in microphone.

SIGNALIZATION:

Three push buttons are available for transmitting signals to the studio. The signalization status is indicated by three LEDs on the instrument panel of the audio mixer.

CALL The make contact of the momentaryaction push button can control a warning signal in the studio (yellow light). The yellow LED in the instrument panel can be activated externally (push button in the studio).

READY An attention signal in the studio can be controlled via the make contact of the self-holding push button. (green light)

STUDIO ON This key activates the red on-air light when at least one microphone channel is open. A relay make contact is available for controlling the red light.

CR MONITOR

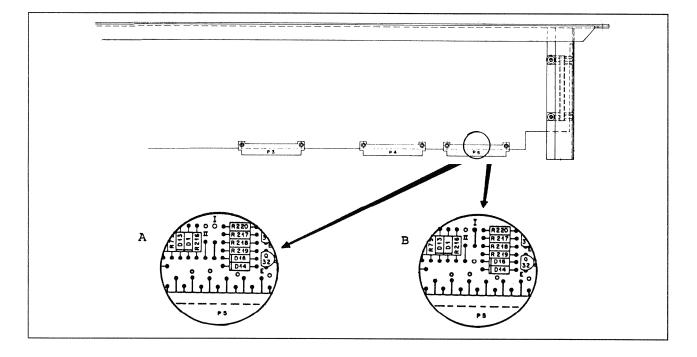
HEADPHONES:

By means of 3 interlocking push button switches either the signal available from the monitor selector (MON) or the prefader listening signal (PFL) can be monitored. In the third position (MON PFL) the monitor signal can be heard as long as no PFL key is active. After a PFL key has been actuated, the mono mix of the monitor signal becomes audible in one earpiece and the PFL signal in the other earpiece.

If no Jack is inserted in the upper headphones socket, the signal can also be heard via the built-in monitor speaker.

CONTROL KEYS:

Up to three control keys can be installed on the front of the module according to the customer's specifications.

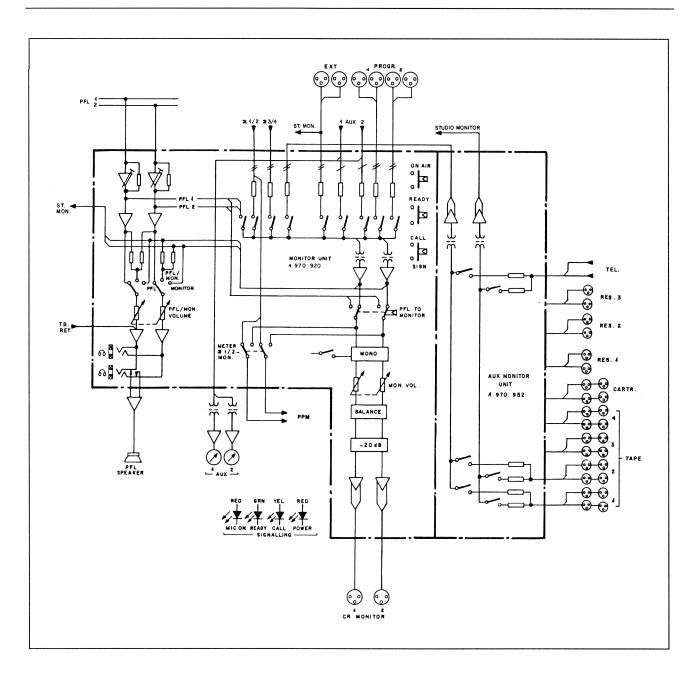

5.2 Option

Solder in jumper I as shown in diagram A:

In DJ mode the monitoring signal is automatically interrupted when the input selector of an input module is in the MIC position and the fader is open.

Solder in jumper ${\tt I}$ as shown in diagram ${\tt B}$:

STUDIO ON key must be pressed, otherwise same function as described above.

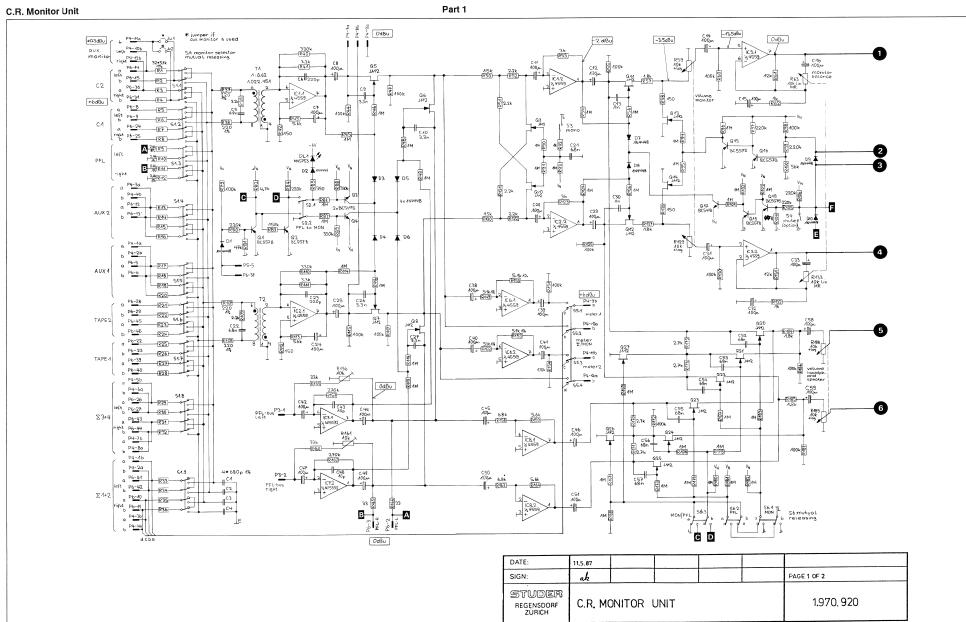


4/98

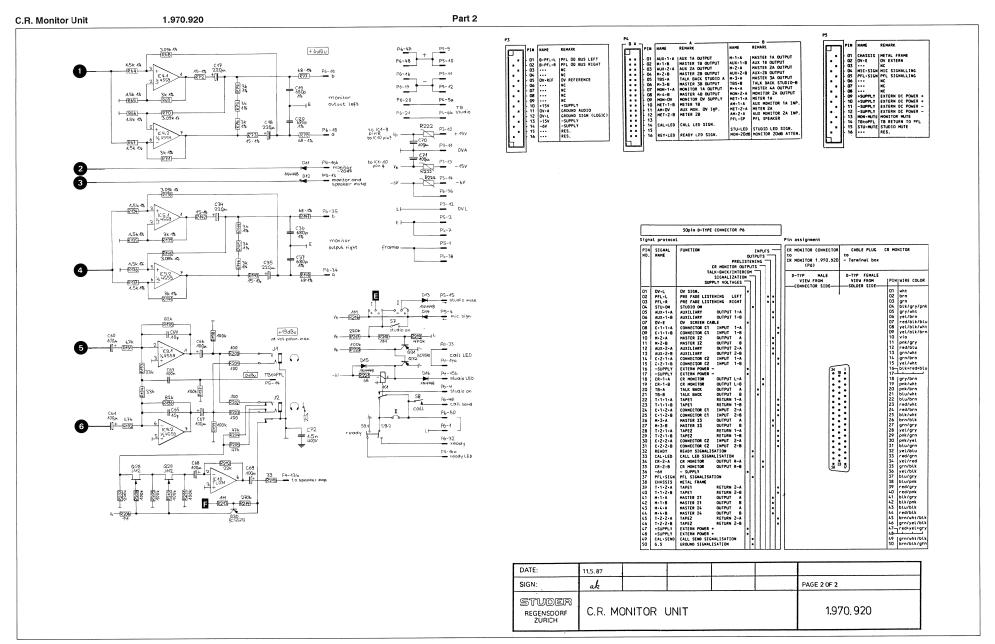
CR MON.

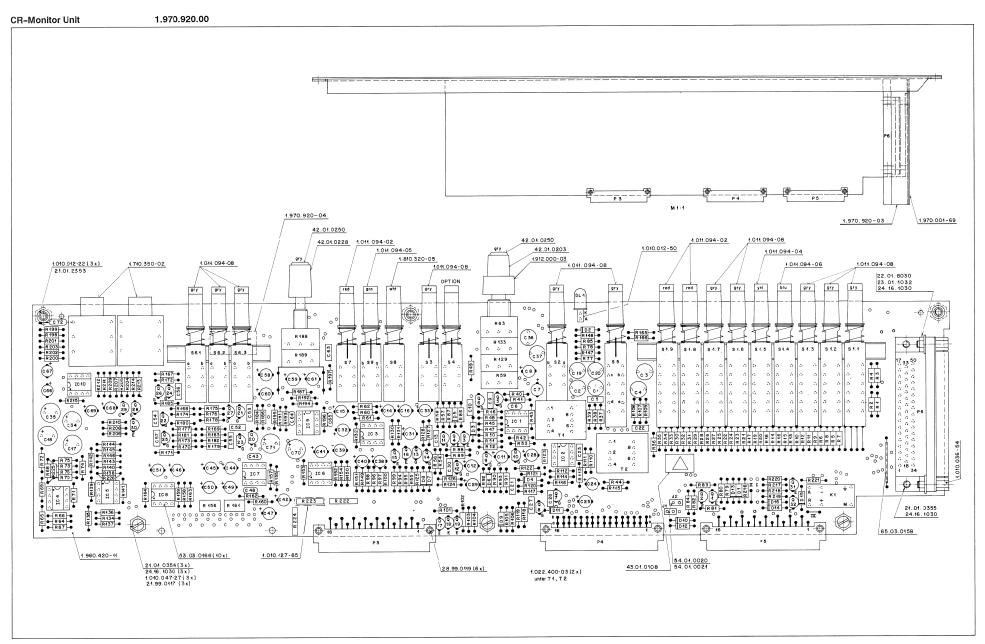
5.3 Blockschaltbild / Block Diagram

1.970.920



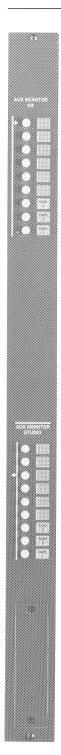
EDITION: 5. Oktober 1990 4/99


CR MON.


5.4 Schemateil / Circuit Diagrams

1.970.920.00

CR MON.


Control room Monitor Unit	1.970.920.00	Control room Monitor Unit	1.970.920.00
Ad .POS REF.No DESCRIPTION MARNIFACTURER	Ad .POSREF.NO. DESCRIPTION	Ad .POSREF.No DESCRIPTION	AdPOSREF.No. DESCRIPTION
C	P	R	R. 1727 57 11.4105 1 MONE R. 175 57 11.4105 2 7.7 MONE R. 175 57 11.4107 2 7.7 MONE R. 177 57 11.4105 1 MONE R. 178 57 11.4101 1 MONE R. 178 57 11

4/106 EDITION: 5. Oktober 1990

AUX MONITOR

6. Monitorerweiterung

1.970.952

Erweiterung für CR Monitor 1.970.920 und Studio Monitor 1.970.901

QUELLENANWAHL:

Je ein Tastensatz von neun, sich gegenseitig auslösenden Quellenwahltasten ergänzen den CR MONITOR resp. den STUDIO MONITOR um neun Programm-Eingänge.

Neun Eingänge führen parallel auf die zwei Tastensätze für den CR- und Studio Monitor.

EINGANGSSCHALTUNG:

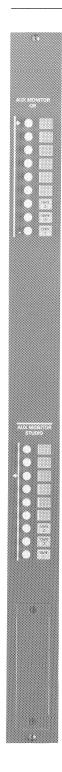
(Beschrieben wird ein Kanal, der zwei möglichen Eingangsstufen).

Die Eingangsstufe ist als symmetrisch, erdfreier Knotenpunktverstärker ausgelegt. Die angewählte Signalquelle führt über die entsprechenden Koppelwiderstände (R1...36) und (R37/38) an den Eingansübertrager (T1). C1...4 leiten hochfrequente Störsignale auf Massenpotential ab. Das RC-Glied (R39-C5) unterstützt das Rechteckverhalten des Eingangssignals. Das sekundärseitig ausgekoppelte asymmetrische NF-Signal führt zum invertierenden Eingang des OpAmp (IC1.1). Die Widerstände (R42/43) kompensieren, zwecks Optimierung des Klirrabstandes, Kupferwiderstand den der sekundärseitigen Transformatorwicklung.

ANKOPPLUNG AN CR-STUDIO MONITOR:

Über P4 führt das NF-Signal auf den reservierten Eingang des CR-, resp. STUDIO-Monitors. Dieser erfährt, bei erweiterter Monitoreinheit, eine Änderung; Siehe entsprechendes Schema:

CR/MONITOR 1.970.920 STUDIO MONITOR 1.970.901

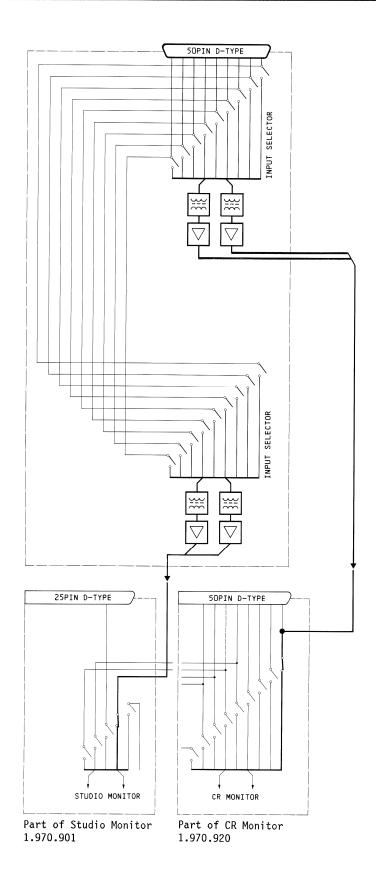

Durch das Setzen der Drahtbrücken (*) werden die "b"-Signaladern auf 0V geführt, was eine asymmetrische Signalverarbeitung über Eingangsübertrager, und eine Signalverstärkung durch den nachfolgenden OpAmp, von den zugeführten +0dBu auf Nennpegel +6dBu zur Folge hat.

EDITION: 22. Oktober 1990 4/107

AUX MONITOR

6. Monitor Expansion Unit

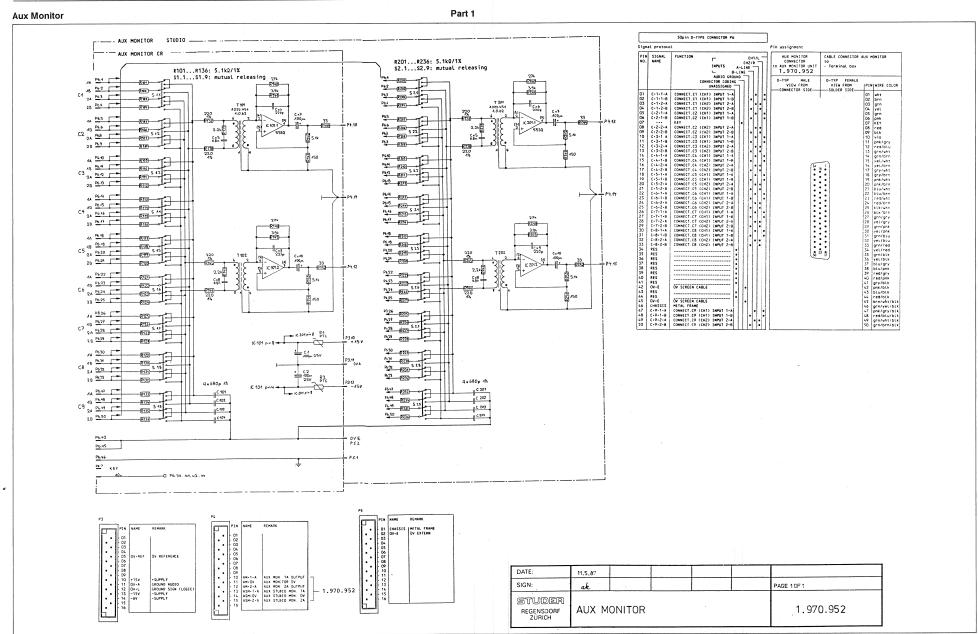
1.970.952

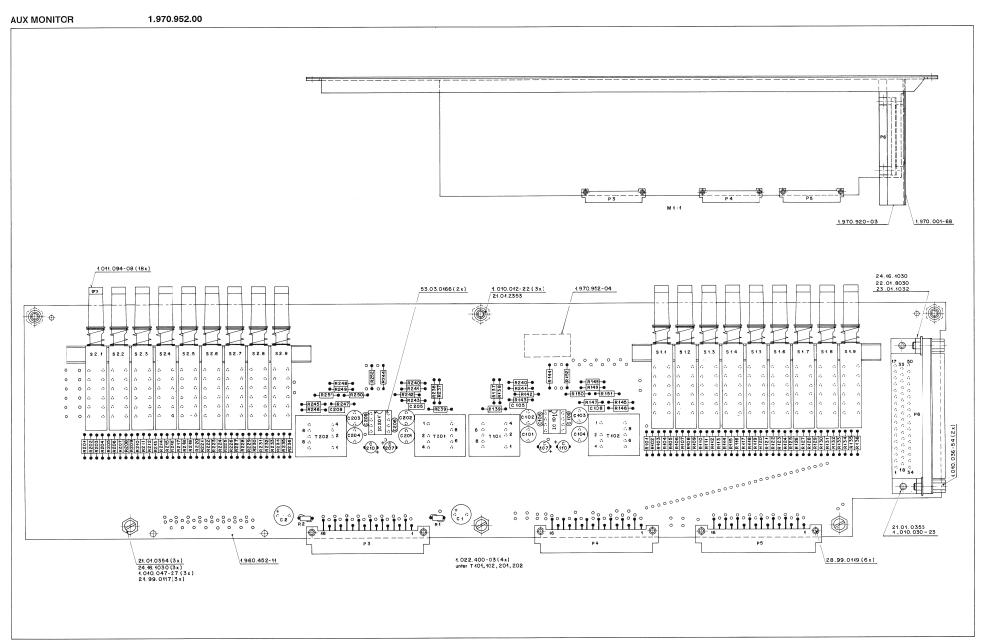

	Monitor expansion for CR Monitor and for Studio Monitor	1.970.920 1.970.901
SOURCE SELECTION:	On set of nine interlocked source see each expand the CR MONITOR or MONITOR respectively by nine program. The nine inputs are taken in parallel correspondingly arranged selector butto	r the STUDIO inputs. to both sets of
INPUT CIRCUIT:	(Described is one channel of the two stages) the input stage is designed as an unfloating nodal point amplifier. The source is taken via the corresponding of (R136) and (R37/38) to the input the C14 discharge high-frequency nonground potential. The RC element (R3 the square-wave behavior of the input unbalanced audio signal decoupled on side is taken to the inverting input of open resistors (R42/43) compensate the copposition of the distortion factor.	nbalanced and selected signal coupling resistor ansformer (T1). ise signals to 9–C9) supports but signal. The athe secondary amp (IC1.1). The per resistance of
COUPLING TO CR/ STUDIO MONITOR:	The audio signal is taken via P4 to the re of the CR or STUDIO monitor. The la when the monitor module is expanded; refer to corresponding diagram.	
	CR/MONITOR STUDIO MONITOR	1.970.920 1.970.901
	Wehn the two jumpers (*) are set conductors are connected to 0 V with the	e result that the

signals are processed unbalanced via input

transformers and the signals are amplified by the subsequent opamp from the available 0.3 dBu to the nominal level of +6 dBu.

4/108


6.1 Blockschaltbild / Block Diagram


AUX MONITOR

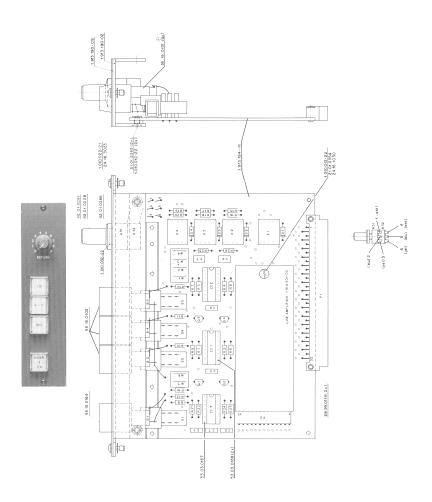
6.2 Schemateil / Circuit Diagrams

1.970.952.00

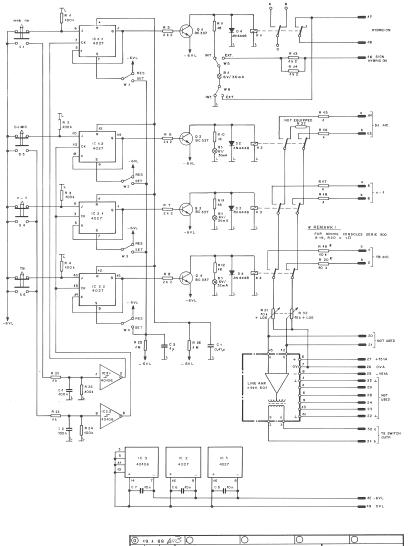
AUX MONITOR

AUX / Control Room / Studio Monitor

1.970.952.00


Ad	POS	REF.No	DESCRIPT	ION	MANUFACTURER				
	C	59.22.5101 59.22.5101 59.05.1681 59.05.1681 59.05.1681 59.05.1681 59.06.0682 59.34.4221 59.22.3101 59.06.0682 59.34.4221 59.22.3101 59.22.3101 59.23.3101 59.41.2007 54.11.2007	1CO uF 1CO uF 680 pF 680 pF 680 pF 680 pF 6.8 nF 220 pF 100 uF 8.20 pF 100 uF 7.20 pF 100 uF 7.20 pF 100 uF 7.20 pF 100 uF	25V EL 25V EL 14 PP 14 PP 14 PP 16 PP 16 PP 16 PP 17 PP 18 PP 18 PP 19 PP 19 PP 19 CER 10V EL	Sig,Ra,Ex AMP				
	R	57 - 22 . 1820 57 - 22 . 1820 57 - 21 . 18512 57 . 11 . 3512 57 . 11 . 3512	42 Ohm 42 Ohm 5.1 COhm 5.1 COh	PTC. 80mA 1% 1% 1% 1% 1% 1% 1% 1% 1% 1					
	R0 R0 S0 T0 T0	57.11.4151 57.11.4330 55.15.0025 1.022.451.00 1.022.451.00	150 Ohm 33 Ohm 9*4*u	\$1.1\$1.9 mutual releasing	Sch St St				
in	indices x=1: aux control room monitor x=2: aux studio monitor								
CE	CER = ceramic, EL = electrolytic, PE = polyester, P ² = polypropylen								
МА	NUFACTURER	: Ex=Exar, Ra= Sch=Schadow-	Raytheon, S ITT, St≃Stu	ig=Signetics, der, TI=Texas Instruments,					
	1.970.952.00 AUX CR/STUDIO MONITOR WY 86/08/2200								

4/114 EDITION: 22. Oktober 1990


5	Einschubmod	ule		1.913
		1.	Telephone Hybrid Remote Control 1.913.194	1
		2.	Korrelator 1.913.210/211	a
			2.1 Anwendungen, die einen Korrelator erfordern	
			2.2 Blockschaltbild	
			2.3 Technische Daten	4
		3.	Peak Program Meter (PPM) 1.913.220/221	g
			3.1 Blockschaltbild	
			3.2 Technische Daten	10
		4.	VU-Meter 1.913.230/231	15
			4.1 Blockschaltbild	
			4.2 Technische Daten	16
		5.	PFL/SIGN. Indicator Unit 1.913.301	21
		6.	Stop Watch Unit 1.913.310	23
5	Plug in Units			1.913
		1.	Telephone Hybrid Remote Control 1.913.194	1
		2.	Correlator 1.913.210/211	5
			2.1 Applications which require a Correlator	
			2.2 Block Diagram	5
			2.3 Specifications	6
		3.	Peak Program Meter (PPM) 1.913.220/221	
			3.1 Block Diagram	11
			3.2 Specifications	12
		4.	VU-Meter 1.913.230/231	
			4.1 Block Diagram	
			4.2 Specifications	18
		5.	PFL/SIGN. Indicator Unit 1.913.301	21
		6.	Stop Watch Unit 1.913.310	23

1. Telephone Hybrid Remote Control / Mix Minus

1.913.194.00

EDITION: 19. Oktober 1990 5/1

19.4.88 W	30	0	10	0
STUDER REGENSDORF ZÜRICH	TEL. HYBR	ID REM. CONT	R.	SC 1.913.194.00

Tel. Hybrid Remote Control Mix Minus

1.913.194.00

• •		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Ad	P0\$	REF.No	DESCRIPT	IONMANUFAC	TURER
	B1 B2 B3 B4	51.02.0144 51.02.0144 51.02.0144 51.02.0144	6V/30MA 6V/30MA 6V/30MA 6V/30MA	LAMP LAMP LAMP LAMP	
	C2 C3 C4 C5 C6	59.06.0104 59.06.0105 59.06.0105 59.06.0474 59.06.0103 59.06.0103	100 NF 100 NF 1 UF 0.47UF 0.01UF 0.01UF	-105 FETP -106 FETP -106 FETP -106 FETP -106 FETP -106 FETP -106 FETP	
	D2 D3 D4	50.04.0125 50.04.0125 50.04.0125 50.04.0125	1N4448 1N4448 1N4448 1N4448		ANY ANY ANY ANY
	IC1 IC2 IC3	50.07.0027 50.07.0027 50.07.0014	4027 4027 40106	DUAL JK-FLIP-FLOP DUAL JK-FLIP-FLOP HEX INVERTING SCHMITT TRIGGER	ANY ANY ANY
	K2 K3 K4	56.04.0170 56.04.0170 56.04.0170 56.04.0170	20/6V 20/6V 20/6V 20/6V	RELAY 2U 6V RELAY 2U 6V RELAY 2U 6V RELAY 2U 6V	111 111 111 111
	MP	1.913.194.11 53.03.0167 53.03.0168 55.15.0102 55.15.0164 42.01.0258 42.01.0251 42.01.0256 21.01.0354 21.01.2353	1 PCS 1 PCS 2 PCS 3 PCS 1 PCS 1 PCS 1 PCS 1 PCS 1 PCS 2 PCS	PRINTED CIRCUIT BOARD IC SOCKET 14 PIN IC SOCKET 16 PIN PINS BUTTON GEFY CALOT. WHT PINS BUTTON GEFY CALOT. YEL KNOP GEFY D 10 CALOT. YEL KNOP GEFY D 10 KNOP D 10 COVER GEFY TO KNOP D 10 C-SCERM M 3 ° 6 S-SCREW M 3 ° 6	
	MP12 MP13 MP14 MP15 MP16 MP17 MP18	1.010.022.21 24.16.1030 24.16.3023 1.010.012.22 1.010.013.22 28.99.0119 1.913.190.02 1.913.190.09	2 PCS 1 PCS 2 PCS 2 PCS 1 PCS 2 PCS 1 PCS 1 PCS 1 PCS	OVAL HEAD SCREM IS SPEC M 3 * 8 LOCK WASHER M 3 3 CIRCLIP D 2.3 RIVET NUT SW 6 M 3 * 2 RIVET NUT SW 6 M 3 * 3 RIVET D 2.5 * 0.15 * 10 MOUNTING PANEL FRONT SHIELD	
	$\overset{P.}{\underset{P.\dots,2}{\dots,2}}$	54.01.0359 54.01.0309		CONNECTOR 2 * 16 PIN CONNECTOR CIS 13 PIN	ANY ANY
	Q2 Q3 Q4	50.03.0497 50.03.0497 50.03.0497 50.03.0497	BC 550 BC 550 BC 550 BC 550	NPN NPN NPN NPN	ANY ANY ANY ANY
	R	57.11.3104 57.11.3104 57.11.3104 57.11.3104 57.11.3222 57.11.3222 57.11.3222 57.11.3222 57.11.3180 57.11.3180	100 (OHM 100 (OHM 100 (OHM 100 (OHM 2.2 (OHM 2.2 (OHM 2.2 (OHM 2.2 (OHM 18 OHM 18 OHM	1\$ 0.25M 1\$ 0.25M	
	R11 R12 R13 R14 R15 R16 R17 R18 R19 R20	57.11.3180 57.11.3180 57.11.3122 57.11.3122 57.11.3109 57.11.3109 57.11.3109 57.11.3103 57.11.3103	18 OHM 18 OHM 1.2 KOHM 1.2 KOHM 1 OHM 1 OHM 1 OHM 1 OHM 1 OHM 1 OHM	1% 0.25M 1% 0.25M 1% 0.25M 1% 0.25M 1% 0.25M 1% 0.25M 1% 0.25M 1% 0.25M 1% 0.25M 1% 0.25M	
	R21 R22 R23 R24 R25 R26 R27	57.11.3102 57.11.3104 57.11.3102 57.11.3104 57.11.3105 57.11.3105	1 KOHM 100 KOHM 1 KOHM 100 KOHM 1 MOHM 1 MOHM NOT USED	1% 0.25W 1% 0.25W 1% 0.25W 1% 0.25W 1% 0.25W 1% 0.25W	
	R31 R32	1.912.001.34	10 KOHM 10 KOHM	10 KOHM POS LOG COMBINATED WITH R32 SEE POS R031	ST ST
	S3 S4 S5	55.15.0001	1 * 20 1 * 20 1 * 20 1 * 20	PUSH BUTTON COMBINATED WITH \$3,54,55 SEE POS SO01 SEE POS SO01 SEE POS SO01	ST ST ST ST
	W2 W3 W4 W5	55.12.1002 55.12.1002 55.12.1002 55.12.1002 55.12.1002 55.12.1002	1 * 10 1 * 10 1 * 10 1 * 10 1 * 10 1 * 10	DIL SWITCHER DIL SWITCHER DIL SWITCHER DIL SWITCHER DIL SWITCHER DIL SWITCHER	SIE SIE SIE SIE SIE

CE=Ceramic, CF=Carbon Film, EL=Electrolytic, MF=Metal Film, PE=Polyester, PP=Polypropylen, PS=Polystyrol

MANUFACTUREE: Bu-Burndy, Ex-Exar, Fc-Fairchild, Gl-General Instrument
IRP-Hemilett Packard, ITT-Intermetall, Mot-Motorola,
IS-National Semiconductors, PhoPhilips, Ra-Raytheon,
Sig=Signetics, SixeSiliconix, SteStuder,
IT-lexas Instrument, CK-CEX

1.913.194.00 TEL.HYBR.REM.CONTR./MIX.MINUS WIB87/12/0700

5/2 EDITION: 19. Oktober 1990

2. Korrelator 1.913.210/211

Der Korrelator zeigt die Phasenkorrelation einer Stereoaufnahme an.

Die Phasenkorrelation ist die gegenseitige Beziehung der Phasen beider Kanäle.

Wenn die Signale beider Kanäle gleichphasig sind, z.B. bei Monoaufnahmen, zeigt das Korrelationsinstrument +1 an; wenn sie gegenphasig (± 180°) sind, zeigt das Instrument -1 an. Bei einem Stereoprogramm wird ein Mittelwert von gleich- und gegenphasigen Signalen angezeigt.

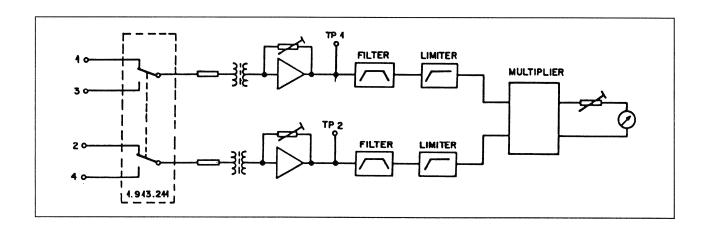
Stereoprogramme weisen normalerweise einen positiven Korrelationswert auf, vorzugsweise um + 0,5. Negative Werte zeigen eine Phasenvertauschung im System an.

2.1 Anwendungen, die einen Korrelator erfordern:

Monokompatibilität von Stereoprogrammen

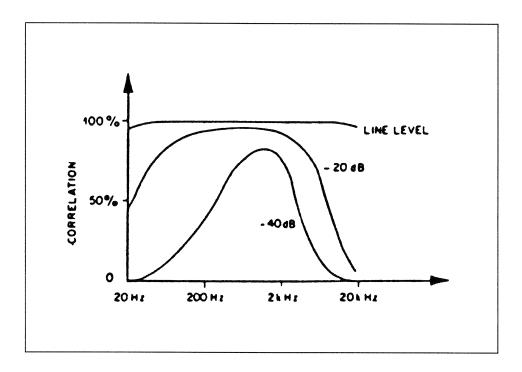
Damit eine stereophone Aufnahme auch monophon abgehört werden kann, muss die Korrelation überwacht werden.

Gegenphasige Anteile führen zu partiellen Auslöschungen.


Tiefe Frequenzen auf Stereo-Schallplatten

Die Abtastfähigkeit eines Abtastsystems ist für vertikale Auslenkung viel geringer als für horizontale Auslenkung.

Gegenphasige Signale mit hohem Pegel und tiefen Frequenzen weisen eine grosse vertikale Auslenkung auf und müssen deshalb vermieden werden.


Modulation von FM-Stereosendern Die FM-Strecke Sender-Empfänger ist sehr empfindlich auf übermässig hohe Frequenzdifferenz-Signale. Es entstehen dabei unzulässige Verzerrungen.

2.2 Blockschaltbild

EDITION: 19. Oktober 1990 5/3

Korrelation

2.3 **Technische Daten**

Eingang: symmetrisch und erdfrei

> Eingangsimpedanz 20 Hz ... 20 kHz: > 10 kOhm Eingangspegel, einstellbar: +6 ... +15 dBu

Filter:

Hochpass 6 dB/Oktave: f_u . ca. 340 Hz Tiefpass 12 dB/Oktave: f_o . ca. 3,4 kHz

Ausgang: Ausgangstrom für Instrumente, einstellbar ± 300 μA

Temperatureinfluss: Fehler bei 0° C ... 50° C, bezüglich Raumtemperatur: +3 ... -1 %

Stromaufnahme bei ± 15 V: ca. 15 mA

Abmessung Frontplatte: 170 x 180 mm

> Tiefe: 135 mm

Gewicht: 390 gr

5/4 EDITION: 22. Oktober 1990

2. Correlator 1.913.210/211

The correlator indicates the phase correlation of a stereo program.

The phase correlation is the mutual relation of the phases on both channels.

If the signals of both channels are in phase, e.g. in a mono production, the correlation instrument indicates +1, if they are phased inversely (\pm 180°) the instrument indicates -1. The correlator always indicates the average of in-phase and antiphase signals of a stereo production.

Stereo programs normally shown a positive correlation value, preferably around +0,5. Negative values indicate that the phase in the system is inversed.

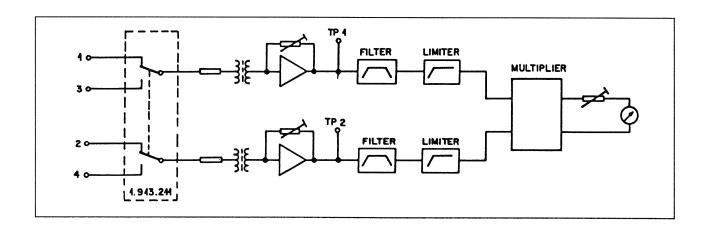
2.1 Application which require a Correlator

Mono compatibility of stereo programs

To ensure that a stereo recording can also be reproduced in mono mode it is necessary to monitor the correlation.

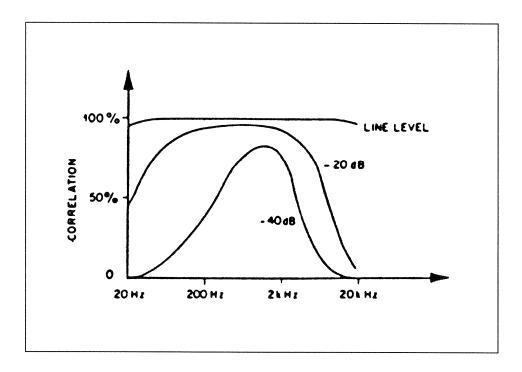
No phased-inversed components are allowed because they partially cancel during monophonic reproduction.

Low frequencies on stereo records


The tracking capability of a cartridge is much lower for vertical excursion than for horizontal excursion.

Antiphase signals with high levels and low frequencies result in high vertical excursion and should, therefore, be avoided.

Modulation from FM stereo transmitters


The FM path from the transmitter to the receiver is very sensitive to excessively high frequency–difference signals. They produce inacceptable distortion.

2.2 Block Diagram

EDITION: 19. Oktober 1990 5/5

Correlation

2.3 Specifications

Input: Balanced and floating

Input impedance 20 Hz ... 20 kHz: > 10 kOhm

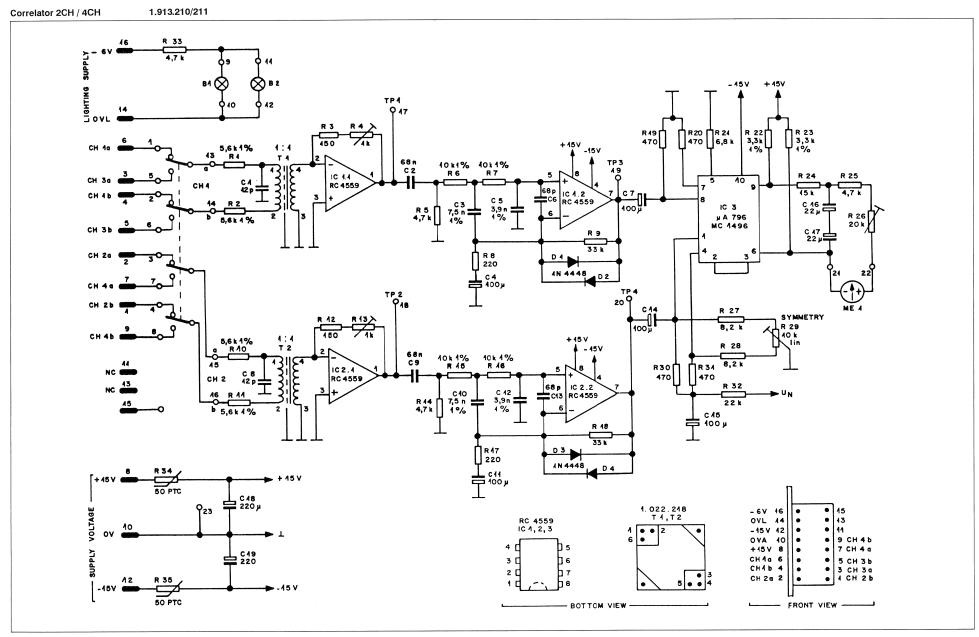
Input level, variable: +6 ... +15 dBu

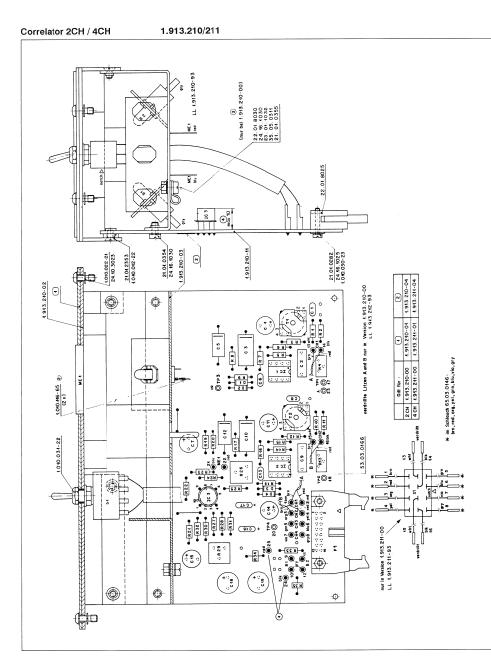
Filter: High-pass 6 dB/octave: f₁. ca. 340 Hz

Low-pass 12 dB/octave: f₁₁. ca. 3,4 kHz

Output: Output current for instruments, variable \pm 300 μ A

Influence of temperature: Error at 0°C ... 50°C, relative to room temperature: +3 ... -1 %


Connected load at ± 15 V: approx. 15 mA


Dimensions of front panel: 170 x 180 mm

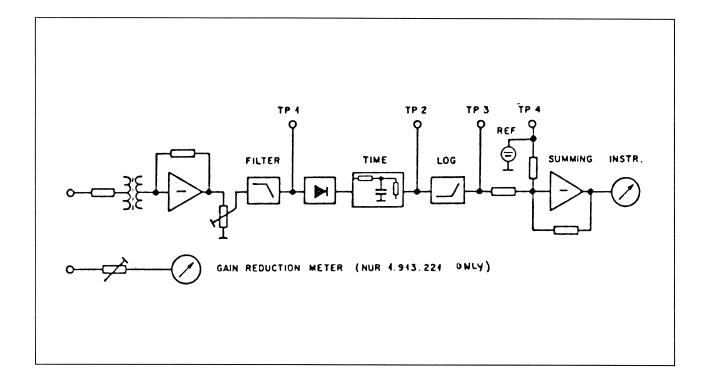
Depth: 135 mm

Weight: 390 g

5/6 EDITION: 22. Oktober 1990

ND POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR	END POS NO	PART NO	VALUE	. SPECIFICATIONS/EQUIVALENT	MFF
CA	59.34.4420	42pF	5%		R/I	57.44.3562	5,6 k	1%	
C2	58.02.5683	68nF	5%		R2	57.44.3562	5,6 k	A%.	
C 3	59.42.7752	7,5nF	4%		R3	57.44.4454	150		
C 4	59.22.5404	100 pF	46V		R4	58,04,7402	1k	TRIM-POTM	
C 4	59 12.7392	3,9nF	1%		R5	57.44.4472	47 k		
TC 5	59344680	68 pF	5%		R6	57,44.3403	10 k	A%	
C 7	51.22.5404	100 _m F	A6V		R7	57.44.34 03	10 k	1%	
0.8	59.34 4420	12 pF	5%		R8	57.44.4224	220		
16.9	55,09,5683	69 nF	5%		29	57,444333	33k		
C40	51429462	7,5nF	1%		R40	57,44.3562	5,6 k	A %	
0.41	54.22,5404	100 pF	APA.		P.44	57.44.3562	5,6k	A%	
C42	59.427392	3,9nF	1%		R42	57.44.4454	450		
C13	53.34.4680	68pF	5%		R43	58.04.7402	1k	TRIM-POTH.	
C/4	53.22.5404	100uF	AbV		R44	57.44.4472	4,7 L		
C45	59.22 5404	100mF	ABV		R/15	57.44.3403	10k	A%	
C.16	53.26.4220	22,4F	10V		R46	57,44.3403	10 K	A%	
C.47	53.26.4220	22,4F	40V		R/17	57,44,422/	220		
C48	53,22,4224	220µF	46V		R/18	57.44.4333	33k		
C 49	59 22,4224	220µF	A6V		R49	57.44.4474	470		
					R20	57.44.4474	470		
					R24	57.44.4682	6,8k		
D4	50.04.0425	104448			822	57.44.3332	3,3k	A%	
D2	50.04.0425	AN4448			R23	57.44.3332	3,3 k	4%	
D3	50.04.0425	AN4448			R24	57,44,4453	15 k		
D4	50.04.0425	4N4448			R25	57,44,4472	4.7k		
1					R26	58.048203	20k	TRIM-POTH.	
IC4	50.09.0407	4559		Ra,TI	R27	57.44.4822	8,2k		
IC2	50.09.0407	4559			R28	57.444822	8,2k		
IC3	50.05.0422	MC4496 6	MA 796 HC	M, F	829	58,04,8403	10k	TRIM-POTM.	
					R30	57.44.4474	470		
ND DAT	E NAME	1			I INDI DA	TE I NAME	1		
0		F Fair	child TI Texas Instru	ments	0		1		
0		M Moto	orola		(3)		7		
0		Ra Ray	theon		0		7		
ō o			id for correlator 4CH 1.913,2	1/1	0		also valid	for correlator 4CH 1.9/3.2/1	
0 20-8	-81 #4	1			0 20-1	3-81 1/49	7		
STUD		DELATO	R 2CH 4.943.240 PA	GE 4 OF 3	STUD		OC LAT	OR 2 CH 1.913.210	PAGE 2

ND) F	POS NO	PART N	10	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
T	R31	57,44.4	474	470		
Т	R32	57.44.4	223	22 k		
Т	R33	57.44.4	479	4,7		
\neg	R34	57,99.0	206	50	PTC	
П	R35	57.99.0	206	50	PTC	
I						
	SA	55.04.0		4x 0N-0N		
	T1	1022.2		1:1	INPUT TRAFO	STUDE
+	T2	1.022.2	2.18	1:1	INPUT TRAFO	STUDE
\pm						
4	B4	54.02.0		6 V, 30ml	Lamp	
+	B2	54.02.0		6V,30ml	Lamp	_
+	ME/	1.913.0		BV, SUMP	CorrMeter	_
	P/I	54,44.1			Connector, Abpins	-+-
		53.03.0			IC-Socket, Spins	\rightarrow
+	XIC.	53.03.0	1166		IC-Socker, Abins	
-						
\perp						
Н						_
_						
_						_
	.					
П	- 1					
_						
_				·		
ND	DAT	E F	NAME	1		
@						
0				1		
@				1		
0				also valid	for correlator 4CH 4.943.244	
	20-8-	81 0	114	1	-	
-	auta			DELAT	OR 2CH 4.943.240	AGE 3 OF 3
-	מטופ	EH (LUK	KELMI	OK 2011/1.3/13.2/10	AUE 3 UF 3


5/8 EDITION: 23. Oktober 1990

3. Peak Program Meter (PPM)

1.913.220/221

Aussteuerungsmesser mit symmetrisch, erdfreiem Eingang. Dynamisches Verhalten gemäss IEC/DIN Normen.

3.1 Blockschaltbild

EDITION: 19. Oktober 1990 5/9

3.2 Technische Daten

Eingangsempfindlichkeit für Referenzanzeige (0 dB) + 6 dBu ... + 15 dBu

Eingangeimpedanz > 10 kOhm

Anzeigebereich - 40 dB ... + 6 dB

Genauigkeit bei 20°C, 1 kHz, – 40 dB ... + 6 dB ± **0,5 dB**

Frequenzgang bei Referenzanzeige 0°C ... 50°C, 31,5 Hz ... 15 kHz ± 0,5 dB

Temperatureinfluss bei Referenzanzeige, 1 kHz, 0°C... 50°C Fehler < 0,5 dB

Dynamisches Verhalten

Überschwingen ≤ 1 dB

Ansprechzeit $auf - 1 dB \pm 0,5 dB$ 10 ms $auf - 4 dB \pm 1 dB$ 3 ms

Rücklaufzeit 0 ...-20 dB **1,7 s ± 0,3 s**

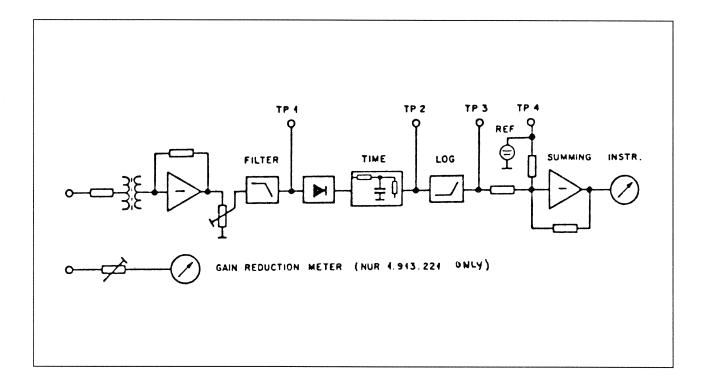
Stromaufnahme bei \pm 15 V ca 15 mA

Mechanische Daten

Abmessung Frontplatte: 170 x 80 mm

Tiefe: 135 mm

Gewicht: 360 gr


5/10

3. Peak Program Meter (PPM)

1.913.220/221

Level indicator with balanced and floating input. Dynamic response according to IEC/DIN standards.

3.1 Block Diagram

EDITION: 9. November 1990 5/11

3.2 Specifications

Input sensitivity for reference indication (0 dB) +6 dBu ... +15 dBu

Input impedance > 10 kOhm

Indicating range – 40 dB ... +6 dB

Accuracy at 20°C, 1 kHz, $-40 \text{ dB} \dots +6 \text{ dB}$ $\pm 0.5 \text{ dB}$

Frequency response at reference indication 0°C ... 50°C, 31,5 Hz ... 15 kHz \pm 0,5 dB

Influence of temperature at reference indication, 1 kHz, 0°C... 50°C error < 0,5 dB

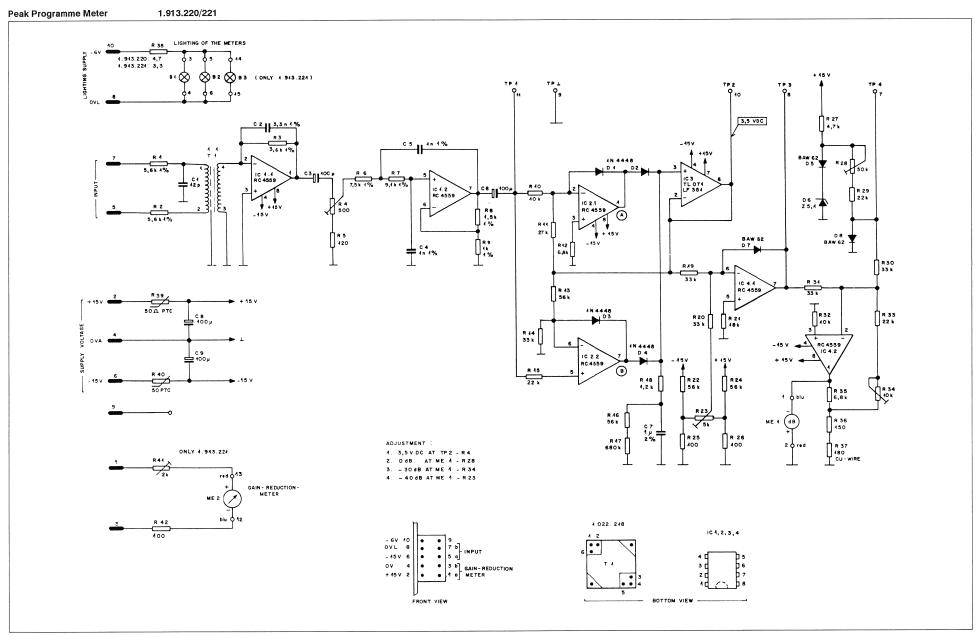
Dynamic response

Overswing ≤ 1 dB

Attack time $-1 dB \pm 0.5 dB$ 10 ms $-4 dB \pm 1 dB$ 3 ms

Return time 0 ...-20 dB $1,7 \text{ s} \pm 0,3 \text{ s}$

Connected load at \pm 15 V ca 15 mA


Physical Data

Dimensions of front panel: 170 x 80 mm

Depth: 135 mm

Weight: 360 gr

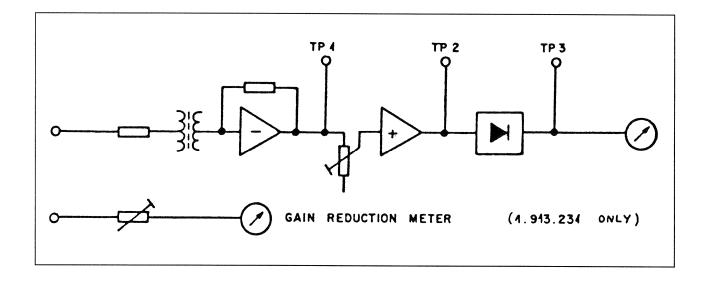
5/12 EDITION: 20. November 1990

Peak Programme Meter 1.913.220/221 24.16.1030 2 918 1.010.116-65 ① - B28-• 62 8 • 9£ 8 • 00 - 12 H - 12 H

0

NO POS NO	PART NO	I VALUE 1	SPECIFI	CATIONS/EQUIVALENT	1	MFR	IND	POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	1	MFF
C.4	59.34.442.0	12pF	5%					R/I	57.44.3562	5,6k	1%		
C2	59.42.7332	3,3 nF	1%					R 2	57.44.3562	5,6k	1%		_
C3	59.22.5404	100 uF	46V					R3	57./11.3362	3,6k	A%		_
C4	59.42.9402	4 nF	12				Г	R4	58.04.7501	500	TRIM		
C.5	59.42.9402	A nF	1%					R5	57,44.4424	120			_
C 6	59.22.5404	100aF	/16V					R 6	57.44.3752	7,5k	4%		_
C7	59,99,0508	/ KF	2%					R7	57.44.3942	9,1k	4%		
C B	59.22.5404	/00 _# F	/6V				Г	R 8	57.44.3752	1,5k	4%		
C 9	59.22.5404	100 MF	46V				Г	R 9	57.44.3402	/k	1%		
-+							Г	R 40	57.44.4403	/10k			
							Г	RM	57.14.4273	27k			
DA	50.04.0425	AN4448				any	Г	R 12	57.44.4682	6,8k			
02	50.04.0/25	N4448			-	awy		R 43	57.44.4563	56k			
03	50.04.0425	4N4448				any	Г	R //4	57.44.4333	33k			
104	50.04.0425	4N 4448				any	Г	R 45	57,44.4223	22k			
05	50.04.0432	BAW 62			วทุโง	Рн	Г	R46	57.44.4563	56k			
D6	50.04.4442	7 PD 5.4	5.4Vat 5	mA . 5%		ITT		R 47	57.44.4684	680k	2%		
D7	50.04.0432	BAW62			nly	PH	Г	R 48	57.44.4422	1,2k			
30	50.04.0432	BAW62			only	PH	Г	R 49	57.44.4333	33k			
100	30.01101132	1			-		Г	R20	57.M.4333	33 k			
								R24	57.41.4183	18 k			
IC4	50.03,0107	RC4559NB				RA, TI	Г	R 22	57.41.4563	56k			Г
IC2	5 0.09.04 07	RC4559NB			-	RA, TI		R 23	58.04.8502	5k	TRIM		L
103	50.03.0403	TLOMEP	LF354N			TI, N	Г	R 24	57.44.4563	56k			
104	50.09.0407	RC 4559NB				RA, TI		R25	57.44.4404	400			
1.6	50,001.	10000						R 26	57.44.4404	/100			
MEA	4.943.004.04		Peak Prog	ramme Meler			Г	R 27	57.41.4472	4,7 k			
I ME2				Lion-Meter (only 1.9	13221)		Г	R28	58.04.8503	50k	TRIM		
INCE	71,103.300.0E							R29	57.41.4223	22k			
							Г	R30	57.44.4333	33k			
IND) DA'	TE 1 NAME	-					INC	DA1	E NAME	1			
(a)	T HAME	PH Phili	ns.	N National	Sem.		(0)						
3		RA Rayl					0]			
0		TI Texa					0)]			
0			ald for PPI	4 with			0]			
0 20-8	- 81 109			eter 4.943,224			C	20-8	-81 114				
STUD		OGRAMME		1.913.220	PAGE A			STUD	ER PEAK PR	OGDAMME	METER // 9/3,220	PAGE 2	

ND POS NO	1	PART NO	VALUE	SPECIF	CATIONS/EQUIVALENT	MF
R34	57	.44.4333	33 k			
R 32	57	74.4403	10 k			
R 33	57	11.4223	22k			
R34	58	.04.8403	10 k	TRIM		
R35	57	.44.4682	6,8k			
R36	57	JA.4451	450			
R 37	4.0	22.459.00	480	Cu-Wire		STV
R38	57	11.4479	47.Q	A943.224 :	3,3 Ω	
R 39	57	99,0206	50Ω	PTC		
R 40	57	99.0206	50A	PTC		
R44	58	.04.7202	2k	TRIM	only 1.913.221	
P42	57	.×4.4404+	400		only 1.913.221	-+
TΛ	4.0	022.248.00	N:A	Input Tr	-afo	stot
Bı	5/	1.02.0444	6V.30mA	Lamp		
B2	54	.02.0444	64.30 mA	Lamp		
B3	5/	1.02.0444	6V, 30mA	Lamp		
РИ	54	14.2011		Connect	or	
XIC	53	3.03.0466		IC-Sock	et 8pins	
‡=						
#=						
	ATE	NAME				
<u>.</u>						
<u> </u>			1			
@			4			
0			1			
0 20	8-84	14.4			r	
STU	DER	PEAK PR	OGRAMME	METER	1.913.220	PAGE 3 OF


5/14 EDITION: 23. Oktober 1990

Ф

4. VU-Meter 1.913.230/231

VU-Meter mit symmetrisch, erdfreiem und hoch-ohmigem Eingang. Dynamische Daten gemäss IEC.

4.1 Blockschaltbild

EDITION: 19. Oktober 1990 5/15

4.2 Technische Daten

Eingangsempfindlichkeit für Referenzanzeige (0 VU) 0 dBu ... + 10 dBu

Eingangsimpedanz > 10 kOhm

Anzeigebereich – 20 VU ... + 3 VU

Genauigkeit bei 20°C, 1kHz, -10 VU ... +3 VU ± **0,5 VU**

Frequenzgang für Referenzanzeige 0°C ... 50°C, 31,5 Hz ... 15 kHz ± 0,5 VU

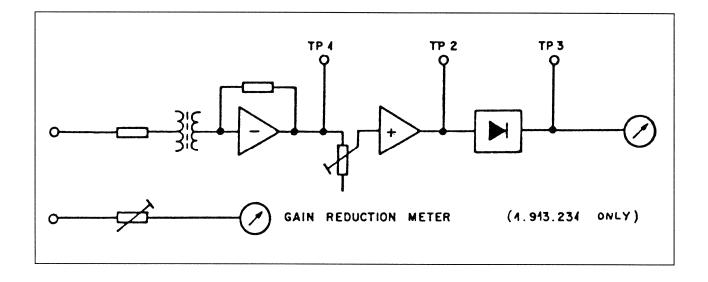
Ansprechzeit auf – 1 VU 207 ms ± 30 ms

Speisung + 15 V / 10 mA - 15 V / 10 mA

- 6 V / 60 mA (90mA)

Abmessungen Frontplatte: 170 x 80 mm

Tiefe: 135 mm


Gewicht: 310 gr

5/16 EDITION: 20. November 1990

4. VU-Meter 1.913.230/231

VU-meter with balanced, floating and high-impedance input. Dynamic response according to IEC.

4.1 Block Diagram

EDITION: 19. Oktober 1990 5/17

4.2 Specifications

Input sensitivity for reference indication (0 VU) 0 dBu ... + 10 dBu

Input impedance > 10 kOhm

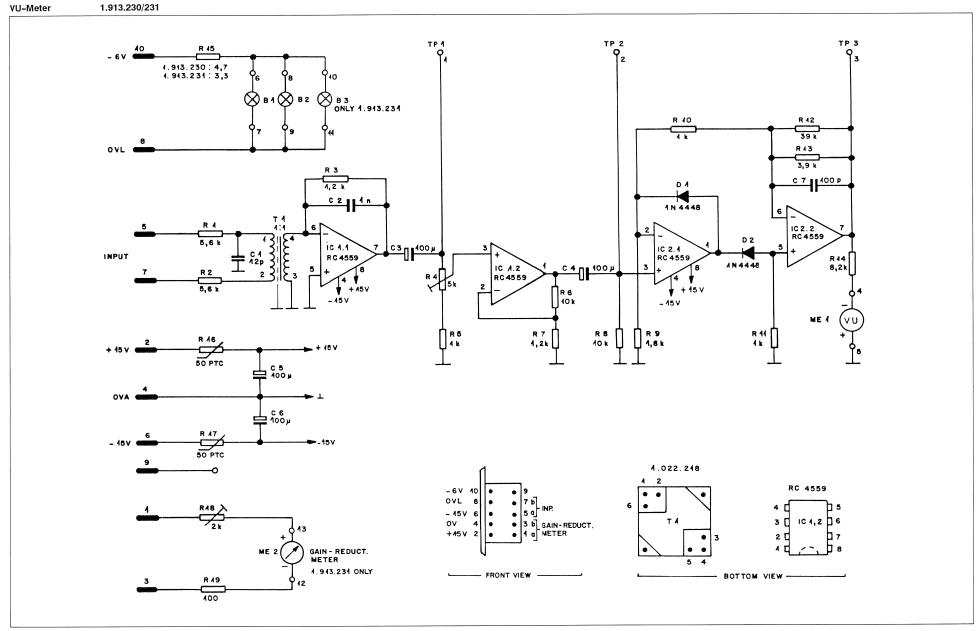
Indicating range – 20 VU ... + 3 VU

Accuracy at 20°C, 1 kHz, – 10 VU ... + 3 VU ± **0,5 VU**

Frequency response for reference 0°C ... 50°C, 31,5 Hz ... 15 kHz ± 0,5 VU

Attack time to -1 VU 207 ms \pm 30 ms

Supply + 15 V 10 mA


- 15 V 10 mA - 6 V 60 mA

Dimensions of front panel: 170 x 80 mm

Depth: 135 mm

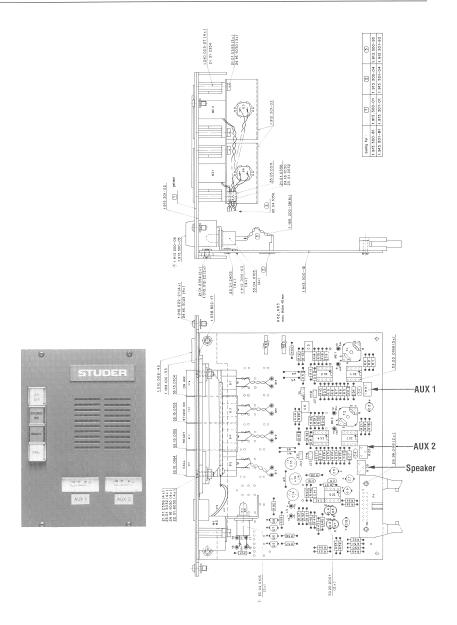
Weight: 310 gr

5/18 EDITION: 19. Oktober 1990

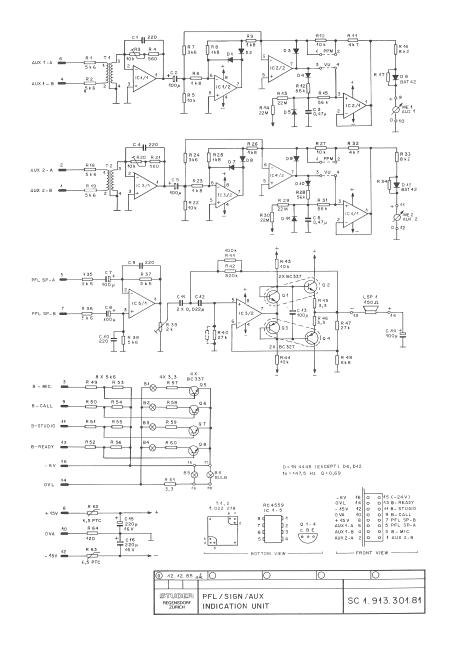
NO POS NO	PART NO	VALUE	SPECIFICA	TIONS/EQUIVALENT	MFR
C1	59344420	12 pF	5%		
C2	59,06-0402	4 nF	10%		
1.3	53.22 5404	100 MF	≥ 16V		
164	59.22.5104	/100 MF	≥ 16V		
175	59.22.5404	400 µF	≥ 16V		
19.6.	59.29 5 10-1	400 MF	≥ 16V		
C7	53.34 4.10 4	400 pF	5%		
DA	50.04.0425	4N4448			any
02	50.04.0425	AN4448			any
LI					
1			-		
IC4	50.09.0107	RC 4559 NB	Dual OP A		Ra, TI
102	50.09.0407	RC 4559 NB	DUAL OF A	MP	Ra, TI
IP/	57.44.3562	5,6 k	1%		
82	57.44.3562	5,6 k	14		
R3	57.44.4422	1,2k			
R4	58.04.75.02	5 k	TRIM - POT	ч.	
i RS	57./1.4102	1 k			
R6	57.44.44.03	/0 k			
R7	57.44.4422	1,2 k			
R 8	57.44.4403	/0 k			
R9	57,44.4482	1,8 k			
! R40	57,44.44.02	1 k			
R44	57.44.4402	Лk		A SECULIAR ASSESSMENT	
R 12	57.44.4393	39 k			
R 43	57.11.4392	3,9 k			
R //4	57.44.4822	8,2k			
ND DATE	NAME	-			
0			theon		
3			as Instr.		
@			l for YU-meter		
0		gain redu	ction meter /	1.913.231	
0 20-8	- 8.1 May				

ND POS NO		VALUE	SPECIFICATIONS/EQUIVALENT	MFR
R45	57.44.4479	4,7 12	1943.231: 33.D. (57.41.4339)	
R16	57.99.0206	50	PTC PHILIPS 2.322.664 94002	
R 17	57.99.0206	50	PTC PHILIPS 2.322664.34002	
R48	58.04.7202	2k	Trim-Pot. (only 1.913,231)	
R19	57.44.4404	400	(only 1.913.231)	
TA	1,022.218.00	A:A	Input Trafo	
		1		
84	54.02.0444	6V.30mA	Lamp	
B2	54.02.0444	64.30mA	Lamp	
MEA	4.943.004.02		VU-Meter	
ME2	4.469.900.02		Gain Reduction Meter (only 1.513.)	31)
PA	54.44.2.044		Connector 10 pins	
XIC	53.03.0466		IC-Socket 8 pins DIP	
		1		
63	51.02.0144	6V, 30mA	Lamp (only 1.913.231)	
7				
1				
1				
		1		
		—		T
NDI DA	TE NAME	1	1	
0	THE REAL PROPERTY OF THE PERTY	—		
<u>a</u>		┥		

also valid for VU- meter with gain reduction meter 1.913.231


1.913.230

PAGE 2 OF 2


① O 20-8-8/

STUDER VU-METER

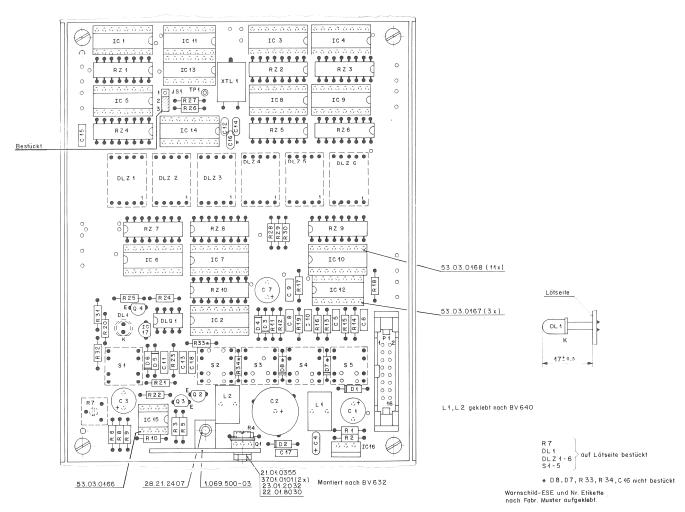
EDITION: 23. Oktober 1990

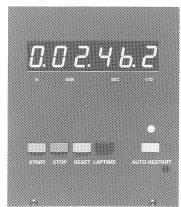
EDITION: 19. Oktober 1990 5/21

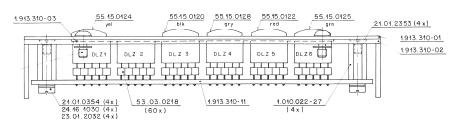
STUDER AUDIO CONSOLE 970

PFL/SIGN7AUX INDICATION UNIT 1.913.301.81

AdPOS	REF.No	DESCRIPT	IONMANUFACTURER	AdPOSREF.No DESCRIPTIONMAR	NUFACTURER
B1 B2 B3 B4 B5 B6	51.02.0143 51.02.0143 51.02.0143 51.02.0143 51.02.0144 51.02.0144	6 V 6 V 6 V 6 V 6 V	166mA W2*4.60 166mA W2*4.60 166mA W2*4.60 166mA W2*4.60 166mA W2*4.60 30mA W2*4.60 30mA W2*4.60	R51 57.11.4552 5.6 kOhm R52 57.11.4552 5.6 kOhm R53 57.11.4552 5.6 kOhm R54 57.11.4552 5.6 kOhm R55 57.11.4552 5.6 kOhm R56 57.11.4552 5.6 kOhm	
C1 C2 C3 C4 C5 C6 C6	59.34.4221 59.22.3101 59.06.0474 59.34.4221 59.22.3101 59.06.0474 59.22.3101 59.22.3101 59.34.4221	220 pF 100 uF 470 nF 220 pF 100 uF 470 nF 100 uF 100 uF	CER 10V EL 10V E. 10V E. 10V E. 10V E. 10V E. 10V E. 5% CER 5% CER	R57 57.11.4339 3.3 0hm R58 57.11.4339 3.3 0hm R59 57.11.4339 3.3 0hm R61 57.11.4339 3.3 0hm R62 57.32.1271 6.5 0hm PTC R63 57.32.1271 6.5 0hm PTC R64 57.11.4310 100 0hm	
C10 C11 C12 C13 C14 C15 C16	59.34.4221 59.06.5223 59.06.5223 59.22.3101 59.22.4101 59.22.4221 59.22.4221	220 pF 22 nF 22 nF 100 uF 100 uF 220 uF 220 uF	54 PE 54 PE 10V EL 16V EL 16V EL	T1 1.022.218.00 input trafo 1:1 T2 1.022.218.00 input trafo 1:1 CER = ceramic, EL = electrolytic, PE = polyester MANUFACTURER: ITT=ITT=Intermetall, Ph=Philips, Ra=Raytheon, S1e=S1emens, S1e=Studer,	St St
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10	50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.1112 50.04.0127 50.04.0125 50.04.0125 50.04.0125 50.04.0125	1N4448 1N4448 1N4448 1N4448 ZD 5V1 BAS40-02 1N4448 1N4448 1N4448	any any any any (Sie),400mV at 10mA; BAT85 (Ph), BAT42 (Tho) any any any any any any any any any any	This position list is valid for: Diese Positionsliste ist gultig fur: - 1.913.200.8.0 PFL-SIGN-INDICATION UNIT folgende Positionen sind Bestuck: 81-84, C7-215, 152, 53, 53, 01-08, R35-R64 ohne R61 - 1.913.301.81 PFL-SIGH-AUX-INDICATION UNIT alle Positionen sind bestuckt	
D11 D12	50.04.1112 50.04.0127	ZD 5Y1 BAS40-02	any (Sie),400mV at 10mA; BAT85 (Ph), BAT42 (Tho)	* ************************************	
IC2 IC3 IC4 IC5	50.09.0107 50.09.0107 50.09.0107 50.09.0107 50.09.0107	RC4559NB RC4559NB RC4559NB RC4559NB RC4559NB	dual op.amp. Ra dual op.amp. dual op.amp. Ra dual op.amp. dual	1.913.300.81 PFL-SIGN-INDICATION UNIT WY 86/10/2900	
		150 0hm	loud-speaker, 2403.257.2356/AD3371 Y150, Ph		
ME2	1.913.001.04 1.913.001.04		meter St meter St		
P1	54.14.2012 50.03.0340	16 pin BC337-25	NPN, 800mA Sie, Ph, ITT		
Q1 Q2 Q3 Q4 Q6 Q6 Q7 Q8	50.03.0340 50.03.0351 50.03.0351 50.03.0351 50.03.0340 50.03.0340 50.03.0340	BC337-25 BC337-25 BC327-25 BC327-25 BC337-25 BC337-25 BC337-25 BC337-25	NPM, SOUMA Sie, Ph, ITT NPM, S		
R1 R2 R3 R4 R5 R6 R7 R8 R9	57.11.4562 57.11.4562 58.01.9103 57.11.4561 57.11.4103 57.11.4182 57.11.4182 57.11.4182 57.11.4182 57.11.4182	5.6 kOhm 5.6 kOhm 10 kOhm 560 Ohm 10 kOhm 1.8 kOhm 3.6 kOhm 1.8 kOhm 1.8 kOhm	trimpot.		
R11 R12 R13 R14 R15 R16 R18 R19 R20	57.11.4472 57.11.4563 57.11.6226 57.11.6226 57.11.4563 57.11.4822 57.11.4562 57.11.4562 58.01.9103	4.7 kOhm 56 kOhm 22 MOhm 22 MOhm 56 kOhm 5.6 kOhm 5.6 kOhm 10 kOhm	trimpot.		
R21 R22 R23 R25 R25 R26 R27 R28 R29 R30	57.11.4561 57.11.4103 57.11.4382 57.11.4382 57.11.4182 57.11.4103 57.11.4563 57.11.6226 57.11.6226	560 Ohm 10 kOhm 1.8 kOhm 3.6 kOhm 1.8 kOhm 10 kOhm 20 kOhm 22 MOhm 22 MOhm			
R31 R32 R33 R35 R36 R37 R38 R39	57.11.4563 57.11.4472 57.11.4822 57.11.4562 57.11.4562 57.11.4562 57.11.4562 57.11.4262 57.11.4273	56 kOhm 4.7 kOhm 8.2 kOhm 5.6 kOhm 5.6 kOhm 5.6 kOhm 2 kOhm 27 kOhm	trimpot		
R41 R42 01 R42 R43 R44 R45 R47 R47 R49 R50	57.11.4104 57.11.4124 57.11.4824 57.11.4103 57.11.4103 57.11.4339 57.11.4273 57.11.4682 57.11.4562 57.11.4562	100 kOhm 120 kOhm 820 kOhm 10 kOhm 10 kOhm 3.3 Ohm 27 kOhm 6.8 kOhm 5.6 kOhm			

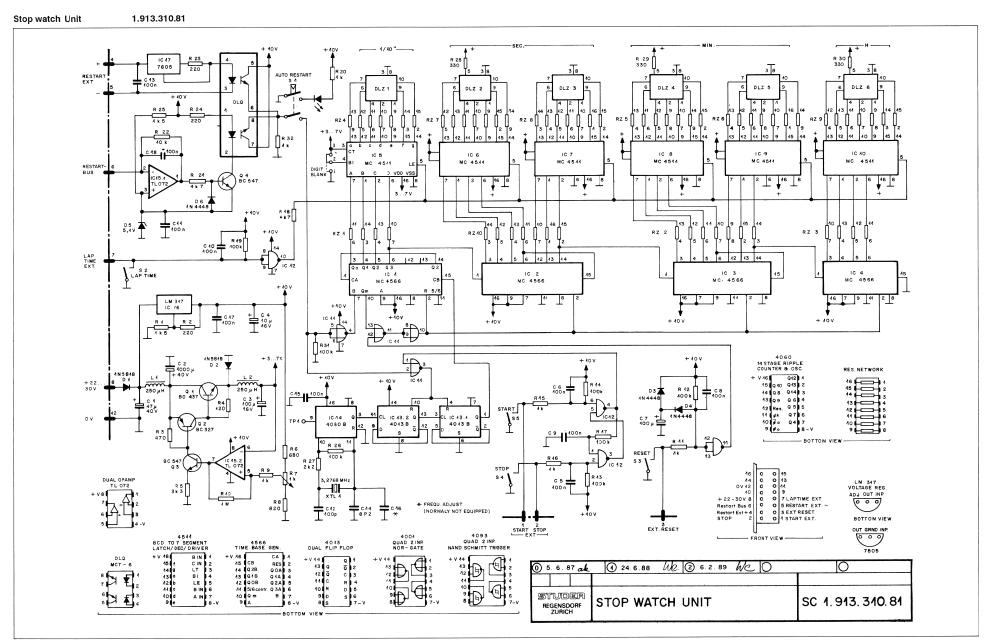

5/22 EDITION: 19. Oktober 1990


6. Stop Watch Unit


1.913.310.81

Stop watch Unit

1.913.310.81


5/23

Stop Watch

1.913.310.81

Ad	POS	REF.No	DESCRIPT	ION	MANUFACTURER	AdPOS	REF.No	DESCRIPTI	ON	MANUFACTURER
c. c. c. c. c.	1 2 3 4 5 6 7	59.22.6470 59.22.6102 59.22.4101 59.26.2100 59.06.0104 59.06.0104 59.06.0104 59.06.0104	47 uF 1000 uF 100 uF 10 uF 100 nF 100 nF 100 nF 100 nF	-20% 40V EL -20% 40V EL -20% 16V EL 10% PE 10% PE 10% PE 10% PE		R29 R30 R31 R32 01 R32 R33 R34	57.11.4331 57.11.4331 57.11.4104 57.11.4104 57.11.3102	330 Ohm 330 Ohm 100 kOhm 100 kOhm 1 kOhm not used not used	5% 0.25W 5% 0.25M 5% 0.25W 5% 0.25W 5% 0.25H	
c. c. c. c. c.	10 11 12 13 14 15 16 17	59.06.0104 59.06.0104 59.34.4101 59.06.0104 59.34.1829 59.06.0104 59.06.0104	100 nF 100 pF 100 pF 100 nF 8.2 pF 100 nF 100 nF	10% PE 10% PE CE 10% PE CE 10% PE not used 10% PE 10% PE		RZ1 RZ3 RZ4 RZ6 RZ7 RZ8 RZ9 RZ10	57.88.3473 57.88.3473 57.88.3423 57.88.3221 57.88.3221 57.88.3221 57.88.3221 57.88.3221 57.88.3221 57.88.3221	47 k0hm 47 k0hm 47 k0hm 220 0hm 220 0hm 220 0hm 220 0hm 220 0hm 220 0hm 47 k0hm	Interface Network	
D. D. D. D.	1 2 3 4 5 6	50.04.0512 50.04.0512 50.04.0125 50.04.0125 50.04.1112 50.04.0125	1N5818 1N5818 1N4448 1N4448 Z 5V1 1N4448 not used not used	Schottky Diode Schottky Diode 400mW BZX83C5V1 ,BZX55C5V1	any any any any ,ZPD 5V1 Ses,ITT any	S1 S2 S3 S4 S5	55.15.0113 55.15.0112 55.15.0112 55.15.0112 55.15.0112 54.01.0020 89.01.0376	2P 2P 2P 2P 2P 2P	switch , latching switch , non latching switch , non latching switch , non latching switch , non latching Jumper Plug 1 Pin Quarz	177
DL DL DL DL	L1 LQ1 LZ1 LZ2 LZ3 LZ4 LZ5	50.04.2112 50.99.0111 73.01.0140 73.01.0140 73.01.0140 73.01.0140 73.01.0140	LED MCT6 HDSP 550 HDSP 550 HDSP 550 HDSP 550 HDSP 550	Led gb dif. Dual Optokoppler Display	HP HP HP HP	(01) faster r CE=Ceramic, C PE=Polyester,	ise time for F=Carbon Film PP=Polypropy	optocoupler , EL=Electrol len, PS=Polys	ytic, MF=Metal Film, tyrol	
JS	LZ6 S1 P1	73.01.0140 54.01.0020 54.01.0021	HDSP 550	3 Display Jumper Plug 3 Pin Jumper Jack	НР	MANUFACTURER:	HP=Hewlett P {Matsushita}	ackard, ITT=I , NS=National Sig=Signetic	irchild, GI=General Instru ntermetall, Mot=Motorola, Semiconductors, Ph=Philip s, Six=Siliconix, St=Stude	Nat=National s,
10 10 10 10 10 10	C1 C2 C3 C4 C5 C6 C7 C8 C9 C9	50.07.0566 50.07.0566 50.07.0566 50.07.0566 50.07.0511 50.07.0511 50.07.0511 50.07.0511 50.07.0511	MC14566B MC14566B MC14566B MC14566B MC14511B MC14511B MC14511B MC14511B MC14511B	ind. time base generator ind. time base generator ind. time base generator ind. time base generator latch/decoder/display-drive latch/decoder/display-drive latch/decoder/display-drive latch/decoder/display-drive latch/decoder/display-drive latch/decoder/display-drive latch/decoder/display-drive	r Mot r Mot r Mot r Mot		1.913.310.81 1.913.310.81		SE 88/01 SE 88/06	
10 10 10	C11 C12 C13 C14 C15 C16 C17	50.07.0006 50.07.0008 50.07.0013 50.07.0060 50.09.0101 50.10.0104 50.10.0108 50.10.0107	HEF4001 HEF4093 HEF4013 HEF4060 TL 072 LM 317 LM 317 7805	Quad 2-Input NOR Gate NAND Schmitt trigger Dual D-flip-flop Binary Counter dual op. amp. (LF 353 Voltage Reg. Voltage Reg. Voltage Reg.	Mot N) TI					
L. L.	1	62.03.0005 62.03.0005	L 250uH L 250uH	RFI-suppression coil RFI-suppression coil	Tokin Tokin					
MI MI MI MI MI MI	P1 P2 P3 P4 P5 P6 P7 P8 P9 P10	53.03.0166 53.03.0167 53.03.0168 1.069.500.03 1.010.012.22 55.15.0124 55.15.0124 55.15.0125 55.15.0125	lpcs 3pcs 1lpcs 1pcs 1pcs 1pcs 1pcs 1pcs 1pcs 1pcs 1	Ic-socket 8 Pin Ic-socket 14 Pin Ic-socket 16 Pin Head sink Nietbolzen was 29 Piblic 16 Pin blk.Botton for S1 blk.Botton for S2 gray Botton for S3 red.Botton for S4 grn.Botton for S5						
	1	54.14.2052 50.03.0493	16 Pin Bd 437	ribbon cable connector npn						
Q	3	50.03.0351 50.03.0436 50.03.0436	Bc 327 Bc 237 Bc 237	pnp npn npn						
R R R R R R	1 2 3 4 5 6 7 8	57.11.4152 57.11.4221 57.11.4471 57.11.4121 57.11.4332 57.11.4681 58.01.8102 57.11.4402 57.11.4102	1.5 kOhm 220 Ohm 470 Ohm 120 Ohm 3.3 kOhm 680 Ohm 1 kOhm 820 Ohm 1 kOhm	5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 2% 0.25W 2% 0.25W 2% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W	istor					
R R R R R R	11 12 13 14 15 16 17 18 18 19	57.11.4102 57.11.4104 57.11.4104 57.11.4102 57.11.4102 57.11.4102 57.11.4104 57.11.4104 57.11.4104	1 kOhm 100 kOhm 100 kOhm 100 kOhm 1 kOhm 1 kOhm 100 kOhm 100 kOhm 100 kOhm 100 kOhm	5% 0.25W 5% 0.25W						
R R O1 R R R R	21 22 23 24 24 24 25 25 26 27 28	57.11.4472 57.11.4103 57.11.4221 57.11.4152 57.11.4152 57.11.4152 57.11.4104 57.11.4222 57.11.4331	4.7 kOhm 10 kOhm 220 Ohm 1.5 kOhm 220 Ohm 1.5 kOhm 100 kOhm 2.2 kOhm 330 Ohm	5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W 5% 0.25W						

5/24 EDITION: 23. Oktober 1990

CONTENTS

1 Intro	oduction	
2 MSC	C System	
	·	
	Modular Sub-Cards (MSCs)	
2.1.1		
2.1.2	\mathcal{C}	
2.1.3		
2.1.4	\mathcal{U}	
2.1.5		
2.1.6	1 1	
2.1.7		
2.1.8		
2.1.9	Limiter Voltage Processor	1.914.519
2.1.1		
2.1.1	1 Call Decoder 2060 Hz	1.914.521
2.1.1	2 Call Decoder 1900 Hz	1.914.522
2.1.1	3 Relay Sub-Cards	1.914.523/524/525/526
2.1.1	4 0- Ω Input Amplifier with PFL Facility	1.914.530
2.1.1		
2.1.1		
2.1.1		
2.1.1		
2.1.1		
2.1.2		
	_	
	Euro-Cards	
2.2.1		
2.2.2		1.915.100
2.2.3		
2.2.4		
2.2.5	1	
2.2.6		
2.2.7		
2.2.8	Monitor Switching Relays	1.915.601/602
2.2.9	Transistor-Driven Relays (7+2)	1.915.603
2.2.1	0 Dual Limiter	1.915.700
2.2.1	1 Telephone Hybrid	1.915.760/764
2.2.1	2 Line Equalizer	1.915.776/777/779
2.2.1		
2.3	Racks and Frames	
2.3.1		
2.3.1		
2.3.2		
2.3.3	$\boldsymbol{\varepsilon}$	
2.3.4	15 Euro-Caru Mounting Accessories	

1 INTRODUCTION

The individual descriptions and application notes contained in this brochure are intended to acquaint designers and project engineers with the Studer Audio System Components. They allow to realize custom-tailored signal distribution, signal switching and amplifying systems to satisfy almost any individual requirement.

Euro-Cards (1.915....)

The backbone of the system is the so-called Euro-card, a circuit board measuring 100×160 mm, which comes in a great variety of different circuit configurations.

Modular Sub-Cards (1.914....)

Furthermore, there are the Modular Sub-Cards, small plug-in cards. Four of them can be accommodated on one Euro-size motherboard, allowing to make up a system which provides the ultimate in flexibility.

Racks, Frames (1.918....)

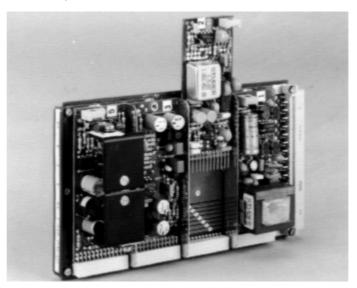
Matching 19" mounting frames and 19" sub-racks for Euro-cards with or without power supply are available as well as installation hardware.

For prices please consult your local Studer distributor or contact:

Studer Professional Audio GmbH Althardstrasse 30 CH-8105 Regensdorf Switzerland

Phone: +41 44 870 75 11 Fax: +41 44 870 71 34 e-mail: sales@studer.ch

We reserve the right to change the design and the performance specifications of the products listed here as technical progress may warrant.



2 MSC SYSTEM

To provide highest possible flexibility for the designer of professional sound systems, Studer engineers have pursued a completely new concept.

The Euro-card is a convenient circuit board as far as its size and its plug-in features are concerned. However, it often offers excess space for a particular circuit. This has triggered the idea to utilize the Euro-card simply as a carrier ("motherboard", order no. 1.915.770) for four smaller plug-in circuit boards, the "Modular Sub-Cards" (MSC).

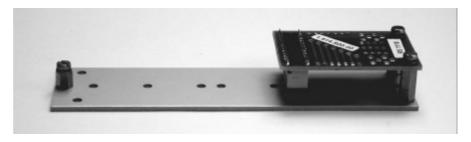
The 32 connections of the Euro-card are divided into 6 supply lines common to the modular sub-cards, and 4×6 individual lines joining the plugin sockets for each sub-card. The remaining 2 connections are used as separate bus lines, one of them leading to sub-cards 1 and 2, the other one to sub-cards 3 and 4, resulting in a total of 13 connections to each MSC. A small motherboard for only one MSC is available as well (order no. 1.914.500).

A great variety of different circuits is available in form of MSCs, such as

- Balancing amplifiers
- Microphone pre-amplifiers
- Speaker amplifiers
- $0-\Omega$ input amplifiers
- Limiters
- Voltage controlled amplifiers (VCAs)
- Relay sub-cards
- High level input amplifiers
- Line output amplifiers
- 1900 Hz signal generator/decoder
- 90° filter, stereo/mono
- Flip-flop
- Breadboarding card (0.1"/2.54 mm grid)

To meet the requirements of a system concept, a designer will be able to build individual circuits similar to working with a construction set: He either selects from the available circuits on Euro-cards or makes up his own Euro-card by simply arranging the most suitable combination of Modular Sub-Cards on the motherboard.

2.1 Modular Sub-Cards (MSCs)


2.1.1 Motherboard for 1 MS-Card

1.914.500

If only one MS-card is used, this motherboard is helpful for both mechanical and electrical interfacing. It consists of an aluminium mounting base (135×36 mm) and a small PCB with a connector for the MS-card; for wiring, this PCB contains solder terminals.

Note:

For installation of up to four MS-cards, there is a second, Euro-card format motherboard available (1.915.770) that can be installed into an Euro-card rack. Please refer to chapter 2.2.1.

Ordering Information

Motherboard for 1 MS-card

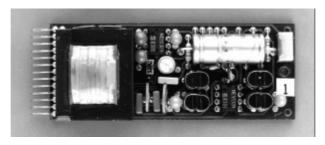
1.914.500.xx

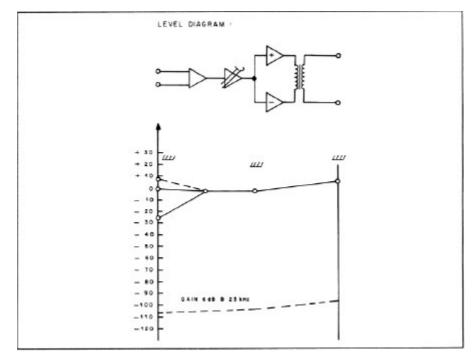
2.1.2 Breadboarding Card

1.914.529

This experimental board is an empty plug-in PCB compatible with the MSC system. It offers a punched 0.1" grid (2.54×2.54 mm) for individual component placement.

Ordering Information:


Breadboarding card


1.914.529.xx

2.1.3 Line Output Amplifier

1.914.501

Designed for operation at a nominal line level of +6 dBu (1.55 V_{rms}), this amplifier can handle levels of up to +24 dBu (12.3 V_{rms}), providing an excellent overload margin without the risk of clipping. A unique circuit around the primary of the amplifier's output transformer ensures excellent frequency response performance throughout the audible range. Fine and coarse gain adjustment is provided which allows to accommodate input levels in the range from -22...+8 dBu for a nominal +6 dBu output.

Technical Specifications

Input: Impedance > 10 kW, electronically balanced (transformerless)

Overload point +24 dBu

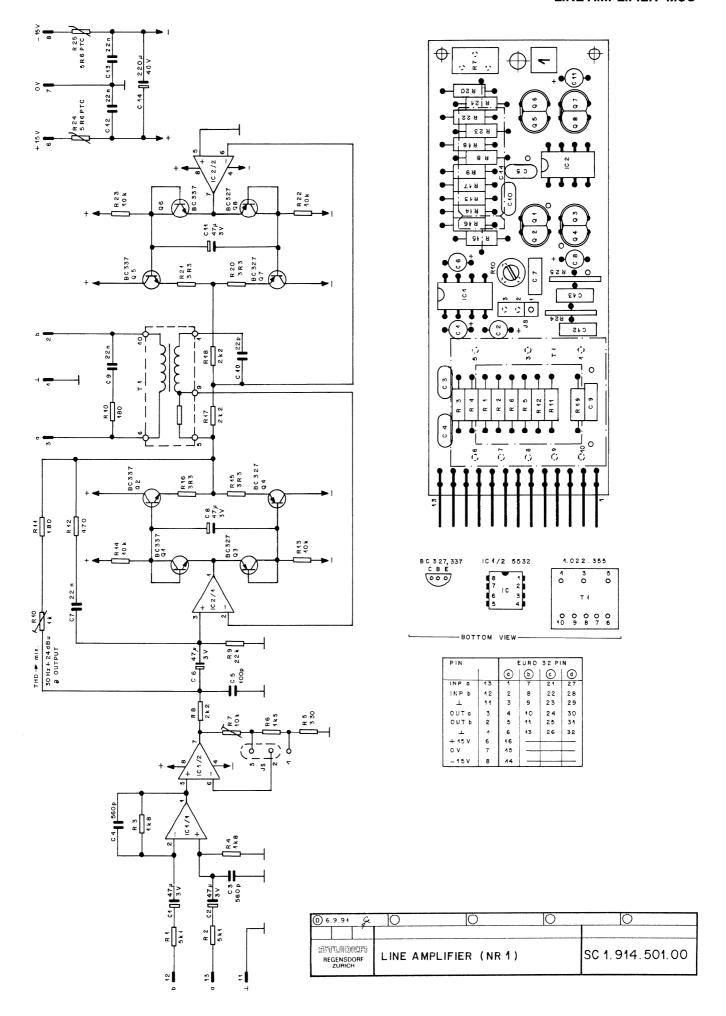
Output: Impedance < 50 W, balanced and floating

Minimum load 200 W
Maximum level +24 dBu

Gain **-2 dB...+28 dB**; adjustment: coarse 0 or 15 dB/fine -2 dB...+13 dB

Frequency response ±0.2 dB, 30 Hz...16 kHz

THD < **0.01%**, 30 Hz...16 kHz


Equivalent input noise < -106 dB, linear, at 6 dB gain

Supply: $\pm 15 \text{ V}$ (25 mA idling; max. 170 mA at +24 dBu into 200 Ω)

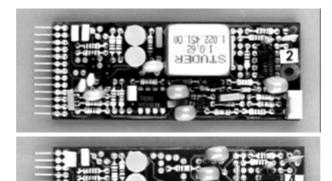
Dimensions: MS-card, $34 \times 85 \text{ mm}$

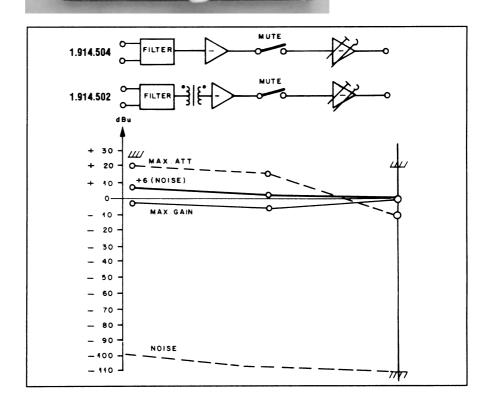
Ordering Information: Line output amplifier 1.914.501.xx

LINE AMPLIFIER MSC

MSC LINE AMPLIFIER

Ad	, .POS	REF.No	DESCRIPTION	ON			MANUFACTURER
1	C1	59.30.1470	47μ	3V	TA		
1	C2	59.30.1470	47u	37	TA		
	C 3	59.34.5561	560 pF	5%	CER		
	C4	59.34.5561	560pF	5%	CER		
	C5	59.34.4101	100pF		CER		
	C6	59.30.1470	47µF	3V	TA		
	C 7	59.06.0222	2200pF		PE		
	C8	59.30.1470	47µF	3V	TA		
	C 9	59.06.0223	0,022µF	•	PE		
	C10	59.34.2220	22pF		CER		
		UU.U-I.LLLU	LLp.		OL.		
	C11	59.30.1470	47µF	3 V	TA		
	C12	59.06.0223	0,022µF	••	PE		
	C13	59.06.0223	0,022µF		PE		
	C14	59.25.5221	220µF	40V	EL		
	•	00.20.0221	LLOPI	701	LL		
	IC 1	50.09.0105	NE5532	XR5532 D	UAL OP LOW	NOISE	SIG/EX
	IC2	50.09.0105	NE5532		UAL OP LOW		SIG/EX
		00.00.0100	NEOGOE	ANOUGE D	ORL OF LOT	HOISE	SIGILA
	JSJ	54.01.0021		JUMPER JA	VCK		
	JSP	54.01.0020		JUMPER P			
		***************************************		70mm Em 1	200 01 111		
	Q1	50.03.0516	BC337	NPN IC (,8A]	MATCHED	ST
	Q2	50.03.0516	BC337		,8A		T2
					_		
	Q 3	50.03.0625	BC327),8A	MATCHED	TZ
	Q4	50.03.0625	BC327	PNP IC (),8A _		ST
	Q5	50.03.0516	BC337	NPN IC	[A8,0	MATCHED	ST
	Q6	50.03.0516	BC337		,8A]	MATOTILE	ST
							•
	Q 7	50.03.0625	BC327	PNP IC),8A	MATCHED	ST
	Q8	50.03.0625	BC327	PNP IC (L A8,0		ST
		F7 11 0F10		10/			
	R1	57.11.3512	5k1	1%			
	R2	57.11.3512	5k1	1%			
	R3	57.11.3182	1k8	1%			
	R4	57.11.3182	1k8	1%			
	R5	57.11.4331	330				
	R6	57.11.4152	1k5				
	R 7	58.11.9103	10k	TRIM LIN			
	R8	57.11.4222	2k2				
	R9	57.11.4223	22k				
	R10	58.11.6102	1k	TRIM LIN			
	R11	57.11.4681	680				
	R12	57.11.4471	470				
	R13	57.11.4103	10k				
	R14	57.11.4103	10k				
	R15	57.11.4339	3,3				
	R16	57.11.4339	3,3				
	R17	57.11.4222	2k2				
	R18	57.11.4222	2k2				
	R19	57.11.4181	180				
	R20	57.11.4339	3,3				
	R21	57.11.4339	3,3				
	R22	57.11.4103	10k				
	R23	57.11.4103	10k				
	R24	57.11.0209	5,6	PTC			PH
	R25	57.11.0209	5,6	PTC			PH
		50.20.2001		CLIP			
	T 1	1.022.355.00		LINE OUTP	UT TRAFO		ST
CER=	=Ceramic, El	L=Electrolytic, PE=P	olyester, TA=T	antalum			
MANU	JFACTURER:	ST=Studer, SIG=Sig	netics, EX =Ex	ar, PH=Phili	ps		


1.914.501.00 LINE AMPLIFIER (Nr. 1) FRI 06/06/83 1.914.501.00 LINE AMPLIFIER (Nr. 1) ① FRI 17/11/83


END →

2.1.4 High-Level Input Amplifier

1.914.502/504

Basically, this is an amplifier with near 0 dB gain for high-level applications, yet with additional features, such as remote muting facility, RF input filter, and choice of two input and output impedances. The input configuration is balanced, whereas the output is unbalanced. Jumpers in the primary of the input circuit permit selection of either high-impedance operation with RF filter or a 0- Ω input without filter, for summing-bus applications. The combining (mixing) resistors have to be added externally. By switching pin3 of the amplifier's 13-pin plug to ground (via a corresponding connection on the motherboard) the amplifier may be muted from a remote point. If only 20 dB level reduction is desirable instead of muting, this can be programmed by connecting a resistor across two solder points.

The amplifier may be used, for example, to work into a 600 Ω load, or into the input of a 0- Ω input amplifier of another summing circuit.

If transformerless yet balanced input configuration is desired, an MSC amplifier with basically the same performance characteristics is available as well. Refer to the ordering information below.

Technical Specifications

Input: Impedance > 10 kW (transformer- or electronically balanced versions available; input

with RF filter; $0-\Omega$ input selectable with jumpers)

Common mode rejection > 50 dB

Overload point +24 dBu (12.3 V_{rms})

Output: Impedance 33 W(pin1), unbalanced

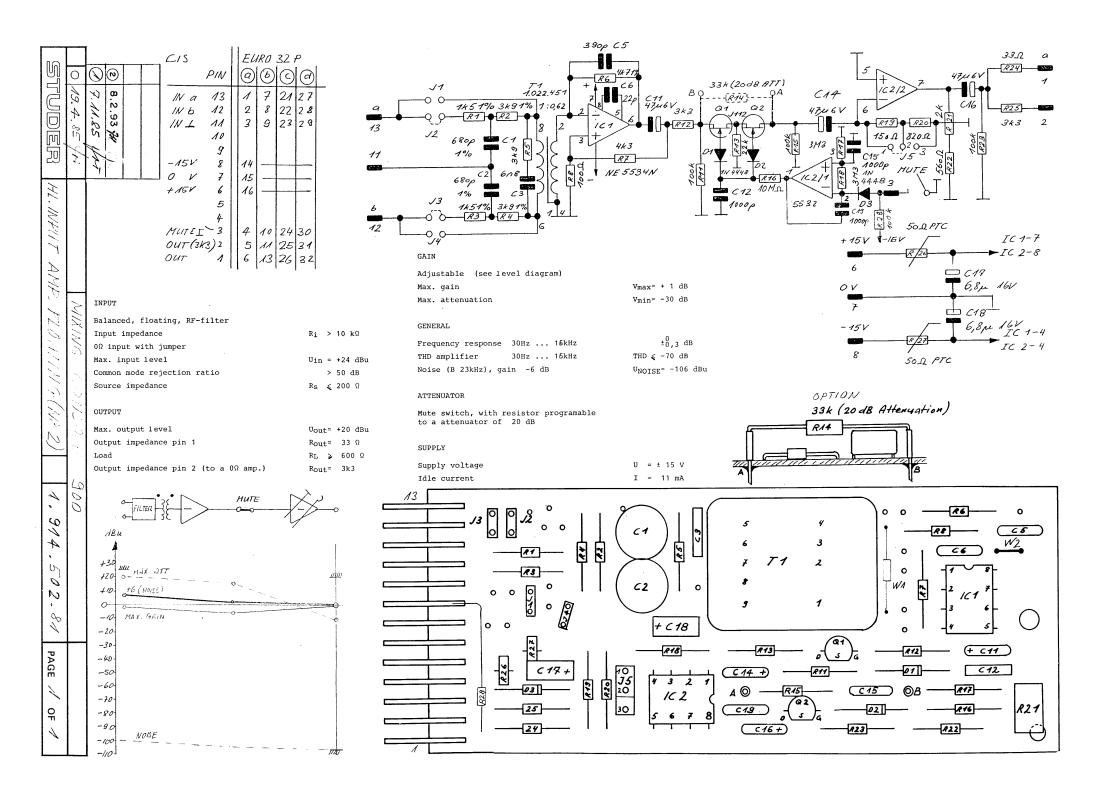
Minimum load 600 W

Maximum level $+20 \text{ dBu} (7.75 \text{ V}_{rms})$

Impedance 3.3 kW (pin2), unbalanced, for $0-\Omega$ operation

Maximum gain 1 dB
Maximum attenuation 30 dB

Frequency response ±0.3 dB, 30 Hz...16 kHz THD <0.03%, 30 Hz...16 kHz


Equivalent input noise -100 dBu, unweighted, at 6 dB attenuation Programmable attenuation 20 dB (resistor 33 k Ω across muting circuit)

Supply: $\pm 15 \text{ V} (11 \text{ mA idling})$

Dimensions: MS-card, $34 \times 85 \text{ mm}$

Ordering Information: High level input amp with transformer-balanced input 1.914.502.xx

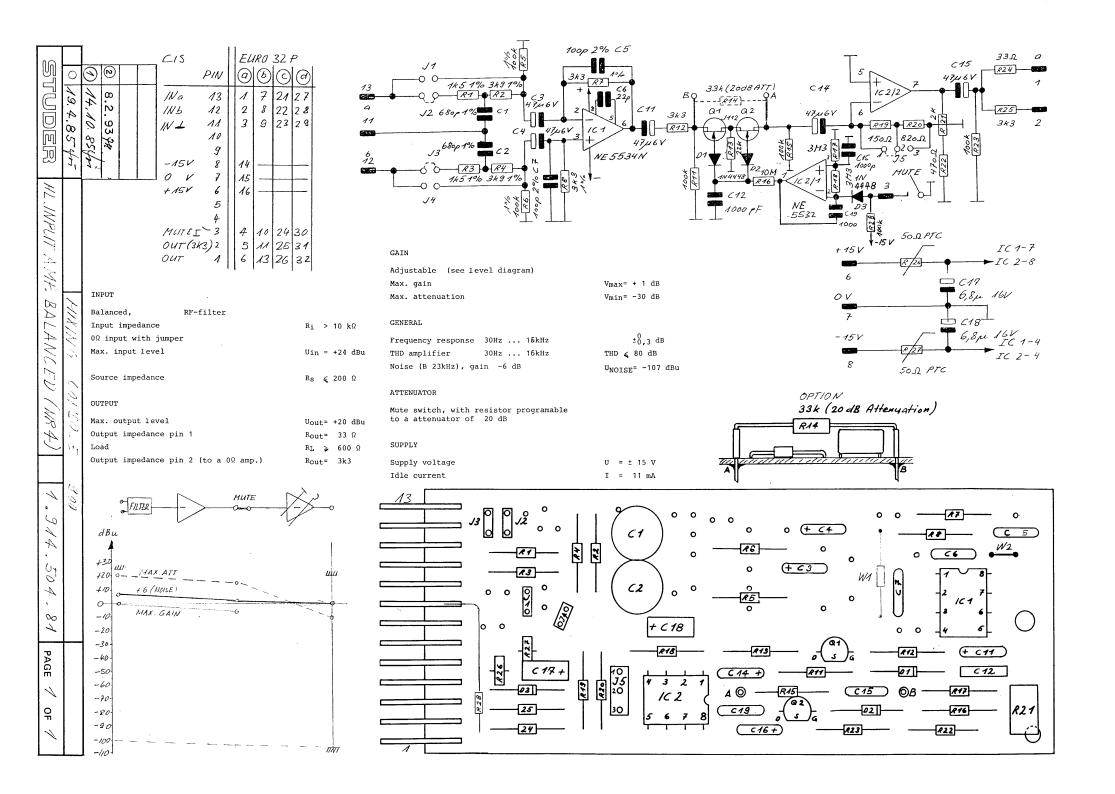
High level input amp with electronically balanced input 1.914.504.xx

Description

HL Input Amp, transformer-balanced 1.914.502.81 (1)

ldx. Pos.

Part No. Qty. Type/Val.


Page: 1 of 1

ldx.	Pos.	Part No. 0	ty. Type/Val.	Description
0	C 1	59.05.1681	680p	PP, 1%, 630V
0	C 2	59.05.1681	680p	PP, 1%, 630V
0	C 3	59.06.5682	6n8	PETP, 63V, 5%, RM5
0	C 5	59.34.5391	390p	CER 63V, 5%, N1500
0	C 6	59.34.2220	22p	CER 63V, 5%, N150
0	C 11	59.26.0470	47u	SAL 6.3V 20%
0	C 12	59.32.4102	1 n0	CER 20%, 50V
0	C 13	not used	1 n0	PETP, 63V, 10%, RM5
0	C 14	59.26.0470	47u	SAL 6.3V 20%
0	C 15	59.06.0102	1 n0	PETP, 63V, 10%, RM5
0	C 16	59.26.0470	47u	SAL 6.3V 20%
0	C 17	59.26.2689	6u8	SAL 16V 20%
0	C 18	59.26.2689	6u8	SAL 16V 20%
0	C 19	59.06.0102	1 n0	PETP, 63V, 10%, RM5
0	D 1	50.04.0125	1N4448	75V, 150mA, 4ns, DO-35
0	D 2	50.04.0125	1N4448	75V, 150mA, 4ns, DO-35
0	D 3	50.04.0125	1N4448	75V, 150mA, 4ns, DO-35
0	IC 1	50.05.0244	5534A	Single Op-amp, low noise
0	IC 2	50.09.0106	5532A	Dual Op-Amp, low noise
0	J 1	54.01.0021	Jumper	0.63*0.63mm, Au
0	J 2	54.01.0021	Jumper	0.63*0.63mm, Au
0	J 3	54.01.0021	Jumper	0.63*0.63mm, Au
0	P 1	54.01.0273	13p	Stecker CIS parallelsteck
0	P 2	54.01.0020 11		Pin, 1reihig, gerade
0	Q 1	50.03.0350	J112	JFET N-Channel
0	Q 2	50.03.0350	J112	JFET N-Channel
0	R 1	57.11.3152	1k5	MF, 1%, 0207
0	R 2	57.11.3392	3k9	MF, 1%, 0207
0	R 3	57.11.3152	1k5	MF, 1%, 0207
0	R 4	57.11.3392	3k9	MF, 1%, 0207
0	R 5	57.11.3392	3k9	MF, 1%, 0207
0	R 6	57.11.3472	4k7	MF, 1%, 0207
0	R 7	57.11.3432	4k3	MF, 1%, 0207
0	R 8	57.11.3101	100R	MF, 1%, 0207
0	R 11	57.11.3104	100k	MF, 1%, 0207
0	R 12	57.11.3332	3k3	MF, 1%, 0207
0	R 13	57.11.3223	22k	MF, 1%, 0207
0	R 14	not used	33k	MF, 1%, 0207
0	R 15	57.11.3104	100k	dB attenuation) MF, 1%, 0207
0	R 16	57.11.5104	10M	MF, 5%, 0207
0	R 17	57.11.5335	3M3	MF, 5%, 0207
0	R 18	57.11.5335	3M3	MF, 5%, 0207
0	R 19	57.11.3151	150R	MF, 1%, 0207
0	R 20	57.11.3821	820R	MF, 1%, 0207
0	R 21	58.01.9202	2k0	Cermet, 10%, 0.5W, vertical
0	R 22	57.11.3561	560R	MF, 1%, 0207
0	R 23	57.11.3104	100k	MF, 1%, 0207
0	R 24	57.11.3330	33R	MF, 1%, 0207
0	R 25	57.11.3332	3k3	MF, 1%, 0207
0	R 26	57.99.0206	50R	PTC, 25V, 0.5W
0	R 27	57.99.0206	50R	PTC, 25V, 0.5W
0	R 28	57.11.3104	100k	MF, 1%, 0207
0	T 1	1.022.451.00	1:0.62	EINGANGSTRAFO 1:0,62
1	W 1	57.11.3000	0R0	MF, 0207

End of List

Comments: (01) W1, W2 added

Date printed: 06.11.2006

Description

HL Input Amp, electronically balanced 1.914.504.81 (1)

ldx. Pos.

Part No. Qty. Type/Val.

Page: 1 of 1

ldx.	Pos.	Part No.	Qty.	Type/Val.	Description
0	C 1	59.05.1681		680p	PP, 1%, 630V
0	C 2	59.05.1681		680p	PP, 1%, 630V
0	C 3	59.26.0470		47u	SAL 6.3V 20%
0	C 4	59.26.0470		47u	SAL 6.3V 20%
0	C 5	59.34.2101		100p	CER 63V, 5%, N150
0	C 6			22p	CER 63V, 5%, N150
0	C 7	59.34.2220 59.34.2101		100p	CER 63V, 5%, N150
0	C 11	59.26.0470		47u	SAL 6.3V 20%
0	C 12			1n0	
0	C 14	59.32.4102 59.26.0470		47u	CER 20%, 50V SAL 6.3V 20%
0					
	C 15 C 16	59.06.0102		1n0	PETP, 63V, 10%, RM5
0		59.26.0470		47u	SAL 6.3V 20%
0	C 17	59.26.2689		6u8	SAL 16V 20%
0	C 18	59.26.2689		6u8	SAL 16V 20%
0	C 19	59.06.0102		1n0	PETP, 63V, 10%, RM5
0	D 1	50.04.0125		1N4448	75V, 150mA, 4ns, DO-35
0	D 2	50.04.0125		1N4448	75V, 150mA, 4ns, DO-35
0	D 3	50.04.0125		1N4448	75V, 150mA, 4ns, DO-35
0	IC 1	50.05.0244		5534A	Single Op-amp, low noise
0	IC 2	50.09.0106		5532A	Dual Op-Amp, low noise
0	J 1	54.01.0021		Jumper	0.63*0.63mm, Au
0	J 2	54.01.0021		Jumper	0.63*0.63mm, Au
0	J 3	54.01.0021		Jumper	0.63*0.63mm, Au
0	P 1	54.01.0273		13p	Stecker CIS parallelsteck
0	P 2	54.01.0020	9 pcs	1p	Pin, 1reihig, gerade
0	Q 1	50.03.0350		J112	JFET N-Channel
0	Q 2	50.03.0350		J112	JFET N-Channel
0	R 1	57.11.3152		1 k5	MF, 1%, 0207
0	R 2	57.11.3392		3k9	MF, 1%, 0207
0	R 3	57.11.3152		1k5	MF, 1%, 0207
0	R 4	57.11.3392		3k9	MF, 1%, 0207
0	R 5	57.11.3104		100k	MF, 1%, 0207
0	R 6	57.11.3104		100k	MF, 1%, 0207
0	R 7	57.11.3332		3k3	MF, 1%, 0207
0	R 8	57.11.3332		3k3	MF, 1%, 0207
0	R 11	57.11.3104		100k	MF, 1%, 0207
0	R 12	57.11.3332		3k3	MF, 1%, 0207
0	R 13	57.11.3223		22k	MF, 1%, 0207
0	R 14	not used		33k	MF, 1%, 0207
		2200			IB attenuation)
0	R 15	57.11.3104		100k	MF, 1%, 0207
0	R 16	57.11.5106		10M	MF, 5%, 0207
0	R 17	57.11.5335		3M3	MF, 5%, 0207
0	R 18	57.11.5335		3M3	MF, 5%, 0207
0	R 19	57.11.3151		150R	MF, 1%, 0207
0	R 20	57.11.3821		820R	MF, 1%, 0207
0	R 21	58.01.9202		2k0	Cermet, 10%, 0.5W, vertica
0	R 22	57.11.3471		470R	MF, 1%, 0207
0	R 23	57.11.3104		100k	MF, 1%, 0207
0	R 24	57.11.3330		33R	MF, 1%, 0207
0	R 25	57.11.3332		3k3	MF, 1%, 0207
0	R 26	57.99.0206		50R	PTC, 25V, 0.5W
0	R 27	57.99.0206		50R	PTC, 25V, 0.5W
1	R 28				
1		57.11.3104		100k	MF, 1%, 0207
1	W 1	57.11.3000		0R0	MF, 0207
i i	W 2	64.01.0106		0.6mm	Schaltdraht Cu

End of List

Comments

(01) R28, W1, W2 added

Date printed: 06.11.2006

2.1.5 Loudspeaker Amplifier

1.914.505

This low-power amplifier on a modular sub-card is designed to drive a $10...15~\Omega$ speaker. Power output is about 2...3~W. As can be concluded from this specification, the amplifier is not intended for high-quality monitoring. It will be ideally suited, however, for pre-fader listening and similar applications. The amplifier's input is balanced and floating, with adjustable gain.

Technical Specifications

Input impedance > 10 kW, balanced and floating (with transformer)

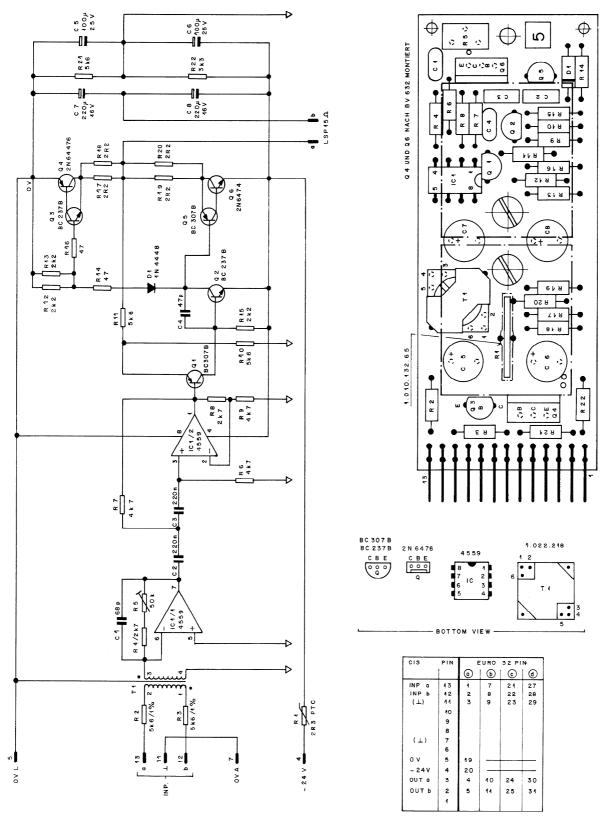
Nominal power output 2 W into 15Ω

Power output 25 mW...2.5 W into 15 Ω , with 0 dBu input

Distortion < 0.5% at 2 W

< 0.15% at 500 mW

/N **99 dB,** ref. to 2 W at max. gain


Frequency response -0.5 dB at 15 kHz High pass filter 150 Hz, 12 dB/oct.

Supply: -24 V (40 mA idling, max. 220 mA fully driven)

Dimensions: MS-card, $34 \times 85 \text{ mm}$

Ordering Information: Loudspeaker amplifier 1.914.505.xx

MSC SPEAKER AMPLIFIER

13.9.91 Ge	0	0	0	. 0
STUDER REGENSDORF ZÜRICH		PLIFIER IR.5)		1.914.505.00

MSC SPEAKER AMPLIFIER

Ad	P0\$	REF.No	DESCRIPTION.		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	MANUFACTURER		
	C1	59.34.4680	68pF		CER			
	C 2	59.06.0224	0,22µF		PE			
	C3	59.06.0224	0,22µF		PE			
Œ	C4	59.34.2470	47pF		CER			
•	C5	59.22.5101	100µF	25V	EL			
	C 6	59.22.5101	100µF	25V	EL			
	C7	59.22.4221	220µF	16V	EL			
	C8	59.22.4221			EL			
	0	33.22.4221	220µF	16V	EL			
	D 1	50.04.0125	1N4448					
	IC 1	50.09.0107	RC4559					
	P1	54.01.0273	13P	CIS				
	Q 1	50.03.0515	BC307B					
	Q2	50.03.0436	BC237B					
	Q3	50.03.0436	BC237B					
	Q4	50.03.0345	2N6476					
	Q5	50.03.0515	BC307B					
	Q6	50.03.0344	2N6474					
	R 1	57.99.0210	2,3Ω		PTC			
	R2	57.11.3562	5,6 kΩ					
	R3	57.11.3562	5,6 kΩ					
	R4	57.11.4272	2,7kΩ					
	R5	58.01.9503	50kΩ		PMG			
	R6	57.11.4472	4,7kΩ					
	R 7	57.11.4472	4,7kΩ					
	RB	57.11.4272	2,7kΩ					
	R9	57.11.4472	4,7kΩ					
	R10	57.11.3562	5,6kΩ					
	R11	57.11.3562	5,6kΩ					
	R12	57.11.4222	2,2kΩ					
	R13	57.11.4222	2,2kΩ					
	R14	57.11.4470	47Ω					
	R15	57.11.4222	2,2kΩ					
	R16	57.11.4470	47Ω					
	R17	57.11.4229	2,2Ω					
	R18	57.11.4229	2,2Ω					
	R19	57.11.4229	2,2Ω					
	R20	57.11.4229	2,2Ω					
	R21	57.11.3562	5,6kΩ					
	R22	57.11.4332	3,3kΩ					
	T 1	1.022.218.00	1:1					
	0							

 ${\tt CER=Ceramic,\ PE=Polyester,\ EL=Electrolytic,\ PTC=Pos.\ Temp.\ Coif.,\ PMG=Cermet}$

1.914.505.00 LSP AMPLIFIER 3W (Nr. 5)

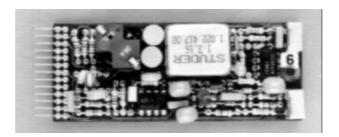
P. Casutt 07/09/83

1.914.505.00 LSP AMPLIFIER 3W (Nr. 5)

① A. Ho 30/11/83

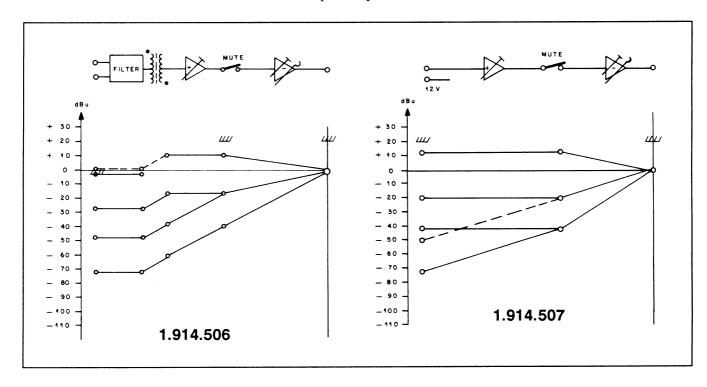
END →

2.1.6 Microphone Pre-Amplifiers


1.914.506/507

Two different microphone pre-amplifiers are available, for dynamic or condenser microphones, and for electret microphones. Both offer high gain and low noise, as is required for microphone pre-amplification.

1.914.506 features a balanced and floating input. It is designed for dynamic or condenser microphones with a source impedance of 200 Ω or less. An RF filter is incorporated at the input transformer's primary. Furthermore, the input is equipped with the resistors required for phantom powering of condenser microphones.


1.914.507 is designed for unbalanced electret microphones requiring a 12 V supply.

A wide range of input levels can be accommodated (see level diagram).

By using the same solid-state switching circuit as can be found in the line and high-level amplifiers, remote muting or activation of a fixed amount of attenuation are possible as well.

The amplifier's two outputs are unbalanced, with impedances of $3.3 \, k\Omega$ or $33 \, \Omega$, respectively.

Technical Specifications

Input: Transformer-balanced and floating, with RF filter (1.914.506)

Unbeloned with RF filter and electrot county (1.914.507)

Unbalanced, with RF filter and electret supply (1.914.507)

Impedance > 1 kW, for microphones with an impedance of 200 Ω or less.

Max. input level -2 dBu (615 mV_{rms}); THD at 30 Hz: approx. 1%

Common mode rejection > 60 dB, unbalanced, to ground

Output: Max. level $+20 \text{ dBu } (7.75 \text{ V}_{rms})$

Nominal level $\mathbf{0}$ **dBu** (0.775 V_{rms})

Impedance 33 W (pin1)

3.3 kW (pin2; to a 0- Ω amp.)

Minimum load 600 W

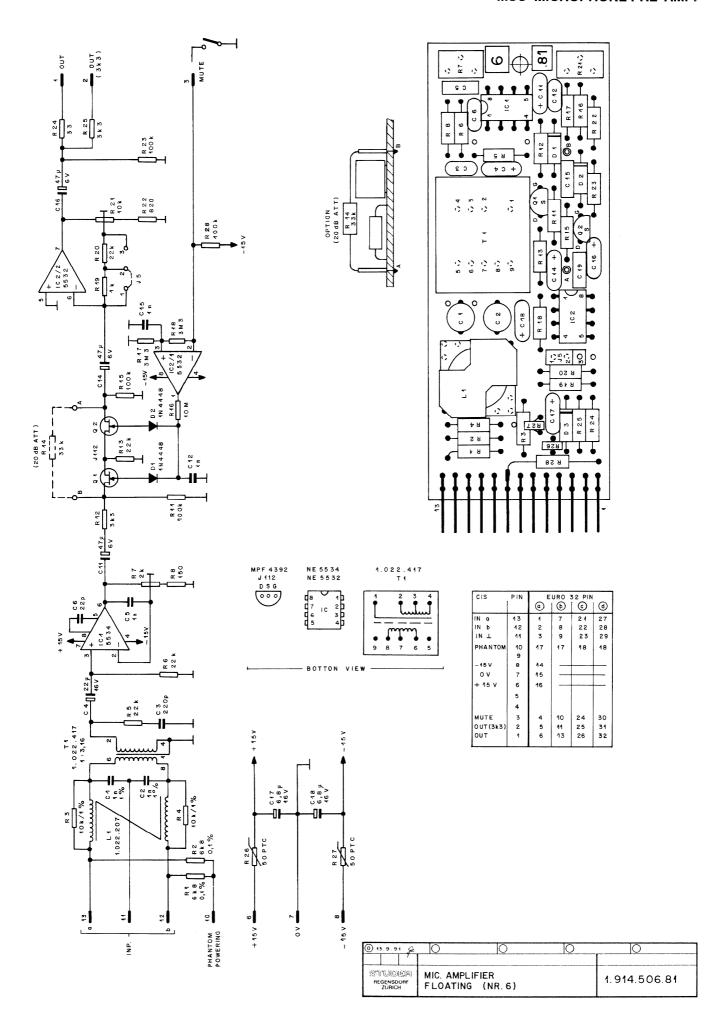
Max. gain 71 dB (see level diagram)
Frequency response ±0.5 dB, 30 Hz...16 kHz

THD < **0.3%**, 30 Hz...16 kHz at 20 dB gain

Noise figure, linear \langle **4.5 dB**, input terminated with 200 Ω

Supply: $\pm 15 \text{ V} (11 \text{ mA idling})$

+48 V (1.914.506, only if phantom powering required)


Dimensions: MS-card, $34 \times 85 \text{ mm}$

Ordering Information:

• Microphone pre-amplifier for dynamic microphones 1.914.506.xx

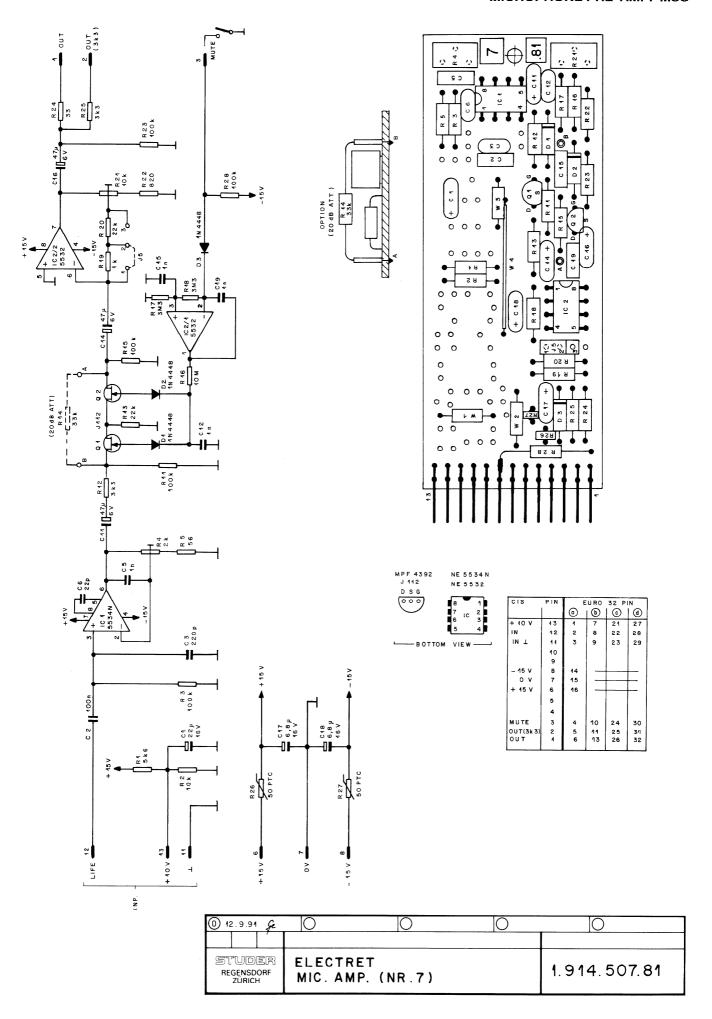
• Microphone pre-amplifier for electret microphones 1.914.507.xx

MSC MICROPHONE PRE-AMP.

MICROPHONE PRE-AMP. MSC

<u>Ad</u>	P0S	REF.No	DESCRIPTION	ON			MANUFACTURER	
	n 1	EQ 0E 1102	1000=	630V 1	10/	PP		
	C1	59.05.1102	1000pF	630V				
	C2	59.05.1102	1000pF	630V	176	PP		
	C3	59.34.4221	220pF	161/		CER		
	C4	59.30.4220	22µF	16V		TA		
	C5	59.06.0102	1000pF			PE		
	C 6	59.34.2220	22pF			CER		
	C11	59.26.0470	47µF	6,3V		SAL		
	C12	59.32.4102	1000pF			CER		
	C13		•					
	C14	59.26.0470	47uF	6,3Y		SAL		
	C15	59.06.0102	1000pF	-,		PE		
	C16	59.26.0470	47µF	6.3V		SAL		
	C17	59.26.2689	6,8µF	167		SAL		
	C18	59.26.2689	6,8µF	16V		SAL		
	C19	59.06.0102	1000pF			PE		
	0	00.00.0102	10000			1.		
	D1	50.04.0125	1N4448					
	D2	50.04.0125	1N4448					
	D3	50.04.0125	1N4448					
	IC1	50.05.0244	NE5534AN		OW NO	ISE OP AMP	SIG	
		50.09.0106					SIG	
	IC 2	30.09.0106	NE5532AN	DUAL L	UW NU	ISE OP AMP	314	
	J 5	54.01.0021		JUMPER	₹			
	L1	1.022.207.00		HF SYM	. COIL		ST	
	P	54.01.0273	13PIN	CIS				
	P (J5)	54.01.0020	PIN	JUMPER	PLUG			
	Q1	50.03.0350	J112	N		N-FET		
	Q 2	50.03.0350	J112	Ñ		N-FET		
	R 1	57.99.0250	6,8kΩ	0,1%				
	R 2	57.99.0250	6,8kΩ	0,1%				
	R3	57.11.3103	10kΩ	1%				
	R 4	57.11.3103	10kΩ	1%				
	R 5	57.11.4123	12kΩ					
	R 6	57.11.4223	22kΩ					
	R7	58.01.9202	2kΩ	POT				
	R8	57.11.4151	150	101				
	N	57.11.4151	150					
	R11	57.11.4104	100kΩ					
	R12	57.11.4332	3,3kΩ					
	R13	57.11.4223	22kΩ					
	R14	57.11.4333	33kΩ	OPTION	AL (20d	IB ATT)		
	R15	57.11.4104	100kΩ					
	R16	57.11.5106	10ΜΩ					
	R17	57.11.5335	3,3ΜΩ	5%				
	R 18	57.11.5335	3,3ΜΩ	5%				
	R19	57.11.4102	lkΩ					
	R 20	57.11.4223	22kΩ					
	n	01.11. 7 220	44.MAG					
	R21	58.01.9103	10kΩ	POT				
	R22	57.11.4821	820Ω					
	R23	57.11.4104	100kΩ					
	R24	57.11.4330	33Ω					
	R25	57.11.4332	3,3kΩ					
	R26	57.99.0206	50Ω	PTC			PH	
	R27	57.99.0206	50Ω	PTC			PH	
	R28	57.11.4104	100kΩ					
	T 1	1.022.417.00	1:3,16	TRAFO			ST	

CER=Ceramic, PE=Polystyrene, SAL=Solid Aluminium, PP=Polypropylen, TA=Tantalum


MANUFACTURER: ST=Studer, SIG=Signetics, PH=Philips

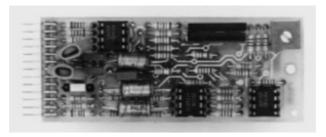
1.914.506.81 MIC. AMPLIFIER, FLOATING (Nr. 6)

FRI 19/04/85

END →

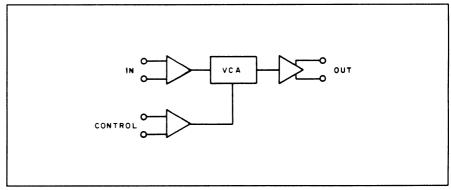
MICROPHONE PRE-AMP. MSC

MICROPHONE PRE-AMP. MSC


Ad	POS	REF.No	DESCRIPTION	ON		MANUFACTURER
		E0 20 4220	22	101	T4	
	C1	59.30.4220	22µF	16V	TA	
	C 2	59.06.5104	0,1µF	63V	PE	
	C3	59.34.4221	220pF		CER	
	C 5	59.06.0102	1000pF		PE	
	C 6	59.34.2220	22pF		CER	
	C11	59.26.0470	47µF	6,37	SAL	
	C12	59.32.4102	1000p		CER	
	C13					
	C14	59.26.0470	47µF	6,3V	SAL	
	C15	59.06.0102	1000pF		PE	
	C16	59.26.0470	47µF	6,37	SAL	
	C17	59.26.2689	6,8µF	16V	SAL	
	C18	59.26.2689	6,8µF	16V	SAL	
	C19	59.06.0102	1000pF		PE	
	D 1	50.04.0125	1N4448			
	D2	50.04.0125	1N4448			
①	D 3	50.04.0125	1N4448			
	IC 1	50.05.0244	NE5534AN	LC	OW NOISE OP AMP	SIG
	IC2	50.09.0106	NE5532AN	DUAL LO	OW NOISE OP AMP	SIG
	J 5	54.01.0021		JUMPER		
	P	54.01.0273	13PIN	CIS		
	P (J5)	54.01.0020	PIN	JUMPER	PLUG	
	/					
	Q1	50.03.0350	J112	N-FET		
	Q2	50.03.0350	J112	N-FET		
	R 1	57.11.4562	5,6kΩ			
	R2	57.11.4103	10kΩ			
	R3	57.11.4104	100kΩ			
	R4	58.01.9202	2kΩ	POT		
	R5	57.11.4560	56Ω			
	D 11	E7 11 4104	1001-0			
	R 11	57.11.4104	100kΩ			
	R12	57.11.4332	3,3kΩ			
	R13	57.11.4223	22kΩ			
	R14	57.11.4333	33kΩ	OPTION	AL (20db att)	
	R15	57.11.4104	100kΩ			
	R 16	57.11.5106	10ΜΩ	/		
	R17	57.11.5335	3,3ΜΩ	5%		
	R 18	57.11.5335	3,3MΩ	5%		
	R19	57.11.4102	lkΩ			
	R20	57.11.4223	22kΩ			
	R21	58.01.9103	10kΩ	POT		
	R22	57.11.4821	820Ω			
	R23	57.11.4104	100kΩ			
	R24	57.11.4330	33Ω			
	R25	57.11.4332	3,3kΩ			
	R26	57.99.0206	50Ω	PTC		PH
	R27	57.99.0206	50Ω	PTC		PH
	R28	57.11.4104	100kΩ			
•	M 1	E7 11 4000		00 !	INIV	
0	W1	57.11.4000 57.11.4000			INK INK	
0	W2	57.11.4000			INK	
①	W3	57.11.4000			INK	
0	W4			WIRE		
CER	=Ceramic, Pl	E=Polystyrene, SAL	=Solid Aluminiu	ım, TA=Ta	ntalum	
MAN	HEACTHRED.	SIG=Signetics, Ph	IPhilipe			
111111	OTHOTONEN:	o.u-oigiiciica, FF	mmpə			
		1.914.507.81 EL	ECTRET MIC AN	IP (Nr. 7)		FRI 19/04/85
		1.914.507.81 EL	ECTRET MIC AN	IP (Nr. 7)		① FRI 14/10/85
		1.017.007.01 EL	LOTINET MILO AN	(111.77		₩ 1M 17/10/00

END →

2.1.7 VCA with Electronically Balanced Connections


1.914.515

In contrast to the VCA 1.914.518/528 (chapter 2.1.8), this assembly features an electronically balanced input and output.

It is intended for use in balanced audio systems for a variety of applications, especially when gain is to be controlled from a remote point. It will be useful in audio-video post-production work where suitable DC ramps can control cross-fades, voice-overs, etc. Its high overload margin and its exceptionally low noise and distortion performance make it the perfect choice for high-quality audio applications.

By connecting the gain control terminals of a number of VCAs to a common potentiometer or fader, several audio channels may thus be controlled simultaneously.

Two control inputs provide VCA gain control from two different remote points

Technical Specifications

Input: Impedance 3 10 kW, electronically balanced

Clipping point +24 dBu

Output: Electronically balanced

Recommended load 3 2 kW
Maximum level +24 dBu

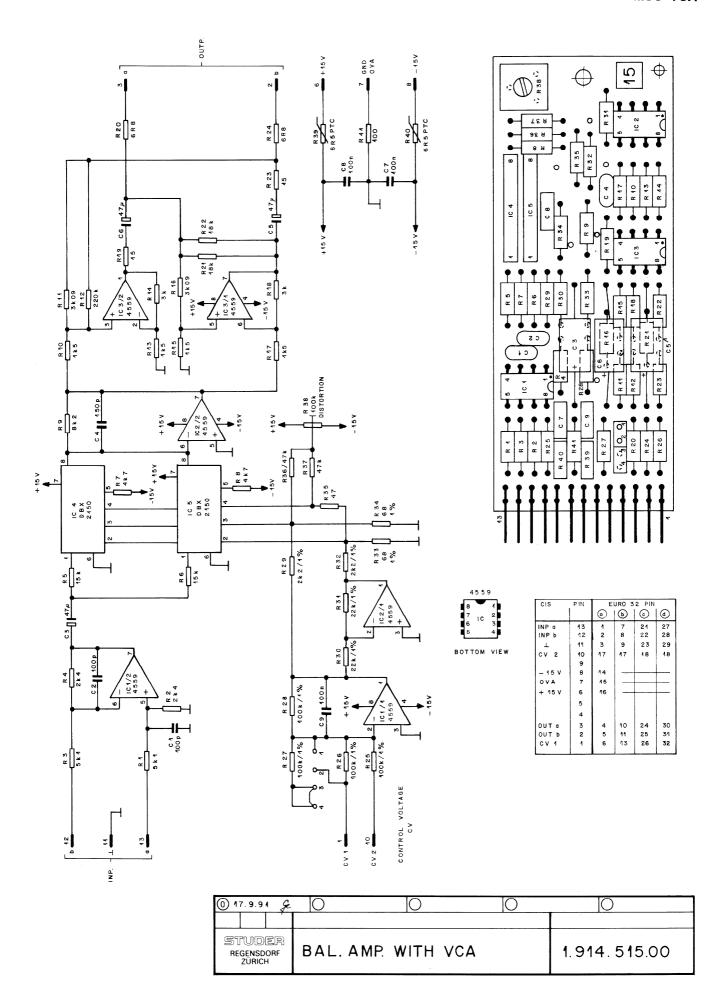
Frequency response -0.5 dB, 30 Hz...15 kHz

Gain/attenuation range +40...-100 dB, with ext. control

Control input: pin1; gain tracking 0 V = unity gain;

1 dB/μA; jumper 1-2 20 dB/V; jumper 2-3 10 dB/V; jumper 3-4

Control input: pin10; gain tracking 10 dB/V

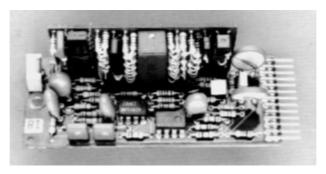

THD < 0.1%

Equivalent input noise -93 dBu @ unity gain

Supply: $\pm 15 \text{ V} (25 \text{ mA})$

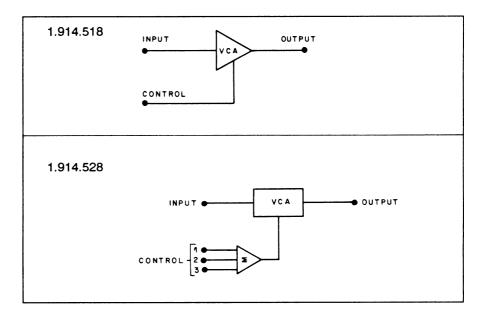
Dimensions: MS-card, $34 \times 85 \text{ mm}$

Ordering Information: VCA with electronically balanced input and output 1.914.515.xx



Ad	POS	REF.No	DESCRIPT	ION	MANUFACTURER
	C1	59.34.4101	100 pF	CER	
	C2	59.34.4101	100 pF	CER	
	C3	59.25.3470	47 uF	ALU	
	C4	59.34.4151	150 pF	CER	
	C5	59.25.3470	150 pF 47 uF	ALU	
	C6	59.25.3470	47 uF	ALU	
	C7	59.06.5104	100 nF	PE	
	C8	59.06.5104	100 nF	PE	
	C9	59.06.5104	100 nF	PE	
	JS1	54.01.0020		JUMPER PLUG 4-PIN	
	JP1	54.01.0021		JUMPER JACK	
	IC1	50.09.0107	RC4559	dual op. amp.	Ra.NE
	IC2	50.09.0107	RC4559	dual op. amp.	Ra.NE
	ĬC3	50.09.0107	RC4559	dual op. amp.	Ra, NE
	TC A	50.11.0140	2150A	VCA	DBX
	IC4 IC5	50.11.0140	2150A	VCA	DBX
	105	30.11.0140	2130A	VCA	DDA
	P1	54.01.0273	13 PIN	CIS	
	n 1	E7 11 2510	E 1 LOL	10. 0.0511 HE	
	R1	57.11.3512	5.1 kOhm	1% 0.25W MF	
	R2	57.11.3242	2.4 kOhm	1% 0.25W MF	
	R3	57.11.3512	5.1 kOhm	1% 0.25W MF	
	R4	57.11.3242	2.4 kOhm	1% 0.25W MF	
	R5	57.11.3153	15 kOhm	1% 0.25₩ MF	
	R6	57.11.3153	15 kOhm	1% 0.25W MF	
	R7	57.11.4472	4.7 kOhm	5% 0.25W MF	
	R8	57.11.4472	4.7 kOhm	5% 0.25W MF	
	R9	57.11.3822	8.2 kOhm	1% 0.25W MF	
	R10	57.11.3152	1.5 kOhm	1% 0.25W MF	
	R11	57.39.3091	3.09kOhm	1% 0.25W MF	
	R12	57.11.4224	220 kOhm	2% 0.25W MF	
	R13	57.11.3152	1.5 kOhm	1% 0.25W MF	
	R14	57.11.3302	3.0 kOhm	1% 0.25W MF	
	R15	57.11.3152	1.5 kOhm	1% 0.25W MF	
	R16	57 30 3001	3.09k0hm	1% 0.25W MF	
	D 17	57.39.3091 57.11.3152	1.5 kOhm		
	R17	57 11 2202	3.0 kOhm		
	R18	57.11.3302		1% 0.25W MF	
	R19	57.11.3150 57.11.3689	15 Ohm	1% 0.25W MF	
	R20	57.11.3089	6.8 Ohm	1% 0.25W MF	
	D 21	E7 11 2102	10 LAL-	1% 0.25W MF	
	R21 R22	57.11.3183	18 kOhm 18 kOhm	1% 0.25W MF 1% 0.25W MF	
	D 22	57.11.3183		1% 0.25W MF	
	R23	57.11.3150	15 Ohm	1% 0.25W MF 2% 0.25W MF	
	R24	57.11.3689	6.8 Ohm		
	R25	57.11.3104	100 k0hm	1% 0.25W MF	
	R26	57.11.3104 57.11.3104	100 kOhm	1% 0.25W MF	
	R27	57.11.3104	100 k0hm	1% 0.25W MF	
	R28	57.11.3104	100 kOhm	1% 0.25W MF	
	R29	57.11.3222	2.2 kOhm	1% 0.25W MF	
	R30	57.11.3223	22 kOhm	1% 0.25W MF	
	R31	57.11.3223	22 kOhm	1% 0.25W MF	
	R32	57.11.3222	2.2 kOhm	1% 0.25W MF	
	R33	57.11.3680	68 Ohm	1% 0.25W MF	
	R34	57.11.3680	68 Ohm	1% 0.25W MF	
	R35	57.11.4470	47 Ohm	2% 0.25W MF	
	R36	5/.11.44/3	47 k0hm	2% 0.25W MF	
	R37	57.11.4473	47 k0hm	2% 0.25W MF	
	R38	58.01.8104	100 k0hm	10% 0.5 W PMG	trimming resistor
	R39	57.92.1271	6.5 Ohm	PTC	Philips Nr.2322 662 12711
01	R39	57.92.7013	0.75 Ohm	I-Hold O.5A	R-PTC
	R40	57.92.1271	6.5 Ohm	PTC	Philips Nr.2322 662 12711
01	R40	57.92.7013	0.75 Ohm	I-Hold 0.5A	. R-PTC
	R41	57.11.4101	100 Ohm	2% 0.25W MF	
(01) 89/11/0	2 - Improveme	nt of distan	ce PTC - R	
CER	=Ceramic,	PE=Polyester,	SAL=Solid A	Juminium	
Mr=	metal fil	m, PMG=Cermet			
MAN	UFACTURER	: Ex=Exar. NF=	NEC. Ph=Phil	ips, Ra=Raytheon,	
		Sig=Signetic	s, St=Studer	',	
		1.914.515.00	BAL AMP WIT	H VCA	SE 87/07/0100
		1.914.515.00	BAL AMP WIT	H VCA	TA 89/11/0201

2.1.8 VCA with 1 or 3 Control Ports


1.914.518/528

Within the range of modular sub-cards, two more VCAs are available. Voltage controlled amplifiers are ideally suited for applications such as remote level control, level limiting (in combination with the voltage processor 1.914.519) or for automatic "voice-over" circuits, when driven by suitable ramp generators. These VCAs offer outstandingly low noise and harmonic distortion.

For best performance, they should be operated at a level of 0 dBu. Gain pre-selection is possible on the 1.914.518 version, allowing gain/attenuation ranges either from +10 to -90 dB or from +40 to -70 dB, using an external potentiometer.

The 1.914.528 VCA card differs in that it is equipped with three external control inputs, providing gain control from three different locations.

Technical Specifications

Input: Impedance > 3 kW

Clipping point +20 dBu

Output: Impedance 33 W or 3.3 kW, selectable

Max. level +20 dBuRecommended load $^3 2 \text{ kW}$

Frequency response -0.5 dB, 30 Hz...16 kHz

External gain control +40...-90 dB (1.914.518.xx)

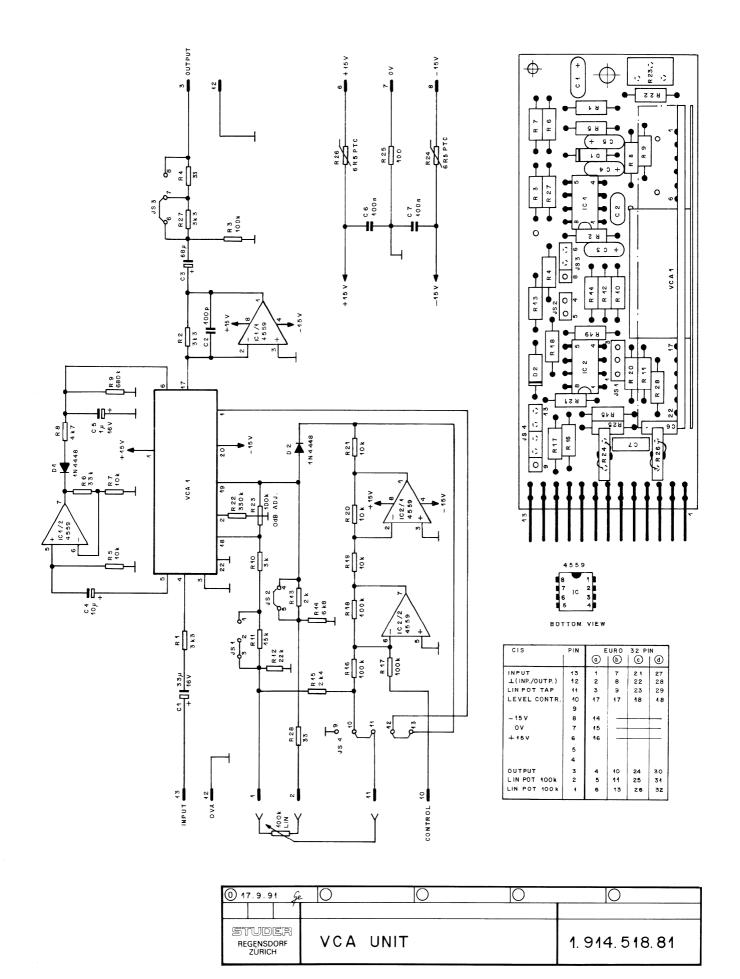
+40...-100 dB (1.914.528.xx)

Gain/attenuation range (pot. meter) +40...-60 dB / +10...-70 dB / +10...-90 dB (1.914.518.xx only, jumper-

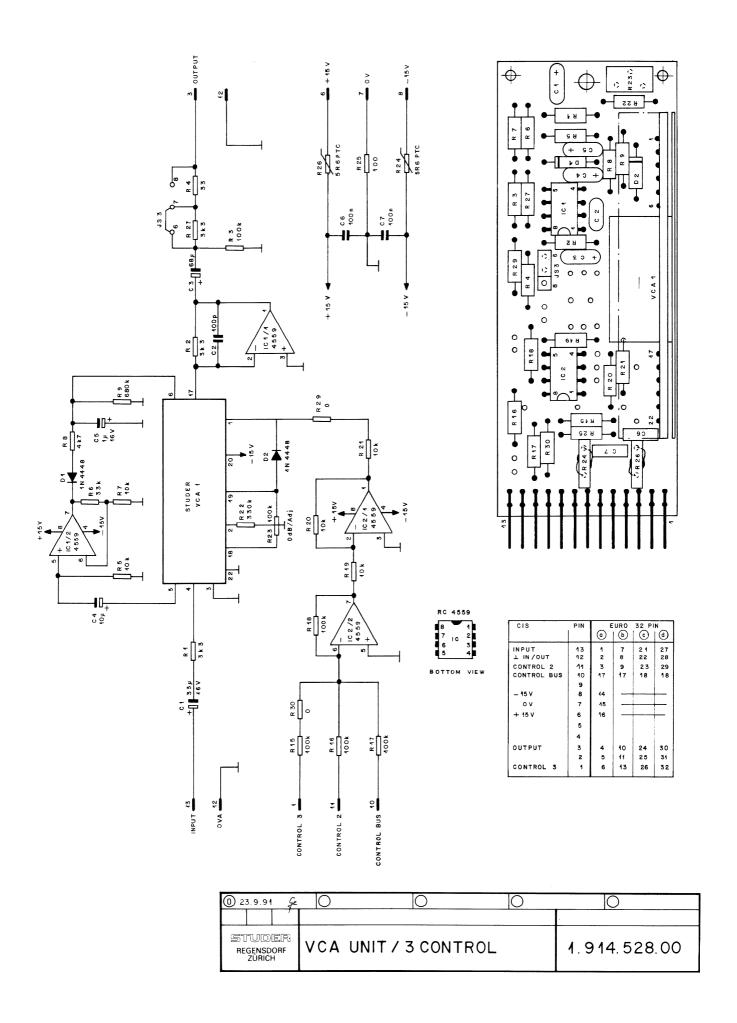
selectable)

Gain tracking 10 dB/V

THD < 0.1%


Equivalent input noise -102 dBu

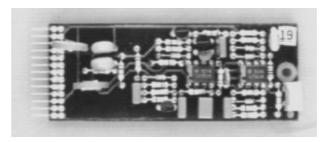
Supply: $\pm 15 \text{ V} (40 \text{ mA})$


Dimensions: MS-card, $34 \times 85 \text{ mm}$

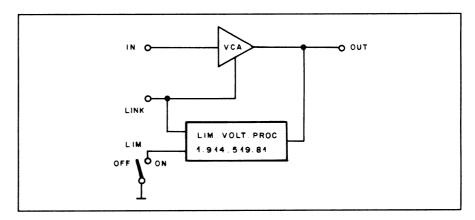
Ordering Information: Voltage controlled amplifier with 1 control port 1.914.518.xx

Voltage controlled amplifier with 3 control ports 1.914.528.xx

<u>Ad</u>	POS	REF.No	DESCRIPT	ION	MANUFACTURER
	A1	1.010.110.50		Studer VCA	St
01	A1	1.911.290.00		VCA-BOARD	St
02	A1	1.911.290.81		VCA BOARD	St
	C1 C2 C3 C4 C5 C6 C7	59.26.1330 59.34.4101 59.26.0680 59.26.2100 59.26.9109 59.06.5104 59.06.5104	33 uF 100 pF 68 uF 10 uF 1 uF 100 nF	SAL CER SAL SAL PE PE	
	D1 D2	50.04.0125 50.04.0125	1N4448 1N4448		any any
	JS2 JS3 JS4	54.01.0020 54.01.0020 54.01.0020 54.01.0020		JUMPER PLUG 3-PIN JUMPER PLUG 2-PIN JUMPER PLUG 3-PIN JUMPER PLUG 5-PIN	
	JP2 JP3 JP4	54.01.0021 54.01.0021 54.01.0021 54.01.0021		JUMPER JACK JUMPER JACK JUMPER JACK JUMPER JACK	
	IC1 IC2	50.09.0107 50.09.0107	RC4559 RC4559	dual op. amp. dual op. amp.	Ra , NE Ra , NE
	P1	54.01.0273	13 PIN	CIS	
	R	57.11.4332 57.11.4332 57.11.4104 57.11.4330 57.11.4333 57.11.4333 57.11.4472 57.11.4684 57.11.3302	3.3 kOhm 3.3 kOhm 100 kOhm 33 Ohm 10 kOhm 33 kOhm 10 kOhm 4.7 kOhm 680 kOhm 3.0 kOhm	5% 0.25W MF 5% 0.25W MF	
	R11 R12 R13 R14 R15 R16 R17 R18 R19	57.11.4153 57.11.3242 57.11.3202 57.11.4682 57.11.4104 57.11.4104 57.11.4104 57.11.4103 57.11.4103	15 kOhm 2.4 kOhm 2 kOhm 6.8 kOhm 22 kOhm 100 kOhm 100 kOhm 100 kOhm 10 kOhm 10 kOhm	2% 0.25W MF 2% 0.25W MF 5% 0.25W MF 5% 0.25W MF 2% 0.25W MF	
	R21 R22 R23 R24 R25 R26 R27 R28	57.11.4103 57.11.4334 58.01.9104 57.92.1271 57.11.4101 57.92.1271 57.11.4332 57.11.4330	10 kOhm 330 kOhm 100 kOhm 6.5 Ohm 100 Ohm 6.5 Ohm 3.3 kOhm 33 Ohm	5% 0.25W MF 5% 0.25W MF 10% 0.5 W PMG PTC 5% 0.25W MF PTC 5% 0.25W MF 5% 0.25W MF	trimming resistor Philips Nr.2322 662 12711 Philips Nr.2322 662 12711
(1)	89/01/1	3 A1 VCA 1.0	10.110.50 re	eplaced by 1.911.29	0.00
(2)	90/01/1	7 A1 VCA 1.9	11.290.00 re	eplaced by 1.911.29	0.81
CER MF=	=Ceramic, Metal Fil	PE=Polyester, m, PMG=Cermet	SAL=Solid A	Aluminium Lacquard	
			NEC, Ph=Phil s, St=Studer	lips, Ra=Raytheon,	
		1.914.518.81 1.914.518.81 1.914.518.81	VCA UNIT VCA UNIT VCA UNIT		SE 86/11/0500 SE 89/01/1301 WY 90/01/1702


VCA MSC

Ad	POS	REF.No	DESCRIPT	ION	MANUFACTURER
	A1	1.010.110.50		Studer VCA	St
01	A1	1.911.290.00		VCA-BOARD	St
02	A1	1.911.290.81		VCA-BOARD	St
	C1 C2 C3 C4 C5 C6 C7	59.26.1330 59.34.4101 59.26.0680 59.26.2100 59.26.9109 59.06.5104 59.06.5104	33 uF 100 pF 68 uF 10 uF 1 uF 100 nF	SAL CER SAL SAL PE PE	
	D1 D2	50.04.0125 50.04.0125	1N4448 1N4448		any any
	JS3	54.01.0020		JUMPER PLUG 3-PI	N
	JP1	54.01.0021		JUMPER JACK	
	IC1 IC2	50.09.0107 50.09.0107	RC4559 RC4559	dual op. amp. dual op. amp.	Ra, NE Ra, NE
	P1	54.01.0273	13 PIN	CIS	
	R	57.11.4332 57.11.4333 57.11.4330 57.11.4333 57.11.4103 57.11.4403 57.11.4404 57.11.4104 57.11.4104 57.11.4104 57.11.4104 57.11.4104 57.11.4103 57.11.4103 57.11.4103 57.11.4103 57.11.4103 57.11.4103 57.11.4103 57.11.4103 57.11.4103 57.11.4103 57.11.4103 57.11.4103 57.11.4103 57.11.4103	3.3 kOhm 3.3 kOhm 100 kOhm 33 Ohm 10 kOhm 10 kOhm 10 kOhm 100 ohm 100 ohm	5% 0.25W MF 2% 0.25W MF 0.25W MF 0.25W MF 0% 0.25W MF 0% 0.25W MF 0% 0.25W MF 0% 0.25W MF	trimming resistor Philips Nr.2322 662 12711 Philips Nr.2322 662 12711
	89/01/13 90/01/17		10.110.50 re 11.290.00 re	eplaced by 1.911.2 eplaced by 1.911.2	90.00 90.81
CEI MF	R=Ceramic, =Metal Fil	PE=Polyester, m, PMG=Cermet	SAL=Solid A	Aluminium	
MA	NUFACTURE	R: Ex=Exar, NE= Sig=Signetic		lips, Ra=Raytheon, r,	
		1.914.528.00 1.914.528.00 1.914.528.00	VCA UNIT / VCA UNIT / VCA UNIT /	3 CONTROL	SE 86/10/2800 SE 89/01/1301 WY 90/01/1702


2.1.9 Limiter Voltage Processor

1.914.519

Together with this voltage processor, the VCAs 1.914.518/528 can perform as signal level limiters.

The processor's threshold can be set within a wide range of levels, so that limiting action becomes effective at a desired level within a range of -15 to +15 dBu. Limiting action attacks within 1 ms, whereas release can vary from 50 ms to 5 s, depending on the program's energy content. This means that no audible "pumping" action – which is often associated with such a device – will occur. After the cessation of loud passages, amplification will recover only slowly. For stereo applications, a two-channel set-up (VCAs and voltage processor) can be linked, so that identical amounts of gain reduction will take place simultaneously in both channels.

The input of the voltage processor has to be wired to the output of the VCA. The processor's output, when connected to the VCA's control terminal, will effect the necessary gain reduction so that a limiting characteristic is obtained. The limiting threshold is adjustable in a wide range. Remote on/off switching of the limiter function is possible.

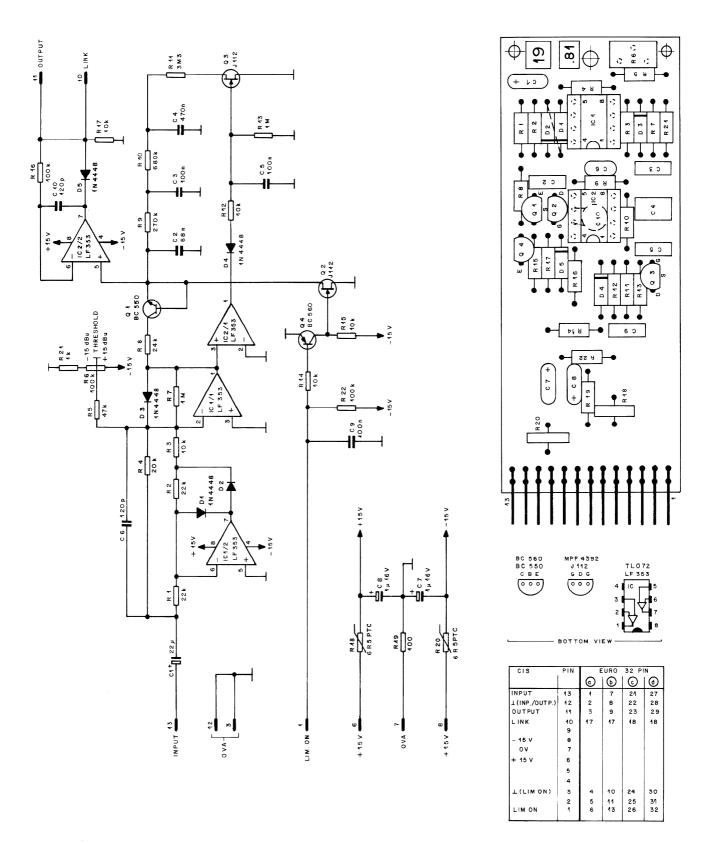
Technical Specifications

Limiter: Input impedance 3 10 kW

Max. input level +20 dBu
Frequency range
Output voltage +20 dBu
30 Hz...16 kHz
0...-13 V_{DC}

Threshold level -15 dBu...+15 dBu

Attack time 1 ms


Release time 50 ms...5 s, program-depending Compression ratio 20:1, in conjunction with a VCA

Supply: $\pm 15 \text{ V} (10 \text{ mA})$

Dimensions: MS-card, $34 \times 85 \text{ mm}$

Ordering Information: Limiter voltage processor 1.914.519.xx

MSC LIMITER

16.9.91 G	0	0	0	0
STUDER REGENSDORF ZÜRICH	LIMITER V			1.914.519.81

MSC LIMITER

AdPOS	REF.No	DESCRIPT	ION		• • • • • • • •		MANUFACTURER
C1	59.26.1220	22 uF			SAL		
C2	59.06.0683	68 nF			PE		
C3 C4	59.06.5104 59.06.5474	100 nF			PE PE		
C5	59.06.5104	470 nF 100 nF			PE		
C6	59.34.4121	120 pF			CER		
C7	59.26.9109	1 uF			SAL		
C8	59.26.9109	1 uF			SAL		
C9	59.06.5104	100 nF			PE		
C10	59.34.4121	120 pF			CER		
D1	50.04.0125	1N4448					any
D2	50.04.0125	1N4448					any
D3	50.04.0125	1N4448					any
D4 D5	50.04.0125	1N4448 1N4448					any
<i>v</i>	50.04.0125	1144440					any
IC1	50.09.0101	TL 072	dual	op. am		noise	NS,TI
IC2	50.09.0101	TL 072	dual	op. am	p. low i	noise	NS,TI
P1	54.01.0273	13 PIN			CIS		
Q1	50.03.0497	BC 550	NPN	IC>100	mA, B>100)	any
Q2	50.03.0350	J 112	N-JFE				NS,Mot,Six
Q3	50.03.0350	J 112	N-JFE		1 D 10		NS,Mot,Six
Q4	50.03.0496	BC 560	PNP	IC>100i	mA, B>100	,	any
R1	57.11.4223	22 kOhm	2%	0.25W	MF		
R2	57.11.4223	22 kOhm	2%	0.25W	MF		
R3	57.11.4103	10 kOhm 20 kOhm	2%	0.25W	MF		
R4 R5	57.11.3203 57.11.4473	47 kOhm	2% 5%	0.25W 0.25W	MF MF		
R6	58.01.9104	100 kOhm	10%	0.50W		mmina	resistor
R7	57.11.4106	1 MOhm	5%	0.25W	MF		
R8	57.11.3243	24 k0hm	5%	0.25W	MF		
R9	57.11.4274	270 kOhm	5%	0.25W	MF		
R10	57.11.4684	680 kOhm	5%	0.25W	MF		
R11	57.11.4335	3.3 MOhm	5%	0.25W	MF		
R12	57.11.4103	10 k0hm	5%	0.25W	MF		
R13 R14	57.11.4105	1 MOhm	5%	0.25W	MF		
R15	57.11.4103 57.11.4103	10 kOhm 10 kOhm	5% 5%	0.25W 0.25W	MF MF		
R16	57.11.4103	100 kOhm	5%	0.25W	MF		
R17	57.11.4103	10 kOhm	5%	0.25W	MF		
R18	57.92.1271	6.5 Ohm	- •			hilips	Nr.2322 662 12711
R19	57.11.4101	100 Ohm	5%	0.25W	MF		
R20	57.92.1271	6.5 Ohm			PTC P	hilips	Nr.2322 662 12711
R21	57.11.4102	1 kOhm	5%	0.25W	MF		
R22	57.11.4104	100 k0hm	5%	0.25W	MF		

CER=Ceramic, PE=Polyester, SAL=Solid Aluminium MF=Metal Film, PMG=Cermet

MANUFACTURER: Mot=Motorola, NS=National Semiconductors Six=Siliconix, TI=Texas Instruments

1.914.519.81 LIM VOLTAGE PROCESSOR

WM 86.21.1100

2.1.10 1900 Hz Signal Generator

1.914.520

This signal generator produces a stable frequency of 1900 Hz to establish communication on outside broadcast lines, as specified in the EBU/CCIR recommendations.

Technical Specifications

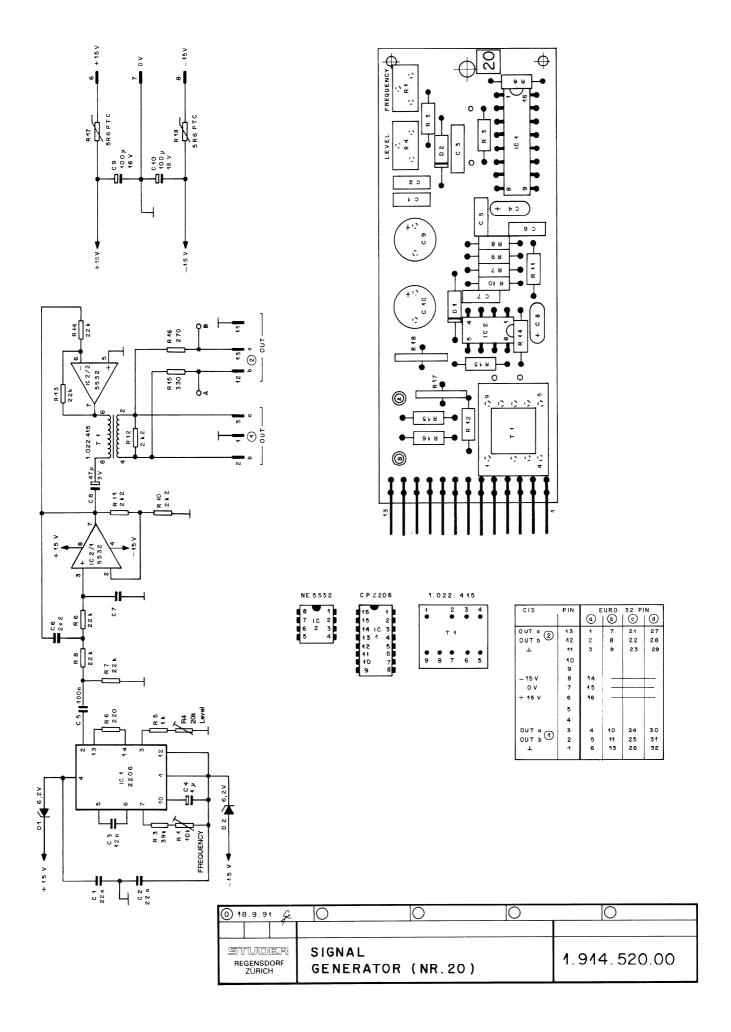
Frequency 1900 Hz (adjustable)

Distortion < 1%

Output level -15...+6 dBu (adjustable)
Output balanced and floating

Output Impedance, out 1 < 15 W

out 2 600 W


Minimum load 200 W

Supply: $\pm 15 \text{ V} (20 \text{ mA})$

Dimensions: MS-card, $34 \times 85 \text{ mm}$

Ordering Information: 1900 Hz signal generator 1.914.520.xx

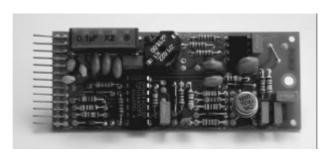
MSC 1900 HZ GENERATOR

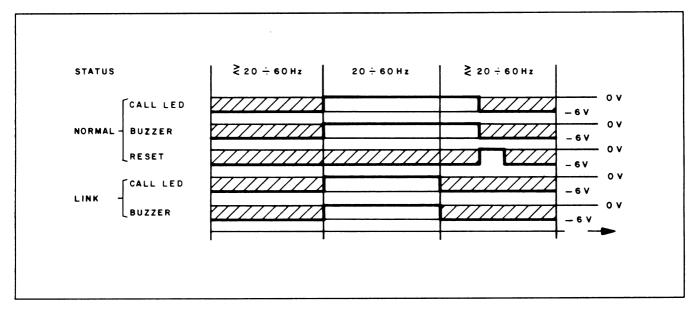
MSC 1900 HZ GENERATOR

Ad	PO\$	REF.No	DESCRIPTION	DNMANUFACTU	RER
	C	59.06.0223 59.06.0223 59.99.0220 59.26.9109 59.06.0104 59.06.5222 59.06.5222 59.06.5222 59.06.222 4101 59.22.4101 59.22.4101	0,022µF 0,022µF 0,012µF 1µF 0,1µF 2200pF 2200pF 47µF 100µF 6,2V	PE P	
	D2	50.04.1511	6,2 V	1,3W Zener	
	IC1 IC2	50.11.0108 50.09.0105	2206CP NE5532	DIL 16 DIP 8 SIG	EX /EX
	P	54.01.0273	13P	CIS	AMP
	R1 R3	58.01.9103 57.11.4393	10kΩ 39kΩ	TRIM	
	R 4	58.01.9203	20kΩ	TRIM	
①	R 5 R 6	57.11.4102 57.11.4221	1kΩ 220Ω		
v	R 7	57.11.4223	22kΩ		
	R 8	57.11.4223	22kΩ		
	R9	57.11.4223	22kΩ		
	R10	57.11.4222	2,2kΩ		
	R11	57.11.4222	2,2kΩ		
	R12	57.11.4222	2,2kΩ		
	R13	57.11.4223	22kΩ		
	R 14	57.11.4223	22kΩ		
1	R15	57.11.4331	330Ω		
O	R16	57.11.4271	270Ω		
	R17	57.99.0209	5,6Ω	2322 662 91005	PH
	R18	57.99.0209	5,6Ω	2322 662 91005	PH
	T1	1.022.415.00	1:2		ST
PE=	Polyester, SA	L=Solid Aluminium	ı, EL=Electrolyti	С	

 ${\bf MANUFACTURER:\ EX=Exar,\ SIG=Signetics,\ ST=Studer,\ PH=Philips}$

1.914.520.00 SIGNAL GENERATOR (Nr. 20) P. Casutt 14/07/83 1.914.520.00 SIGNAL GENERATOR (Nr. 20) ① FRI 01/09/83


END →



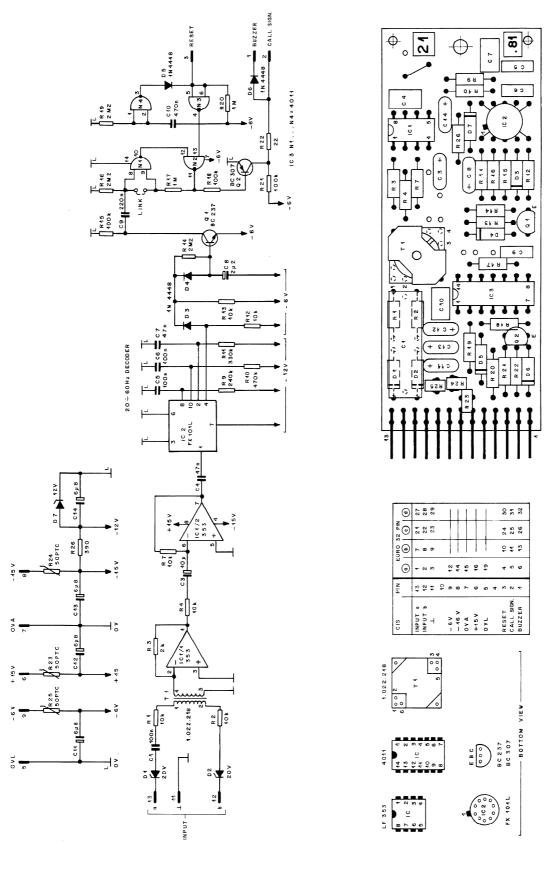
2.1.11 Call Decoder 20...60 Hz

1.914.521

This assembly features a call receiver for the ringing frequency on telephone lines (20...60 Hz). The receiver can activate an optical and/or an acoustical signal generated by an external buzzer (not supplied). In normal mode the buzzer will be on until reset. In linked mode the signal lasts only as long as a call is detected.

Technical Specifications

Input: balanced, floating; no DC


 $\begin{array}{ll} \text{Impedance} & > 20 \text{ kW} \\ \text{Frequency} & 20...60 \text{ Hz} \\ \text{Min. level} & 17 \text{ V}_{rms} \\ \text{Nominal level} & 70 \text{ V}_{rms} \end{array}$

Supply: +15 V (5 mA); -15 V (10 mA); -6 V (2 mA)

Dimensions: MS-card, $34 \times 85 \text{ mm}$

Ordering Information: Call decoder 20...60 Hz 1.914.521.xx

CALL DECODER MSC

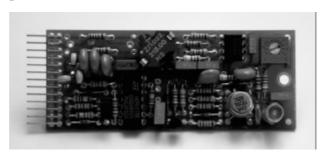
1 21.9.91 Ge	0	0	0	<u> </u>
STUDER REGENSDORF ZÜRICH	20 ÷ 60 DECODE	Hz R (NR.21)		1.914.521.00

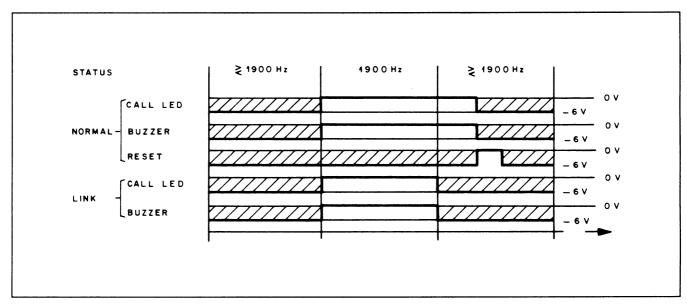
MSC CALL DECODER

Ad	POS	REF.No	DESCRIPTION	ON		MANUFACTURER
	C1	59.99.0453	0.1	250V Rifa	MP	
	C3	59.26.2100	0,1µF	250V KIII		
	C4	59.06.5474	10µF	104	SAL	
	C 5		0,47µF		PE	
	C6	59.06.5104	0,1µF		PE	
	C7	59.06.5104 50.06.5474	0,1µF		PE	
	C8	59.06.5474 59.26.5229	0,47µF	2EV	PE	
		59.26.5229	2,2µF	25V	SAL	
	C9 C10	59.06.0224	0,22µF		PE	
	C IV	59.06.5474	0,47µF		PE	
	C11	59.26.2689	6,8µF	16V	SAL	
	C12	59.26.2689	6,8µF	167	SAL	
	C13	59.26.2689	6,8µF	16 V	SAL	
	C14	59.26.2689	6,8µF	16V	SAL	
	D 1	50.04.1109	20 V	400mW Zener		
	D2	50.04.1109	20V	400mW Zener		
	D3	50.04.0125	1N4448			
	D4	50.04.0125	1N4448			
	D5	50.04.0125	1N4448			
	D6	50.04.0125	1N4448			
	D 7	50.04.1117	12 V	400mW Zener		
	IC 1	50.09.0101	LF353N	DIP 8		
	IC 2	50.07.0032	FX101L			CML
•	IC 3	50.07.1011	4011BPC	DIL 14		J.//L
	P	54.01.0273	13P	CIS		
	Q 1	50.03.0436	BC237B	NPN		
	Q 2	50.03.0515	BC307B	PNP		
	R 1	57.11.4103	10kΩ			
	R 2	57.11.4103	10kΩ			
1	R3	57.11.3202	2kΩ			
	R4	57.11.4103	10kΩ			
_	R7	57.11.4103	10kΩ			
2	R9	57.11.3244	240kΩ			
	R10	57.11.4474	470kΩ			
	R11	57.11.4334	330kΩ			
	R12	57.11.4103	10kΩ			
	R13	57.11.4103	10kΩ			
1	R 14	57.11.5225	2,2ΜΩ			
	R15	57.11.4104	100kΩ			
1	R16	57.11.5225	2,2ΜΩ			
	R17	57.11.4105	lMΩ			
	R18	57.11.4104	100kΩ			
1	R19	57.11.5225	2,2ΜΩ			
	R20	57.11.4105	lMΩ			
	R21	57.11.4104	100kΩ			
	R22	57.11.4220	22Ω			
	R23	57.99.0206	50Ω	PTC - 2322	660 91008 Philips	
	R24	57.99.0206	50Ω	PTC Typ Y	S 822 ITT	
	R25	57.99.0206	50Ω	PTC L PTH 6	60BD 470M 050 Murata	
	R26	57.11.4391	390Ω			
	T 1	1.022.218.00	1:1			ST

PE=Polyester, SAL=Solid Aluminium

MANUFACTURER: CML=Consumer Microcircuit LTD, ST=Studer


END →


2.1.12 Call Decoder 1900 Hz

1.914.522

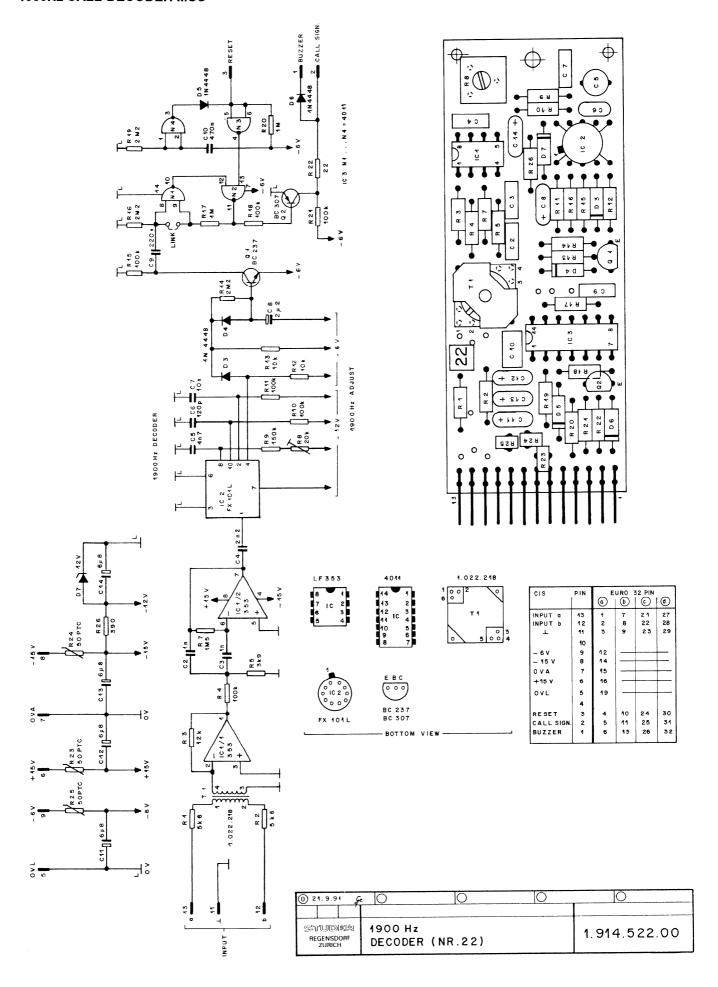
This card contains a call receiver for the standardized 1900 Hz call frequency on OB lines. It is tuned to respond to 1900 Hz ± 1 %. The receiver can be switched either to activate an optical or an acoustical signal for the duration of the 1900 Hz call (linked mode), or the acoustical signal can be selected to remain activated until reset (normal mode).

The acoustical signal can be generated by an external buzzer (not supplied).

Technical Specifications

Input: balanced, floating; no DC

Frequency $1900 \text{ Hz}, \pm 1\%$ Impedance > 10 kWMin. level -30 dBuNominal level +24 dBu


Supply: +15 V (5 mA); -15 V (10 mA); -6 V (2 mA)

Insulation rating $500 V_{DC}$

Dimensions: MS-card, $34 \times 85 \text{ mm}$

Ordering Information: Call decoder 1900 Hz 1.914.522.xx

1900Hz CALL-DECODER MSC

Description

ldx. Pos.

Part No. Qty. Type/Val.

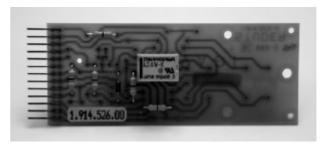
Call Decoder 1900 Hz 1.914.522.00 (1)

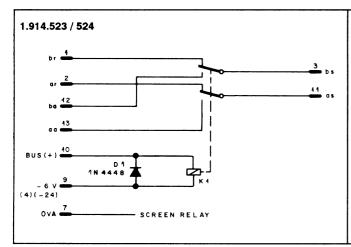
Page: 1 of 1

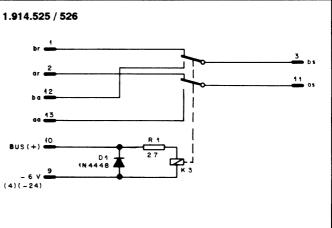
ldx.	Pos.	Part No.	Qty.	Type/Val.	Description
0	C 2	E0 06 0100		1.00	PETP, 63V, 10%, RM5
0	C 3	59.06.0102 59.06.0102		1n0 1n0	PETP, 63V, 10%, RM5
0	C 4	59.06.0102		2n2	PETP, 63V, 10%, RM5
0	C 5			4n7	PP, 2.5%, 63V
0	C 6	59.05.2472			CER 63V, 5%, N750
0	C 7	59.34.4121		120p 10n	PETP, 63V, 10%, RM5
0	C 8	59.06.0103 59.26.5229		2u2	SAL, 20%, 25V
0	C 9	59.06.0224		220n	PETP, 63V, 10%, RM5
0	C 10	59.06.5474		470n	PETP, 63V, 10%, RM5
0	C 10	59.26.2689		6u8	SAL 16V 20%
0	C 12	59.26.2689		6u8	SAL 16V 20%
0	C 12	59.26.2689		6u8	SAL 16V 20% SAL 16V 20%
0	C 14	59.26.2689		6u8	SAL 16V 20%
0	D 3 D 4	50.04.0125		1 N4448	75V, 150mA, 4ns, DO-35
0	D 4 D 5	50.04.0125		1 N4448	75V, 150mA, 4ns, DO-35
		50.04.0125		1N4448	75V, 150mA, 4ns, DO-35
0	D 6	50.04.0125		1 N4448	75V, 150mA, 4ns, DO-35
0	D 7	50.04.1117		12V	Zener, 5%, 0.5W, DO-35
0	IC 1	50.09.0101		TL072	Dual op-amp biFET
0	IC 2	50.07.0032		FX101	IC FX-101 L, ,A
1	IC 3	50.07.1011		4011	Quad 2-inp NAND
0	P 1	54.01.0273		13p	Stecker CIS parallelsteck
0	Q 1	50.03.0515		BC307B	PNP 100mA 45V
0	Q 2	50.03.0436		BC237B	NPN 100mA 45V
0	R 1	57.11.3562		5k6	MF, 1%, 0207
0	R 2	57.11.3562		5k6	MF, 1%, 0207
0	R 3	57.11.3123		12k	MF, 1%, 0207
0	R 4	57.11.3104		100k	MF, 1%, 0207
0	R 5	57.11.3392		3k9	MF, 1%, 0207
0	R 7	57.11.5155		1 M5	MF, 5%, 0207
0	R 8	58.01.8203		20k	Cermet, 10%, 0.5W, horizontal
0	R 9	57.11.3154		150k	MF, 1%, 0207
0	R 10	57.11.3104		100k	MF, 1%, 0207
0	R 11	57.11.3104		100k	MF, 1%, 0207
0	R 12	57.11.3103		10k	MF, 1%, 0207
0	R 13	57.11.3103		10k	MF, 1%, 0207
0	R 14	57.11.5225		2M2	MF, 5%, 0207
0	R 15	57.11.3104		100k	MF, 1%, 0207
1	R 16	57.11.5225		2M2	MF, 5%, 0207
0	R 17	57.11.3105		1 M0	MF, 1%, 0207
0	R 18	57.11.3104		100k	MF, 1%, 0207
1	R 19	57.11.5225		2M2	MF, 5%, 0207
0	R 20	57.11.3105		1 M0	MF, 1%, 0207
0	R 21	57.11.3104		100k	MF, 1%, 0207
0	R 22	57.11.3220		22R	MF, 1%, 0207
0	R 23	57.99.0206		50R	PTC, 25V, 0.5W
0	R 24	57.99.0206		50R	PTC, 25V, 0.5W
0	R 25	57.99.0206		50R	PTC, 25V, 0.5W
0	R 26	57.11.3391		390R	MF, 1%, 0207
0	T 1	1.022.218.00		1:1	EINGANGSTRAFO 1:1

End of List

Comments


(01) IC3, R16, R19 changed

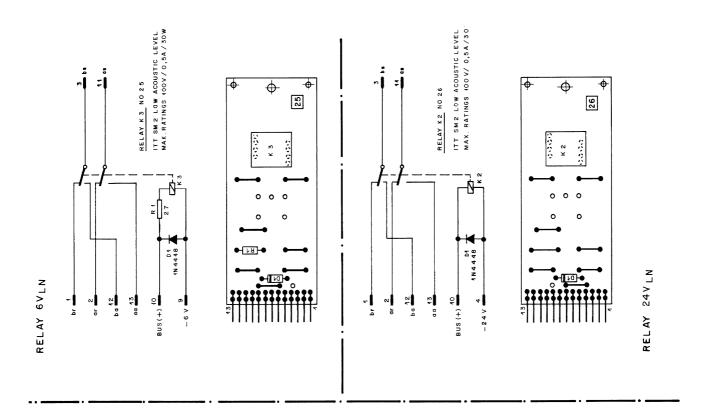

2.1.13 Relay Sub-Cards

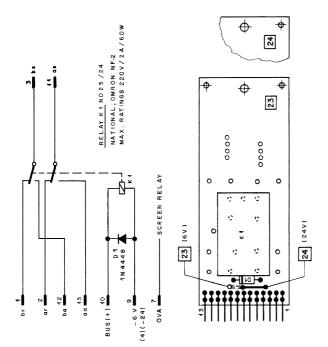

1.914.523/524/525/526

Audio signal routing or enabling/disabling of certain circuit sections is often effected best using relays. The Modular Sub-Card System, therefore, offers a selection of four relays on individual circuit boards. Because only one relay can be accommodated on one MS-Card, several cards (or a card from the Euro-card range) will be required if more complex switching has to be realized.

The relays offer double pole/double throw switching with non-shorting contacts, and coils rated for either $6\,V_{DC}$ or $24\,V_{DC}$ operation. A diode is wired across the relay coil in all versions to suppress interfering back-EMF when de-energizing the relay.

For studio applications where the mechanical click produced by the relay's armature is objectionable, a low-noise type is available.

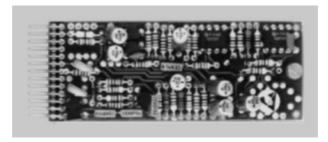

No.	Coil	Contact Rating					
1.914.523	$6 \text{V}_{\text{DC}} / 137 \Omega$	220 V / 2 A / 60 W					
1.914.524	$24~\text{V}_{DC}$ / $2.0~\text{k}\Omega$	220 V / 2 A / 60 W					
* 1.914.525	5 V _{DC} / 135 Ω	100 V / 0.5 A / 30 W	(R1 = 27 Ω for 6 V operation)				
* 1.914.526	$24 \text{ V}_{DC} / 2.6 \text{ k}\Omega$	100 V / 0.5 A / 30 W	$(R1 = 0 \Omega)$				
* Low-noise re	* Low-noise relays						


Dimensions: MS-card, $34 \times 85 \text{ mm}$

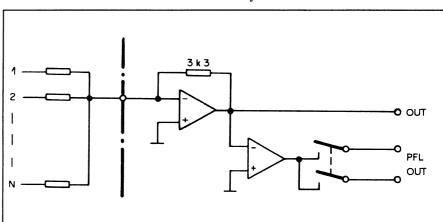
Ordering Information:MSC relay 6 V_{DC} 1.914.523.xxMSC relay 24 V_{DC} 1.914.524.xx

MSC relay 6 V_{DC} ; low-noise 1.914.525.xx MSC relay 24 V_{DC} ; low-noise 1.914.526.xx

MSC RELAYS


cis	Z Z	(EURO	35	٠.
		9	9	ં	Э
0 0	13	-	7	21	2.7
D Q	12	2	80	22	28
3 D	÷	ю	6	23	59
BUS	10	17	47	18	8
> 9 I	Ф	12			1
	80				
	7				
	9				
	'n				
- 24 V	4	20			
p s	ю	4	9	24	30
ar	2	S	;	25	3.4
þr	•	9	5	26	32
					ĺ

(10.91 g	0	0)	0
				24V L N	1. 914. 526.00
STUDER	RELAY BOARD	2 U	6 V L N	1. 914 . 525. 00	
REGENSDORF			24V	1. 914.524.00	
ZÜRICH				6 V	1.914.523.00


2.1.14 $0-\Omega$ Input Amplifier with PFL Facility

1.914.530

This amplifier with its characteristic input impedance of less than $1\,\Omega$ finds its application as a summing amplifier. A multitude of unbalanced sources can thus be mixed with a high degree of effective isolation between the individual inputs.

When using $3.3~k\Omega$ resistors as combining (mixing) resistors in series with each source feeding the summing bus, gain will be unity (0 dB), i.e., the amplifier's output level will be equal to the level of the signal source ahead of the combining resistor. The amplifier's output is unbalanced, with low impedance. Additional outputs for monitoring (or pre-listening) can be activated via solid-state switches by remote control.

Technical Specifications

Input: Max. current 2.5 mA_{rms} for max. output swing

Current for 0 dBu 234.2 μ A; 0 dBu output ($\stackrel{\triangle}{=}$ 3.3 k Ω at the input for unity gain)

Output: Impedance 33 W

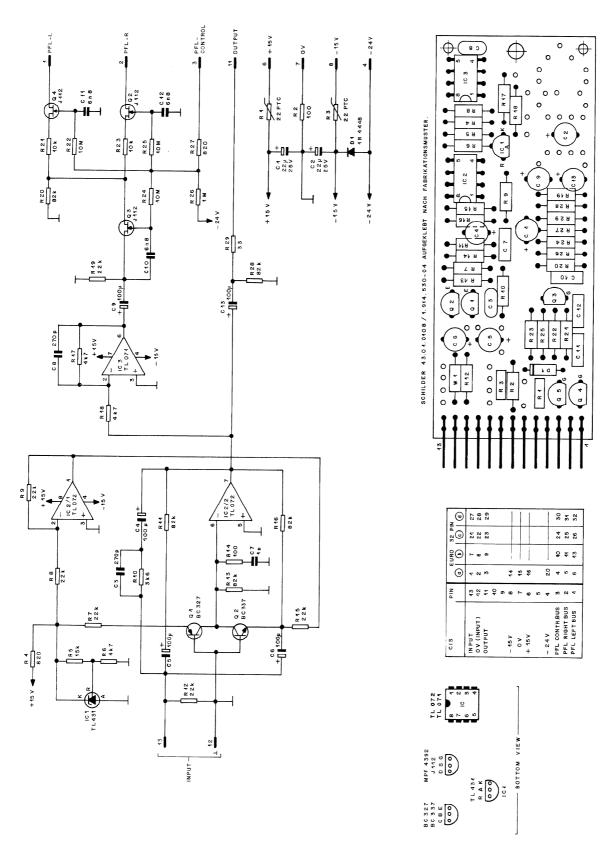
Max. output swing +20 dBu
Load ** 600 W

3 600 W @ max. output swing

Frequency response ±0.3 dBu, 30 Hz...16 kHz

THD < -75 dB, 30 Hz...16 kHz

Noise voltage at the output ~ **-110 dBu**, input terminated with 3.3 k Ω , bandwidth 23 kHz


Noise figure, 12 inputs $\mathbf{F} < \mathbf{2} d\mathbf{B} \triangleq \mathbf{R}_{S} = 275 \Omega$

Supply: +15 V (11 mA idling); -15 V (7 mA idling)

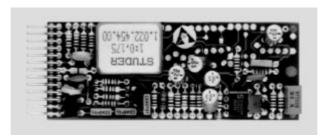
Dimensions: MS-card, $34 \times 85 \text{ mm}$

Ordering Information: Zero- Ω input amplifier (PFL facility) 1.914.530.xx

0Ω-INPUT MSC

1 24.9.91 Je	0	0	0	. 10
STUDER REGENSDORF ZÜRICH	0-Ω-INPUT WITH PFL	•	ESE	1. 914.530.00

MSC 0Ω-INPUT


Ad	POS	REF.No	DESCRIPT	ION		.MANUFACTURER
	C1 C2 C3 C4 C5 C6 C7 C8 C9	59.22.5220 59.22.5220 59.34.4271 59.22.3101 59.22.3101 59.22.3101 59.06.0102 59.34.4271 59.22.3101 59.06.0682	22 uF 22 uF 270 pF 100 uF 100 uF 100 uF 1 nF 270 pF 100 uF 6.8 nF	25V EL 25V EL 10V EL 10V EL 10V EL 10V EL 10V EL 10V EL PE CER 10V EL PE		
	C11 C12 C13	59.06.0682 59.06.0682 59.22.3101	6.8 nF 6.8 nF 100 uF	PE PE 10V EL		
	D1	50.04.0125	1N4448			any
	IC2 IC3	50.10.0106 50.09.0101 50.09.0103	TL431CLP TL072 TL071	voltage regulator dual op.amp. dual op.amp.	•	TI, Mot TI TI
	P1	54.01.0273		CIS, 13 pin		
	Q1 Q2 Q3 Q4 Q5	50.03.0625 50.03.0516 50.03.0350 50.03.0350 50.03.0350	BC327 BC337 J112 J112 J112	PNP, low noise NPN. low noise N-J-FET N-J-FET N-J-FET		NS, Mot, Six NS. Mot, Six NS, Mot, Six
	R1 R2 R3 R4 R5 R6 R7 R8 R9 R10	57.92.1121 57.11.4101 57.92.1121 57.11.4821 57.11.4453 57.11.4472 57.11.4223 57.11.4223 57.11.4223 57.11.3362	22 Ohm 100 Ohm 22 Ohm 820 Ohm 15 kOhm 4.7 kOhm 22 kOhm 22 kOhm 22 kOhm 3.6 kOhm	PTC PTC		
	R11 R12 R13 R14 R15 R16 R17 R18 R19 R20	57.11.4823 57.11.4223 57.11.4823 57.11.4101 57.11.4223 57.11.4423 57.11.4472 57.11.4223 57.11.4223 57.11.4223	82 kOhm 22 kOhm 82 kOhm 100 Ohm 22 kOhm 82 kOhm 4.7 kOhm 4.7 kOhm 22 kOhm 82 kOhm			
	R21 R22 R23 R24 R25 R26 R27 R28 R29	57.11.4103 57.11.5106 57.11.4103 57.11.5106 57.11.5106 57.11.4105 57.11.4821 57.11.4823 57.11.4330	10 kOhm 10 MOhm 10 kOhm 10 MOhm 10 MOhm 1 MOhm 820 Ohm 82 kOhm 33 Ohm			
CER	W1 = cerami	57.11.4000 c. EL = electro	0 Ohm lytic, PE =	polyester		
MAN	JFACTURER	Mot=Motorola, TI=Texas Inst	NS=Nationa ruments	l Semiconductor, S	ix=Siliconics,	
		1.914.530.00		WITH PFL	WY 87/06/1800	

2.1.15 High-Level Input with PFL Facility

1.914.531

This compact high-level input amplifier features a balanced and floating input stage. The output is unbalanced, with low impedance and low distortion up to +24 dBu. An additional PFL monitoring facility is electronically switchable (FET).

Technical Specifications

Input: Balanced and floating

Impedance > 10 kWMax. level +26 dBu

CMRR > **110 dB** @ 50 Hz > **110 dB** @ 16 kHz

Output: Unbalanced

Impedance 33 W

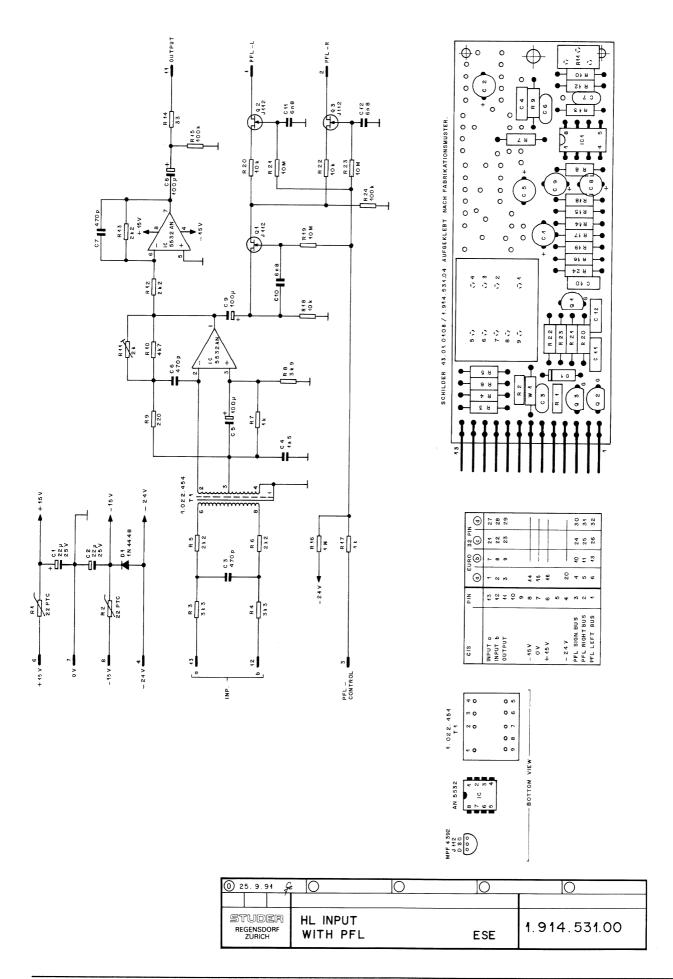
Load 3 600 W @ max. output swing

Max. output swing +20 dBu

Gain -1.4...-17.8 dB

Frequency response $\pm 0.3 \text{ dB}$, 30 Hz...16 kHz

THD < -85 dB, 30 Hz...16 kHz


Noise voltage < -107 dBu, gain -6 dB, bandwidth 23 kHz

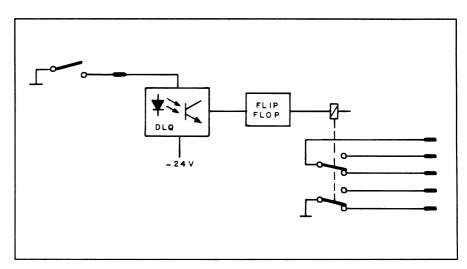
Supply: $\pm 15 \text{ V} (10 \text{ mA idling})$

Dimensions: MS-card, $34 \times 85 \text{ mm}$

Ordering Information: HL input with PFL 1.914.531.xx

MSC HL INPUT WITH PFL

MSC HL INPUT WITH PFL


Ad .	.POS	REF.No	DESCRIP	TION		.MANUFACTURER
С	1	59.22.5220	22 uF	25V EL		
	2	59.22.5220	22 uF	25V EL		
С	3	59.34.5471	470 pF	CEI	R	
C	4	59.06.5152	1.5 nF	PE		
	5	59.22.3101	100 uF	10V EL		
	6 7	59.34.5471 59.34.5471	470 pF 470 pF	CEI CEI		
	8	59.22.3101	100 uF	10V EL		
	9	59.22.3101	100 uF	10V EL		
С	10	59.06.0682	6.8 nF	PE		
С	11	59.06.0682	6.8 nF	PE		
С	12	59.06.0682	6.8 nF	PE		
D	1	50.04.0125	1N4448			any
I	c1	50.09.0106	NE5532AN	dual op.amp. 1	low noise	Sig
P	1	54.01.0273		CIS, 13 pin		
Q	1	50.03.0350	J112	N-J-FET		NS, Mot, Six
	2	50.03.0350	J112	N-J-FET		NS, Mot, Six
Q	3	50.03.0350	J112	N-J-FET		NS, Mot, Six
R	1	57.92.1121	22 Ohm	PTC		
	2	57.92.1121	22 Ohm	PTC		
	3	57.11.3332	3.3 k0hm	1%		
	4	57.11.3332	3.3 kOhm	1%		
K D	5	57.11.3222 57.11.3222	2.2 kOhm 2.2 kOhm	1% 1%		
	7	57.11.4102	1 kOhm	10		
	8	57.11.4392	3.9 kOhm			
R	9	57.11.4221	220 Ohm			
R	10	57.11.4472	4.7 kOhm			
R	11	58.01.9202	2 kOhm	trim potm.		
	12	57.11.3222	2.2 kOhm			
	13	57.11.3222	2.2 kOhm			
	14	57.11.4330	33 Ohm			
	15 16	57.11.4104 57.11.4105	100 kOhm 1 MOhm			
	17	57.11.4102	1 kOhm			
	18	57.11.4103	10 kOhm			
	19	57.11.5106	10 MOhm			
R	20	57.11.4103	10 kOhm			
R	21	57.11.5106	10 MOhm			
R	22	57.11.4103	10 kOhm			
	23	57.11.5106	10 MOhm			
R	24	57.11.4104	10 kOhm			
T	1	1.022.454.00		input trafo		
	1 cerami	57.11.4000 c, EL = electro	O Ohm olytic, PE	= polyester		
MANUF	ACTURER	Mot=Motorola TI=Texas Ins			r, Six=Siliconics,	
			HL-INPUT W		WY 87/06/1800	,
		2.714.551.00	HE-THEOL M	IIII FFL	WT 0//UU/1800	,

2.1.16 Flip-flop Unit

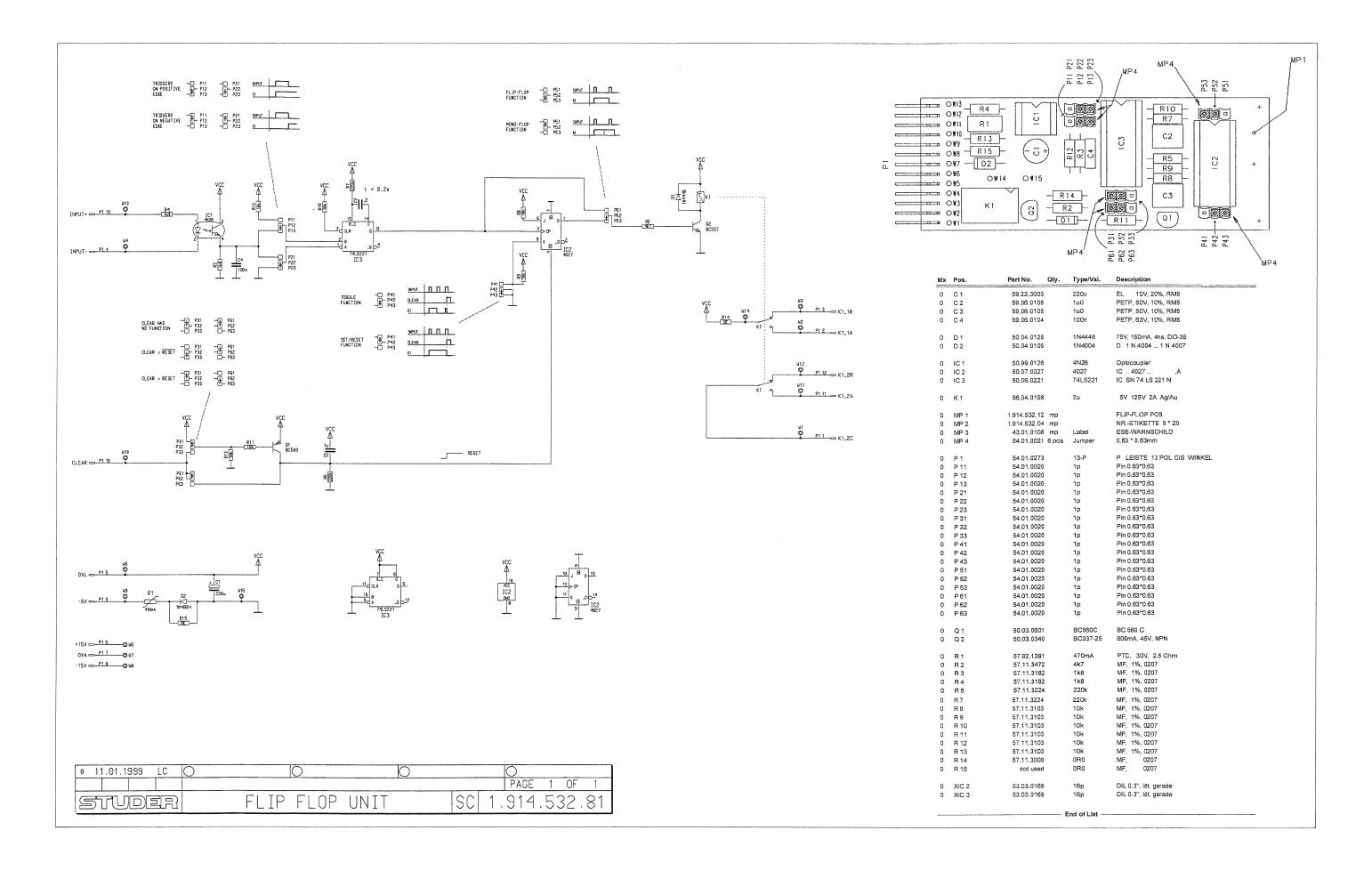
1.914.532

The Flip-flop Unit consists of a relay with two DPDT contacts and a flip-flop circuit with a control input (opto-coupler). A ground pulse from a non-latching switch applied to the input activates the relay. A next ground pulse will deactivate it again.

Technical Specifications

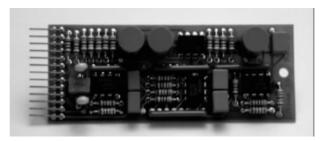
Input: floating, with opto-coupler

Relay contacts: Max. rating 100 V/0.5 A/30 W

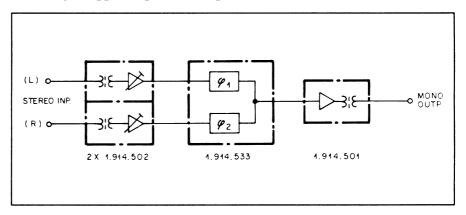

Supply: -6 V for logic

-24 V for opto-coupler

Dimensions: MS-card, $34 \times 85 \text{ mm}$


Ordering Information: Flip-flop unit 1.914.532.xx

MSC FLIP FLOP



2.1.17 90° Filter 1.914.533

This active 90° filter is used to form a monophonic signal from the left and right channel of stereo signals. Simple mixing of the left and right channel will not produce a mono signal of satisfactory quality, but results in an emphasis of the center information. By summing the stereo signals in a 90° phase-shifted manner, this undesirable effect can be avoided.

The 90° filter consists of two all-pass filter chains, producing a uniform 90° phase difference across the whole audio range. The left and the right stereo signals are each passed through one of these filters and added at the filter's output. Doubling of equally-phased signal components as well as canceling of opposite-phased components is thus avoided.

The filter circuits are of unbalanced configuration. For this reason a summing circuit usually consists of two high-level amplifiers with balanced inputs (1.914.502), one 90° filter, and one high-level output amplifier (1.914.501), all accommodated on one MSC motherboard, as shown in the diagram above.

The gain of this combination can be adjusted. A correlated stereo input of equal level in both channels will provide a mono signal of identical level. With only one input channel (left or right), the mono output level will be lower by 3 dB.

Since the 90° filter with its input and output cards can be realized on a single, Euro-card size MSC motherboard, it can possibly be combined with other Audio Components, such as limiters and isolation amplifiers. Such stereo-to-mono combinations are in use at various radio stations to feed the stereo programs to the monophonic AM-transmitter in a correctly summed manner.

Technical Specifications

Input: Max. level +20 dBu

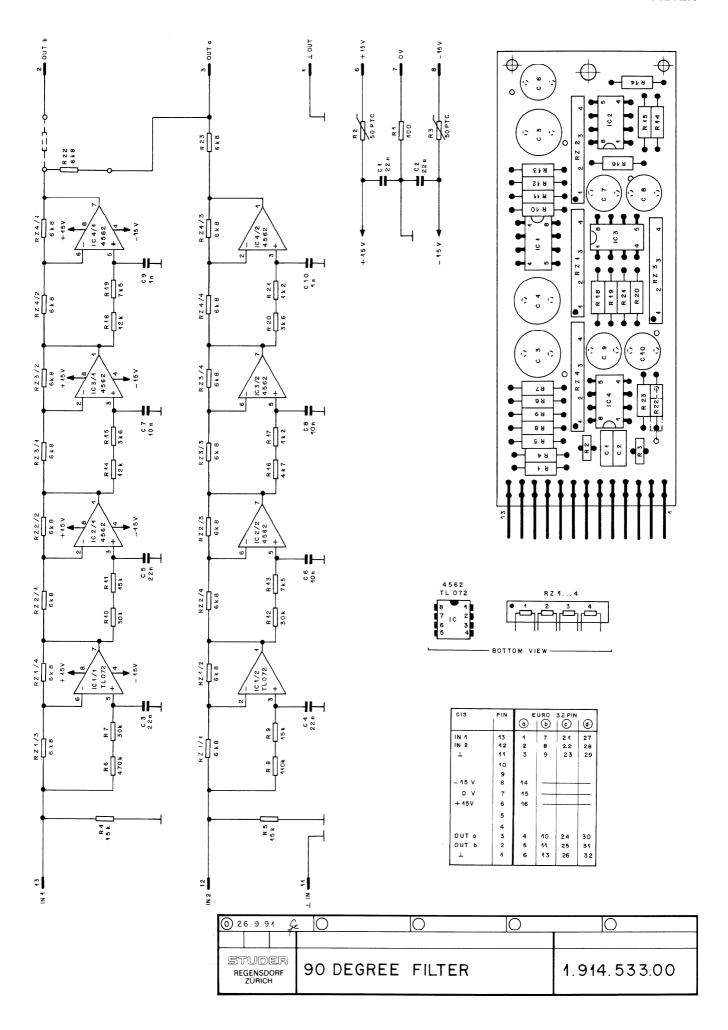
Impedance 4 kW

Output: Max. level +20 dBu

Impedance 6.8 kW

Frequency response 30 Hz...16 kHz, ± 0.3 dB

Phase $90^{\circ} \pm 3^{\circ}$; 30 Hz...16 kHz


THD **£** -80 dB Noise < -95 dBu

Supply: $\pm 15 \text{ V} (18 \text{ mA idling})$

Dimensions: MS-card, $34 \times 85 \text{ mm}$

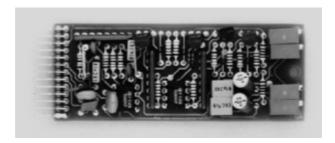
Ordering Information: 90° filter stereo/mono 1.914.533.xx

MSC 90° FILTER

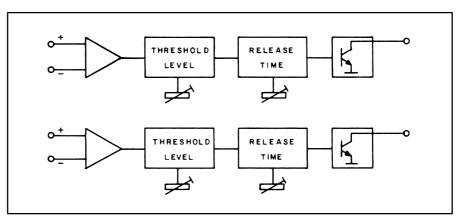
MSC 90° FILTER

Ad	POS	REF.No	DESCRIPT	ION		MANUFACTURER
	C1	59.06.0223	22 nF		PE	
	C2	59.06.0223	22 nF		PE	
	Ç3	59.05.1223	22 nF	1%	PP	
	C4	59.05.1223	22 nF	1%	PP	
	Ç5	59.05.1223	22 nF	1%	PP DD	
	C6 C7	59.05.1103 59.05.1103	10 nF 10 nF	1% 1%	PP PP	
	C8	59.05.1103	10 nF	1%	PP	
	C9	59.05.1102	1 nF	1%	PP	
	C10	59.05.1102	1 nF	1%	PP	
	IC1	50.09.0101	TL072	dual	op.amp.	TI
01	IC2	50.09.0107	RC4559		op.amp.	Ra
01	IC3	50.09.0107	RC4559		op.amp.	Ra
01	IC4	50.09.0107	RC4559	duai	op.amp.	Ra
	P1	54.01.0273		CIS,	13 pin	
	R1	57.11.3101	100 Ohm			
	R2	57.99.0206	50 Ohm	PTC		
	R3	57.99.0206	50 Ohm	PTC		
	R4	57.11.3153	15 kOhm			
	R5 R6	57.11.3153 57.11.3474	15 kOhm 470 kOhm	1%		
	Ř7	57.11.3303	30 kOhm	1%		
	R8	57.11.3114	110 kOhm	1%		
	R9	57.11.3153	15 kOhm	1%		
	R10	57.11.3303	30 k0hm	1%		
	R11	57.11.3153	15 kOhm	1%		
	R12	57.11.3303	30 kOhm	1%		
	R13	57.11.3752	7.5 kOhm	1% 1%		
	R14 R15	57.11.3123 57.11.3362	12 kOhm 3.6 kOhm	1%		
	R16	57.11.3302	4.7 kOhm	1%		
	R17	57.11.3122	1.2 kOhm	1%		
	R18	57.11.3123	12 kOhm	1%		
	R19	57.11.3752	7.5 kOhm	1%		
	R20	57.11.3362	3.6 kOhm	1%		
	R21	57.11.3122	1.2 kOhm	1%		
	R22	57.11.3682	6.8 kOhm	1%		
	R23	57.11.3682	6.8 kOhm	1%		
	RZ1	57.88.2682	6.8 kOhm		Resistor-Network	
	RZ2	57.88.2682	6.8 kOhm		Resistor-Network	
	RZ3	57.88.2682 57.88.2682	6.8 kOhm		Resistor-Network	
PE	RZ4 = polyest	:er, PP = polyp	6.8 k0hm ropylen		Resistor-Network	
(01	1) 90/06/2	1 IC 24 RC	4562 replace	ed by	RC 4559	
	UFACTURER		· ·			
		1 014 522 00		-		20

1.914.533.00 90 DEGREE FILTER 1.914.533.00 90 DEGREE FILTER


HAM88/02/2400 FRI90/06/2101

2.1.18 Dual Vox Detector


1.914.534

The Dual Vox Detector card contains two adjustable threshold level detector circuits. Threshold level (-22 dBu...+16 dBu) and release time (0.2 s...10 s) are separately adjustable for two audio channels. These adjustments are effected very precisely with multi-turn trimmer potentiometers.

The high-impedance audio input is balanced. The open-collector output is prepared to activate a relay or an alarm device.

A possible application of this card would be to detect incoming modulation.

Technical Specifications

Inputs: Electronically balanced

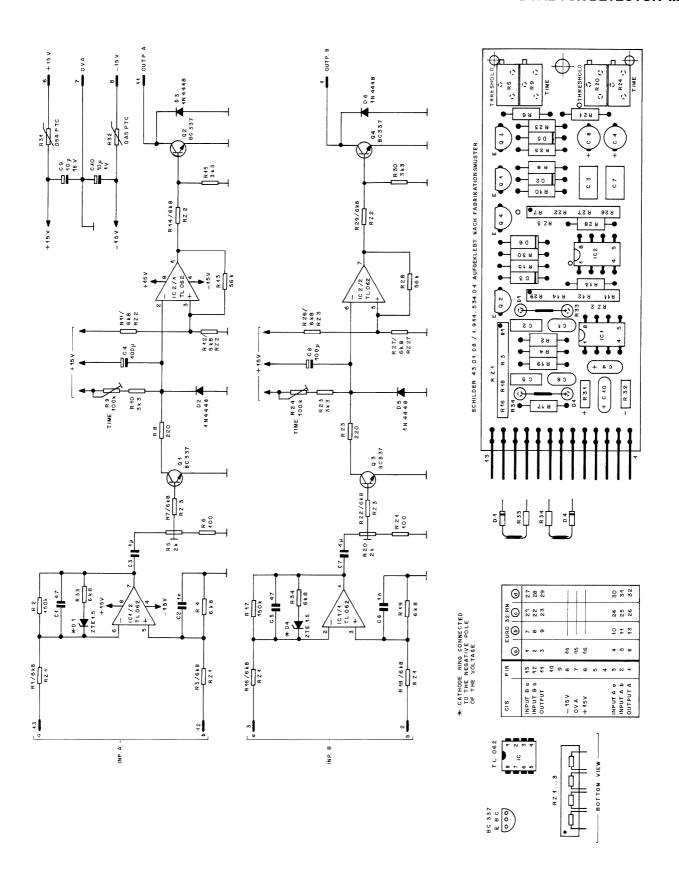
Impedance 3 10 kW

Max. level +24 dBu (0 dBu $\hat{=}$ 0,775 V_{rms})

Frequency response 75 Hz...12 kHz, –3 dB
Threshold level –22 dBu...+16 dBu

Attack time 100 ms
Release time 200 ms...10 s

Hysteresis £1 dB


Outputs: Open-collector; $U_{CE} \le +45 \text{ V}$; $Imax \le 100 \text{ mA}$

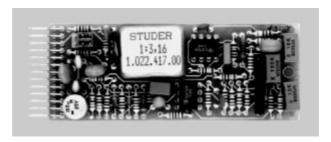
Supply: $\pm 15 \text{ V} (\leq 15 \text{ mA} / 4 \text{ mA idling})$

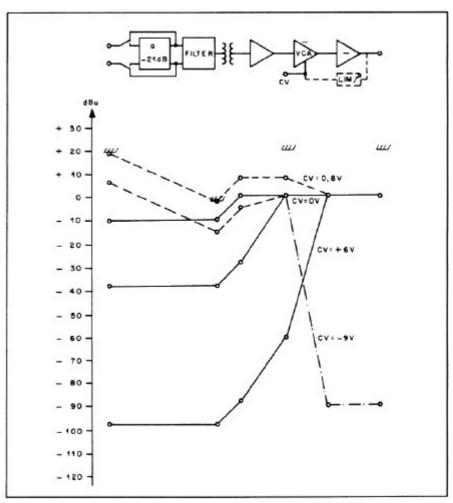
Dimensions: MS-card, $34 \times 85 \text{ mm}$

Ordering Information: Dual vox detector 1.914.534.xx

DUAL VOX DETECTOR MSC

0 27.9.94	ie O	0	0	. 0
STUDER REGENSDORF ZÜRICH	THRESHOL DETECTOR		ESE	1.914.534.00


MSC DUAL VOX DETECTOR


Ad	POS	REF.No	DESCRIPT	ION		MANUFACTURER
01	C1	59.34.2470	47 pF	63V	CER 5%	
01	Ç2	59.34.5102	1000 pF	63V	PE 5%	
	C3	59.34.5102 59.06.5105	1 uF		PE 5%	
01	Ç4	59.22.3101	100 uF	100	EL	
01 01	C5 C6	59.34.2470 59.06.5102	47 pF 1000 pF	63V 63V	CER 5% PE 5%	
•••	čž	59.06.5105	1 uF	031	PE 5%	
	C8	59.22.3101 59.26.2100	100 uF	107	EL	
	C9		10 uF	16V	ĒĹ	
	C10	59.26.2100	10 uF	16V	EL	
01	D1	50.99.0183	ZTE1.5	1.50	ZENER	ITT
	D2	50.04.0125	1N4448			any
01	D3 D4	50.04.0125 50.99.0183	1N4448 ZTE1.5	1.50	ZENER	any ITT
01	D5	50.04.0125	1N4448	1.51	ZLNLK	any
	D6	50.04.0125	1N4448			any
	70 0	50 00 0110	TLOCO	4		
	IC2 IC3	50.09.0119 50.09.0119	TL062 TL062		op.amp.	TI TI
		0010310113	12002	uuui	op.ump.	1.
	P1	54.01.0273		CIS,	13 pin	
	۸ 1	EO 02 0516	DC227	NPN		
	Q1 Q2	50.03.0516 50.03.0516	BC337 BC337	NPN		any any
	Q3	50.03.0516	BC337	NPN		any
	Q4	50.03.0516	BC337	NPN		any
	D 1		6.8 kOhm	RZ 1		
01	R2	57.11.3154	150 kOhm	KZ I		
	R3		6.8 kOhm	RZ 1		
01	R4	57.11.3682	6.8 kOhm	- ,	***	
	R5 R6	58.05.0202 57.11.3101	2 kOhm 100 Ohm	Trim	10%	
	R7		6.8 kOhm	RZ 3		
	R8	57.11.3221	220 Ohm			
	R9	58.05.0104	100 kOhm	Trim	10%	
	R10	57.11.3332	3.3 kOhm			
	R11		6.8 kOhm	RZ 2		
	R12	••	6.8 kOhm	RZ 2		
	R13 R14	57.11.3563	56 kOhm 6.8 kOhm	RZ 2		
	R15	57.11.3332	3.3 kOhm	KL Z		
	R16		6.8 kOhm	RZ 1		
01	R17	57.11.3154	150 kOhm	1%		
01	R18 R19	57.11.3682	6.8 kOhm 6.8 kOhm	RZ 1		
01	R20	58.05.0202	2 kOhm	Trim	10%	
	R21	57.11.3101	100 Ohm			
	R22 R23	57.11.3221	6.8 kOhm 220 Ohm	RZ 3		
	R24	58.05.0104	100 kOhm	Trim	10%	
	R25	57.11.3332	3.3 kOhm			
	R26		6.8 kOhm 6.8 kOhm	RZ 3 RZ 3		
	R27 R28	57.11.3563	56 kOhm	KZ 3		
	R29		6.8 kOhm	RZ 2		
	R30	57.11.3332	3.3 kOhm			
	R31	57 92 7001	0.3 Ohm	PTC	.5A	
	R32	57.92.7001 57.92.7001	0.3 Ohm	PTC	.5A	
01	R33	57.11.3682	6.8 kOhm			
01	R34	57.11.3682	6.8 kOhm			
	RZ1	57.88.2682	6.8 kOhm	R. N	etwork 4*6.8k	
	RZ2	57.88.2682	6.8 kOhm	R. N	etwork 4*6.8k	
	RZ3	57.88.2682	6.8 kOhm	R. N	etwork 4*6.8k	
(01) update					
(02	old name	e: THRESHOLD D	ETECTOR			
ČER	- cerami	c, EL = electr	olytic, PE =	poly	ester	
MAN	UFACTURER	Mot=Motorola TI=Texas Ins	, N>=Nationa trument<	ı Sem	iconductor, Six=Siliconics,	
		1.914.534.00	THRESHOLD L	EVEL	DETECTOR FRI88/06/1800	
		1.914.534.00	THRESHOLD L DUAL VOX DE			
			DONE TON DE		1 (100) 10/2/02	

2.1.19 Microphone Amplifier with Limiter

1.914.539

This assembly combines a microphone amplifier and a VCA limiter circuit with adjustable threshold level and program-depending release time. The input is balanced and floating, the output is unbalanced and with low impedance. Gain control is effected internally with a trimmer potentiometer, or externally with a gain-control DC voltage. A jumper-selectable pad reduces the input level by 21 dB.

The operation of the limiter circuit can be monitored at the gain reduction output, if an appropriate instrument (GRM) is connected.

This card is ideally suited for talkback applications.

Technical Specifications

Input: Impedance > 1 kW, balanced, floating

Max. level -2 dBu (THD at 30 Hz $\leq 1\%$)

+19 dBu, pad on

Pad (attenuation) –21 dB, jumper-selectable

CMRR > 60 dB @ 16 kHz

Source impedance £ 200 W

Output: Max. level +20 dBu

Impedance 33 W

Load 3 2 kW

Gain adjust (v_1) min. +10 dB, VCA = 0 dB; pad off

max. +37 dB, VCA = 0 dB; pad off min. -11 dB, VCA = 0 dB; pad on max. +16 dB, VCA = 0 dB; pad on

Gain control characteristics (v₂) 10 dB/V

DC range -10...+6 V, pin3: gain control input

General: Frequency response ± 0.5 dB, 30 Hz...16 kHz

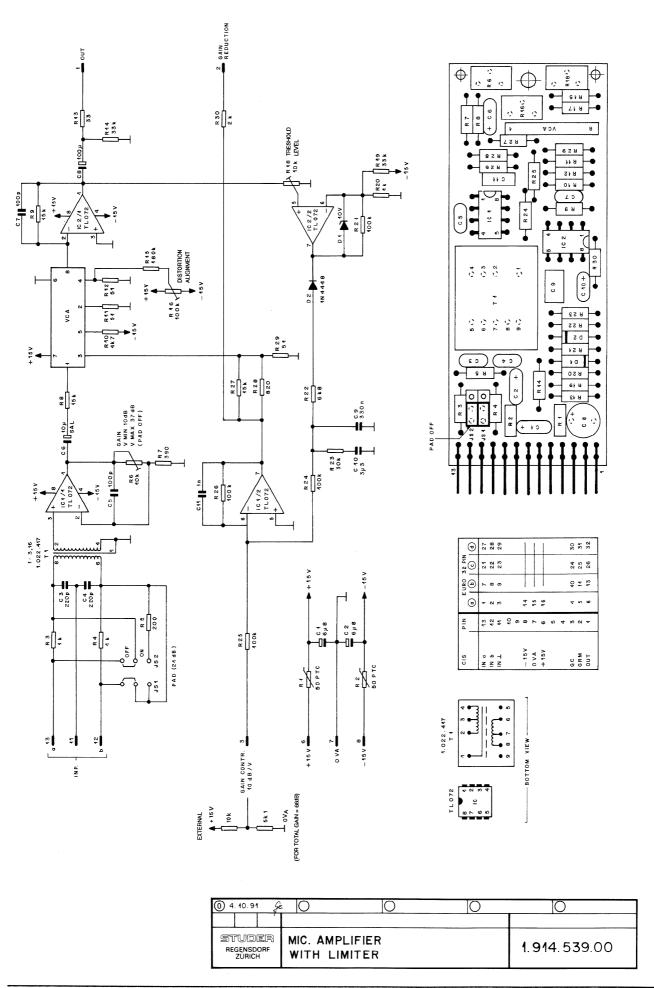
THD **£** −**50 dB**, 20 dB gain; 30 Hz...16 kHz

Noise voltage -95 dBu, pad on; 0 dB gain

Noise figure $\mathbf{F} \sim 10 \text{ dB}$, bandwidth = 23 kHz; 60 dB gain; $R_s = 200 \Omega$; pad off

Limiter: Threshold level -7...+20 dBu

Attack time 0.5 ms


Release time 50 ms...1 s, program-dependent

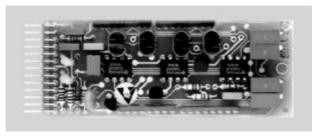
Compression ratio **10:1** @ 1 kHz

Supply: $\pm 15 \text{ V} (25 \text{ mA})$

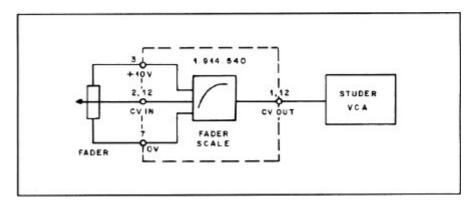
Ordering Information: Microphone amplifier with limiter 1.914.539.xx

MIC AMP / LIMITER MSC

MSC MIC AMP / LIMITER


Ad	POS	REF.No	DESCRIPT	ON	MANUFACTURER
	c1	59.26.2689	6 9	16V SAL	
	C2	59.26.2689	6.8 uF 6.8 uF	16V SAL 16V SAL	
	C3	59.34.4221	220 pF	63V CER 5%	
	C4	59.34.4221	220 pF	63V CER 5%	
	C5	59.34.4101	100 pF	63V CER 5%	
	C6 C7	59.26.5100	10 uF	25V SAL	
	C8	59.34.4101 59.22.4101	100 pF 100 uF	63V CER 5% 16V EL	
	C9	59.06.0334	330 nF	16V EL 63V PETP 10%	
	C10	59.30.6339	3.3 uF	35V TA 20%	
	C11	59.06.0102	1 nF	63V PETP 10%	
	D1	50.04.1114	BZX55-C10	Z 10V 0.4W	
	D2	50.04.0125	1N4448	diode	any any
			2	41000	any
	IC1	50.09.0101	TL072 CP	dual op.amp. biFET	TI
	IC2	50.09.0101	TL072 CP	dual op.amp. biFET	TI
	IC3	50.11.0140	dbx2150 A	VCA	dBx
	JS1	54.01.0021	Jumper	Au	
	JS2	54.01.0021	Jumper	Au	
		001.0021	oumpe:	.,4	
	MP1	43.01.0108	ESE	ESE warning	
	P1	54.01.0273	13 PIN	CIS	
	P2	54.11.0136	2*3 PIN	Stiftleiste	
	PCB1	1.914.539.11		empty PCB	St
					31
	R1	57.99.0206	50 Ohm	PTC	
	R2	57.99.0206	50 Ohm	PTC	
	R3	57.11.3102	1 kOhm		
	R4	57.11.3102	1 kOhm		
	R5	57.11.3201	200 Ohm		DOM
	R6 R7	58.01.9103	10 k0hm	variable resistor 10%	PGM
	R8	57.11.3391 57.11.3153	390 Ohm 15 kOhm		
	R9	57.11.3153	15 kOhm		
	R10	57.11.3472	4.7 kOhm		
	_				
	R11	57.11.3510	51 Ohm		
	R12	57.11.3510	51 Ohm		
	R13 R14	57.11.3330 57.11.3333	33 Ohm 33 kOhm		
	R15	57.11.3184	180 kOhm		
	R16	58.01.9104	100 k0hm	variable resistor 10%	PGM
	R17	57.11.3102	1 kOhm		. —
	R18	58.01.9103	10 k0hm	variable resistor 10%	PGM
	R19	57.11.3333	33 kOhm		
	R20	57.11.3102	1 kOhm		
	R21	57.11.3104	100 kOhm		
	R22	57.11.3682	6.8 kOhm		
	R23	57.11.3303	30 kOhm		
	R24	57.11.3104	100 k0hm		
	R25	57.11.3104	100 k0hm		
	R26	57.11.3104	100 kOhm		
	R27 R28	57.11.3153 57.11.3821	15 kOhm 820 Ohm		
	R29	57.11.3510	51 Ohm		
	R30	57.11.3202	2 kOhm		
	T1	1.022.417.00	1:3.16	input-transformer	St
CED	= corami	c Fl = alcoto	olytic DETD	- nalwastan	
SAI	= solid	c, EL = electr aluminium, TA	orytic, PEIP = tantal	- poryester	
J, 1L	30.14	w.w.minium, IA	Junear		
MAN	UFACTURER	dBx= dBx-Inc	orp., St= St	der, TI= Texas Instrum	ients
		1.914.539.00	mIC.AMPLIFI	R WITH LIMITER HORE	20/11/9000


EDITION: 2. April 1993


2.1.20 Dual Fader/VCA Control Voltage Interface

1.914.540 /541

These interfaces are used to convert the voltage of a linear fader to the non-linear dB scale of a Studer VCA. One card processes two channels. It is available in two versions: 540.xx (0...+10 $V_{\rm DC}$ control voltage), and 541.xx (+5...0 $V_{\rm DC}$ control voltage). A regulated +10 $V_{\rm DC}$ reference voltage is generated on-board. The DC from the fader's wiper is connected to the input. Offset and scale alignment is performed with on-board trimmer potentiometers for matching the VCA gain to the dB scale of the fader.

Technical Specifications

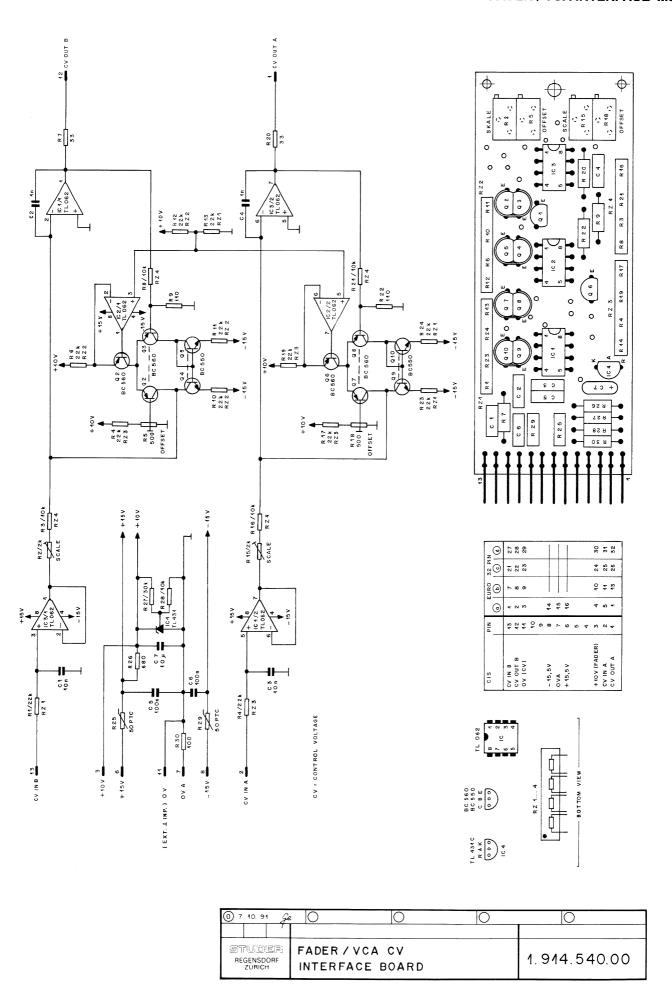
1.914.540.xx 1.914.541.xx

Input: Impedance > 1 MW, unbalanced 100 kW, unbalanced

Level range 0...+10 V +5...0 V

Output: Impedance 33 W, unbalanced 33 W, unbalanced

Control range +1 V...-10 V +1 V...-10 V

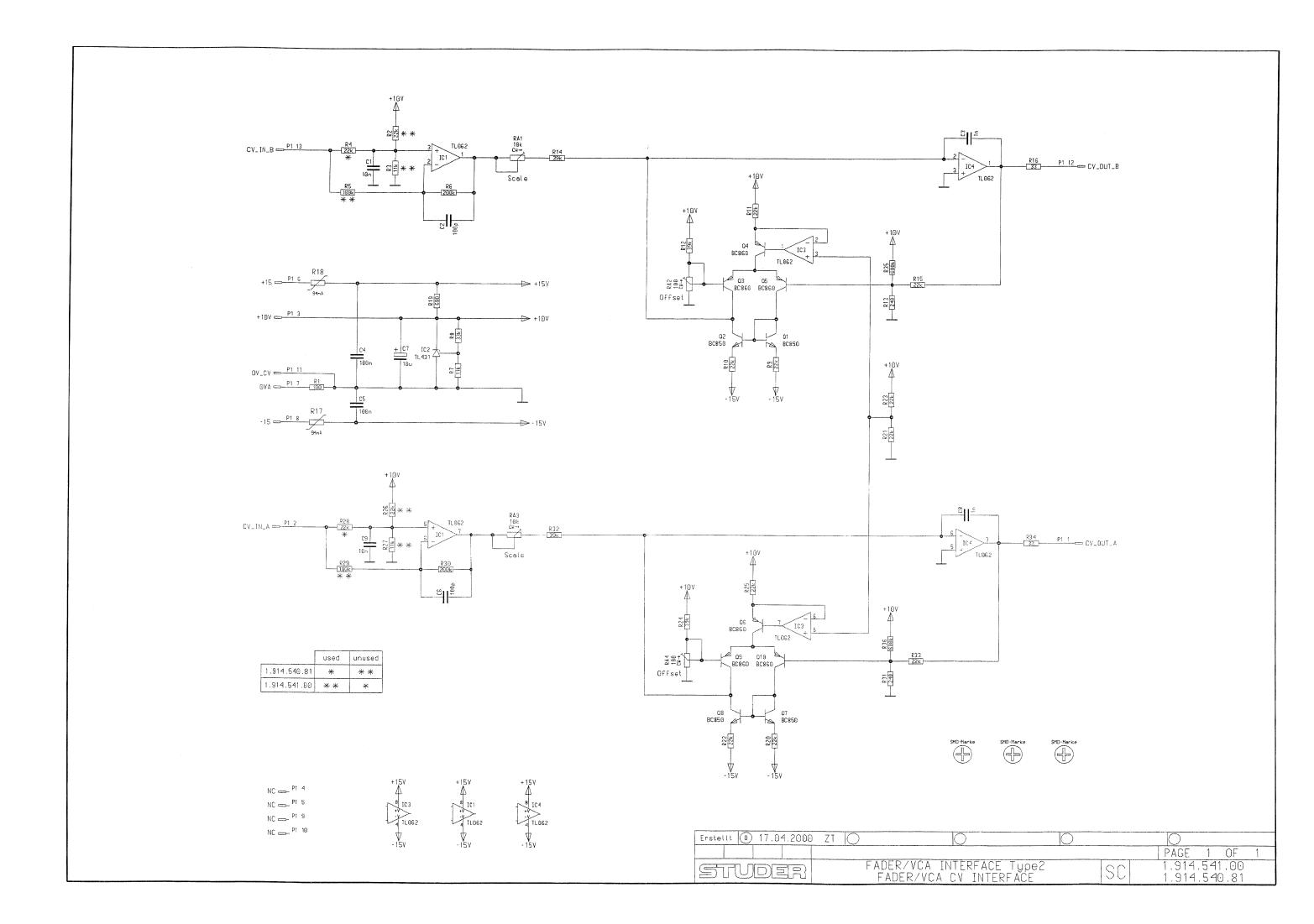

Supply: $\pm 15 \text{ V} (15 \text{ mA})$

Dimensions: MS-card, $34 \times 85 \text{ mm}$

Ordering Information: Fader/VCA control interface 1.914.540.xx

Fader/VCA control interface 1.914.541.xx

FADER / VCA INTERFACE MSC


MSC FADER / VCA INTERFACE


AdPOS	REF.No	DESCRIPT	ION		MANUFA	CTURER
C1	59.06.0103	10 nF	63V	PE 10%		
C2	59.06.0102	1 nF	63V	PE 10%		
C3	59.06.0103	10 nF	63V	PE 10%		
C4	59.06.0102	1 nF	63V	PE 10%		
C5	59.06.0104	0.1 uF	63V	PE 10%		
C6	59.06.0104	0.1 uF	63V	PE 10%		
C7	59.26.2100	10 uF	16V	SAL		
IC1	50.09.0119	TL062 ACP	dual op.am			77
IC2	50.09.0119	TLO62 ACP	dual op.am			IT IT
ĬC3	50.09.0119	TLO62 ACP	dual op.am			ΤΪ
IC4	50.10.0106	TL431 CLP	shunt regu			ΤΪ
			-	14.01		11
MP1	50.20.2001	CLIP	2 * TO 92			
MP2	50.20.2001	CLIP	2 * TO 92			
MP3	50.20.2001	CLIP	2 * TO 92			
MP4	50.20.2001	CLIP	2 * TO 92			
MP5	43.01.0108	ESE	ESE warnin	g		
P1	54.01.0273	13 PIN	CIS			
DCD 1	1 014 540 11					
PCB1	1.914.540.11		empty PCB			St
Q1	50.03.0496	BC560	PNP			Sie
02	50.03.0600	BC560	PNP	E6310	see note 1	Sie
Q3	50.03.0600	BC560	PNP	E6310	see note 1	Sie
Q4	50.03.0524	BC550	NPN	E6310	see note 1	Sie
Q5	50.03.0524	BC550	NPN	E6310	see note 1	Sie
Q6	50.03.0496	BC560	PNP	20310	see note 1	Sie
Q7	50.03.0600	BC560	PNP	E6310	ess note 1	
08	50.03.0600	BC560	PNP	E6310	see note 1	Sie
Q9	50.03.0524	BC550	NPN	E6310	see note 1	Sie
Q10	50.03.0524	BC550	NPN	E6310	see note 1	Sie
ųıv	30.03.0324	BC330	MPM	E0310	see note 1	Sie
R1	58.05.0104	100 k0hm	multi-turn	10%		
R2	58.05.0501	500 Ohm	multi-turn	10%		
R3	57.11.3330	33 Ohm				
R4	57.11.3241	240 Ohm				
R5	58.05.0104	100 k0hm	multi-turn	10%		
R6	58.05.0501	500 Ohm	multi-turn			
R7	57.11.3330	33 Ohm				
R8	57.11.3241	240 Ohm				
R9	57.92.1820	42 Ohm	PTC			
R10	57.11.3681	680 Ohm				
p 11	E7 11 2202	an links				
R11 R12	57.11.3303	30 k0hm				
	57.11.3103	10 kOhm	DTC			
R13	57.92.1820	42 Ohm	PTC			
R14	57.11.3101	100 Ohm				
RZ1	57.88.2223	22 kOhm	network 4	* 22k		
RZ2	57.88.2223	22 kOhm	network 4			
RZ3	57.88.2223	22 kOhm	network 4			
RZ4	57.88.2223	22 kOhm	network 4			
SAL = electro	olytic, PE = po	lyester				
MANUFACTURER	TI=Texas Inst	ruments. Si	e=Siemens.	St=Studer		

MANUFACTURER TI=Texas Instruments, Sie=Siemens, St=Studer

Note 1: Q2,Q3,Q4,Q5,Q7,Q8,Q9,Q10 must fulfill BV 678 !

1.914.540.00 FADER/VCA CV INTERFACE BOARD HOR16/11/9000

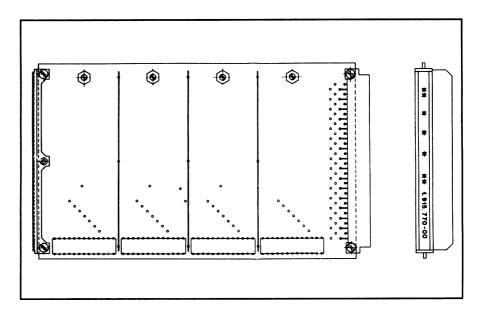
Accompanying documents: Zugehoerige Unterlagen: PL		General tolerance: Freimasstoleranz:	Scale: Mossstab:	Edition Ausgobe	17.04. Date Datum	2000	ZT Visa Gez.	ML Checked Gepr.	RL Seen Ges.	0 Index
Substitute for: Ersatz fuer:				Page: Seite	:		1 ,	/	1	
STUDER REGENSDORF	FADER/VCA FADER/VCA	INTERFACE A CV INTER	TYPE2 PFACE	Z	Number:	1.9	914 914	. 54 . 54	-1.()0 31

Dual Fader/VCA Control Voltage IF 1.914.541.00 (0)

Page: 1 of 1

ldx.	Pos.	Part No.	Qty.	Type/Val.	Description	ldx. Pos.	Part No.	Qty.	Type/Val.	Description	
0	C 1	59.60.3325	1 pce	10n	CER 50V, 10%, X7R, 0805						
0	C 2	59.60.2249		100p	CER 50V, 5%, C0G, 0603						
0	C 3	59.60.2373		1n0	CER 50V, 5%, C0G, 0805						
0	C 4	59.60.3337		100n	CER 50V, 10%, X7R, 0805						
0	C 5	59.60.3337		100n	CER 50V, 10%, X7R, 0805						
0	C 6	59.60.2249	1 pce	100p	CER 50V, 5%, C0G, 0603						
0	C 7	59.68.0065	1 pce	10u	EL 16V, 4.0*5.7						
0	C 8	59.60.2373	1 pce	1 n0	CER 50V, 5%, C0G, 0805						
0	C 9	59.60.3325	1 pce	10n	CER 50V, 10%, X7R, 0805						
0	IC 1	50.61.0201	1 pce	TL062	Dual FET Op-Amp						
0	IC 2	50.10.0106	1 pce	TL431	Shunt regulator						
0	IC 3	50.61.0201	1 pce	TL062	Dual FET Op-Amp						
0	IC 4	50.61.0201	1 pce	TL062	Dual FET Op-Amp						
0	MP 1	1.914.541.11	1 pce		FADER/VCA INTERFACE2 PCB						
0	MP 2	1.914.541.04			NRETIKETTE 5 * 20						
0	MP 3	43.01.0108	1 pce	Label	ESE-Warnschild						
0	P 1	54.01.0273		13p	Stecker CIS parallelsteck						
0	Q 1	50.60.0002		BC850C	NPN 45V 100mA SOT 23						
0	Q 2	50.60.0002		BC850C	NPN 45V 100mA SOT 23						
0	Q 3	50.60.1002		BC860C	PNP 45V 100mA SOT 23						
0	Q 4	50.60.1002		BC860C	PNP 45V 100mA SOT 23						
0	Q 5	50.60.1002		BC860C	PNP 45V 100mA SOT 23						
0	Q 6	50.60.1002		BC860C	PNP 45V 100mA SOT 23						
0	Q 7	50.60.0002		BC850C	NPN 45V 100mA SOT 23						
0	Q 8	50.60.0002		BC850C	NPN 45V 100mA SOT 23						
0	Q 9	50.60.1002		BC860C	PNP 45V 100mA SOT 23						
0	Q 10	50.60.1002		BC860C	PNP 45V 100mA SOT 23						
0	R 1	57.60.1101		100R	MF, 1%, 0204, E24						
0	R 2	57.60.1223		22k	MF, 1%, 0204, E24						
0	R 3	57.60.1113		11k	MF, 1%, 0204, E24						
0	R 4	not used		22k	MF, 1%, 0204, E24						
0	R 5	57.60.1104		100k 200k	MF, 1%, 0204, E24						
0	R 6 R 7	57.60.1204 57.60.1113		200k 11k	MF, 1%, 0204, E24 MF, 1%, 0204, E24						
0	R8	57.60.1113			MF, 1%, 0204, E24 MF, 1%, 0204, E24						
0	R9	57.60.1333		33k 22k	MF, 1%, 0204, E24 MF, 1%, 0204, E24						
0	R 10	57.60.1223		22k	MF, 1%, 0204, E24						
0	R 11	57.60.1223		22k	MF, 1%, 0204, E24						
0	R 12	57.60.1393		39k	MF, 1%, 0204, E24						
0	R 13	57.60.1241		240R	MF, 1%, 0204, E24						
0	R 14	57.60.1393		39k	MF, 1%, 0204, E24						
0	R 15	57.60.1223		22k	MF, 1%, 0204, E24						
0	R 16	57.60.1330		33R	MF, 1%, 0204, E24						
0	R 17	57.92.1820		94mA	PTC 60V						
0	R 18	57.92.1820	1 pce	94mA	PTC 60V						
0	R 19	57.60.1681	1 pce	680R	MF, 1%, 0204, E24						
0	R 20	57.60.1223	1 pce	22k	MF, 1%, 0204, E24						
0	R 21	57.60.1223	1 pce	22k	MF, 1%, 0204, E24						
0	R 22	57.60.1223	1 pce	22k	MF, 1%, 0204, E24						
0	R 23	57.60.1223		22k	MF, 1%, 0204, E24						
0	R 24	57.60.1393		39k	MF, 1%, 0204, E24						
0	R 25	57.60.1223		22k	MF, 1%, 0204, E24						
0	R 26	57.60.1223		22k	MF, 1%, 0204, E24						
0	R 27	57.60.1113		11k	MF, 1%, 0204, E24						
0	R 28	not used		22k	MF, 1%, 0204, E24						
	R 29	57.60.1104		100k	MF, 1%, 0204, E24						
0	R 30	57.60.1204		200k	MF, 1%, 0204, E24						
0	R 31	57.60.1241		240R	MF, 1%, 0204, E24						
0	R 32	57.60.1393		39k	MF, 1%, 0204, E24						
0	R 33	57.60.1223		22k	MF, 1%, 0204, E24						
0	R 34	57.60.1330		33R	MF, 1%, 0204, E24						
0	R 35	57.60.1684		680k	MF, 1%, 0204, E24						
0	R 36	57.60.1684		680k	MF, 1%, 0204, E24						
0	RA 1	58.01.9103		10k	Cermet, 10%, 0.5W, vertical						
0	RA 2	58.01.9101		100R	Cermet, 10%, 0.5W, vertical						
0	RA 3	58.01.9103		10k	Cermet, 10%, 0.5W, vertical						
0	RA 4	58.01.9101	1 рсе	100R	Cermet, 10%, 0.5W, vertical						
				End of List							
_				LIIU VI LISI							
	mante:										

Comments:

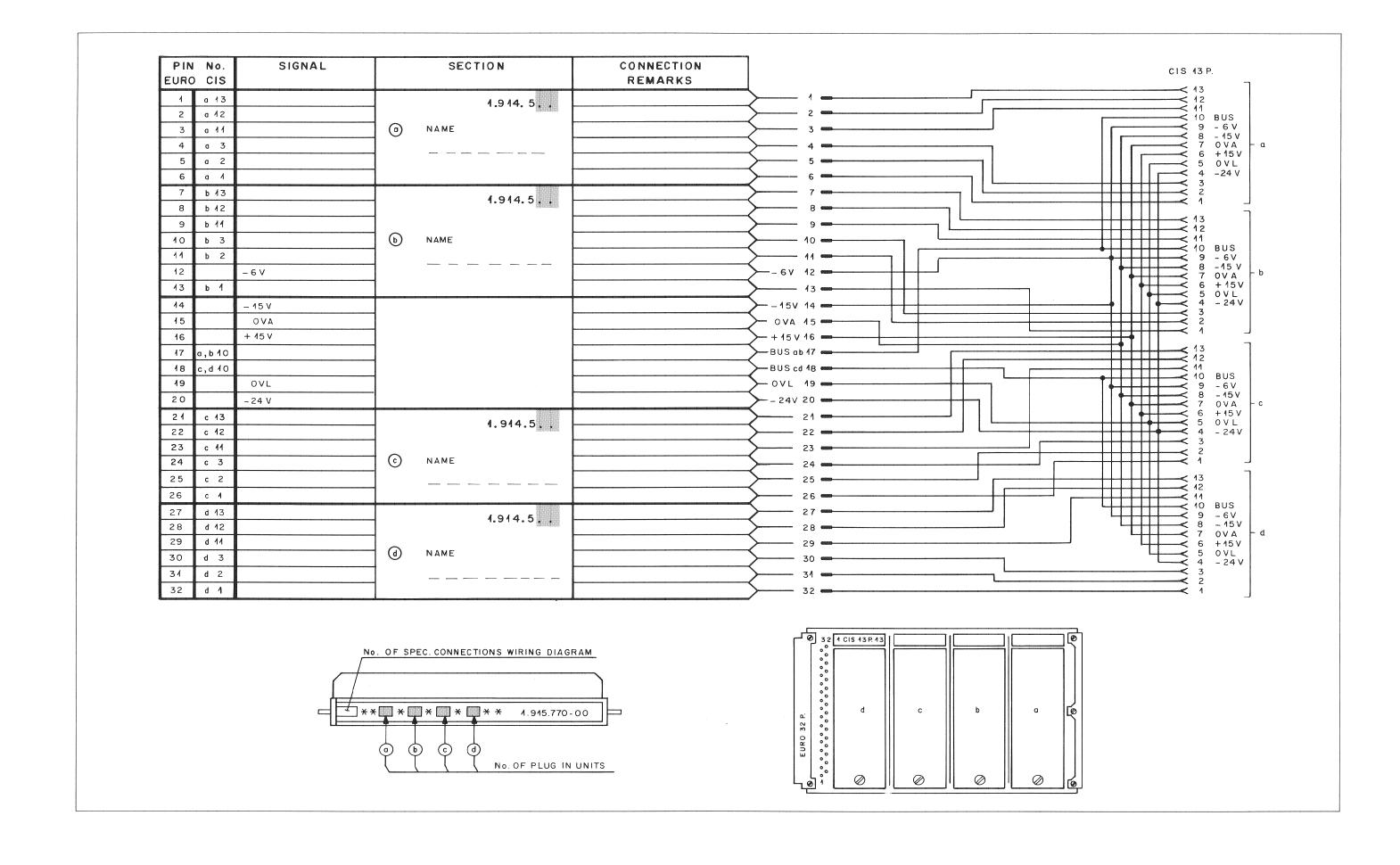


2.2 Euro-Cards

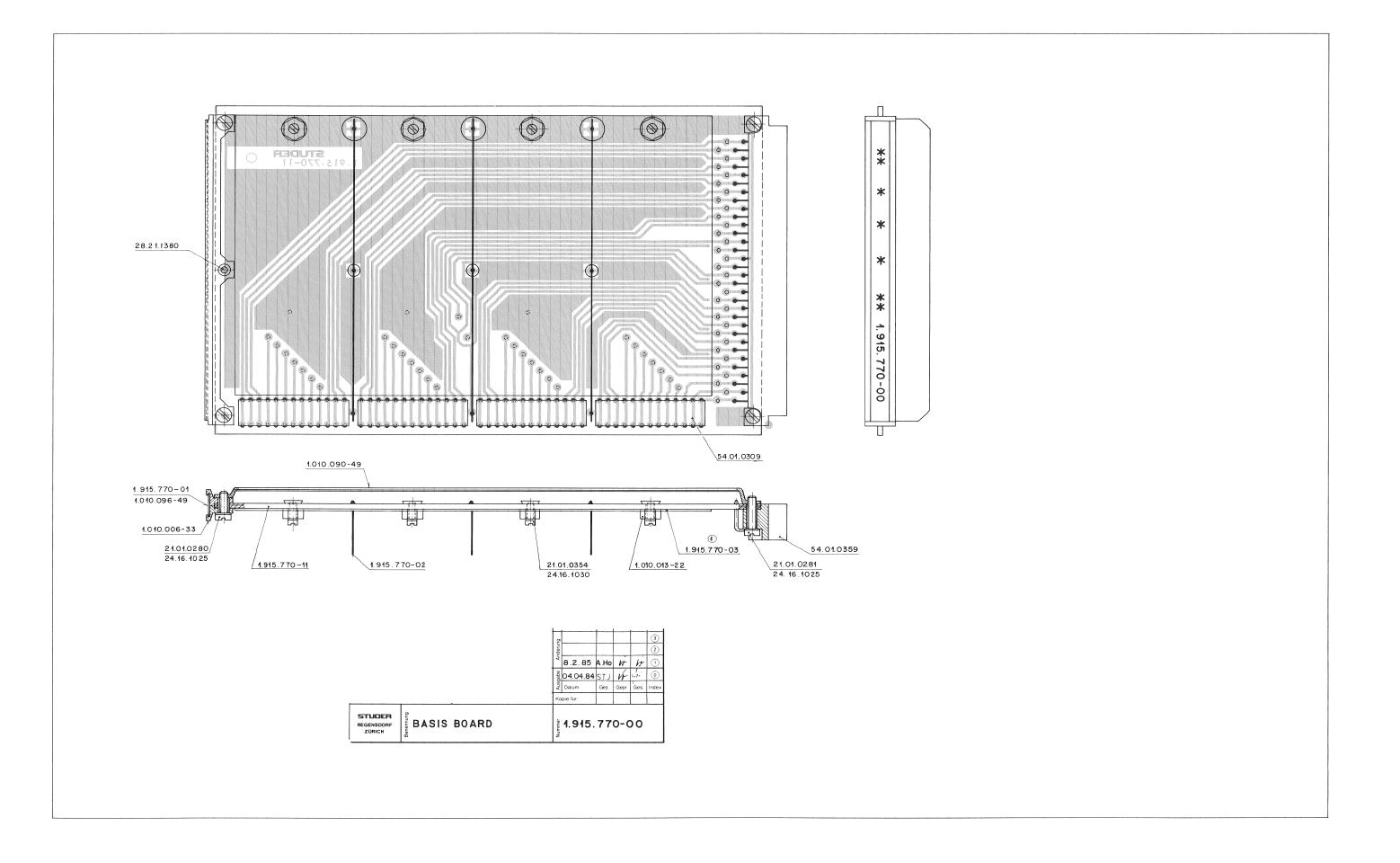
2.2.1 Motherboard for 4 MS-Cards

1.915.770

The Modular Sub-Cards require a mounting base for mechanical and electrical installation. This motherboard for four MS-cards in standard Euro-card size easily integrates into the Studer audio components system; it carries 32 printed tracks from its edge connector to four small plug-in sockets. Each socket has 13 contacts; six of them are common supply lines, while another six are individual to each socket. Then there is a separate bus line for circuits 1 and 2, and another bus line for circuits 3 and 4. A motherboard for only one MS-card is available as well, refer to chapter 2.1.1.

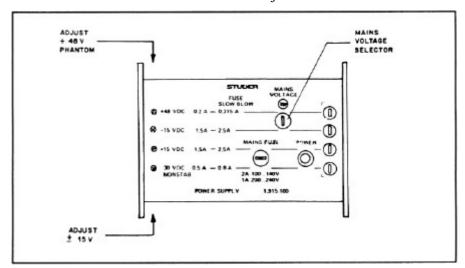

Dimensions: Euro-card $100 \times 160 \text{ mm}$

Connectors: $1 \times \text{Euro connector}$ **32-pin,** DIN 41612

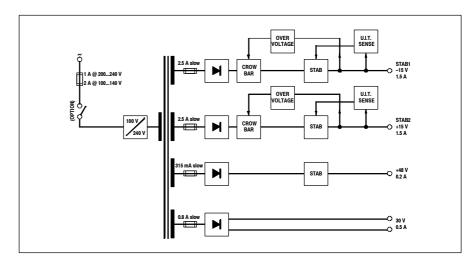

 $4 \times CIS$ connector **13-pin,** plug-in socket for MSC

Ordering Information: MSC motherboard 1.915.770.xx

MSC MOTHER BOARD


MSC MOTHER BOARD

This power supply provides a regulated output of $\pm 15~V_{DC}$ at a maximum load of 1.5 A for audio circuits, plus a regulated 48 V_{DC} output for the phantom powering of microphones. In addition, 30 V of unregulated DC are available as well.


If a regulated 24 V_{DC} supply is required, the stabilizer card 1.915.105.xx can be connected to the 30 V_{DC} output.

Each of the output voltages is derived from a separate secondary winding of the mains transformer and can be fine-adjusted.

The $\pm 15~V_{DC}$ supply is fully short-circuit proof and is protected against overvoltage and excess temperature. Short-circuit-protection is also effective in the $48~V_{DC}$ section.

The power supply has no on/off switch in the primary circuit. Such a switch, if needed, will have to be fitted separately.

Mains transformer and regulator electronics are housed in one rectangular unit fitting into the 19" Euro-card frame (1.918.318/319), occupying the space of 28M widths. For this purpose, a mounting kit 1.918.316 is recommended (see chapter 2.3.4).

Technical Specifications

Primary: Voltage selector $100/120/140/200/220/240 \text{ V}_{AC} \pm 10\%$

Fuse **T 2 A (slow),** 100...140 V

T 1 A (slow), 200...240 V

Power consumption < 120 W (190 VA)

Secondary: Audio supply: $\pm 15 \text{ V/1.5 A max.}$, regulated voltage

Ripple 100 μV

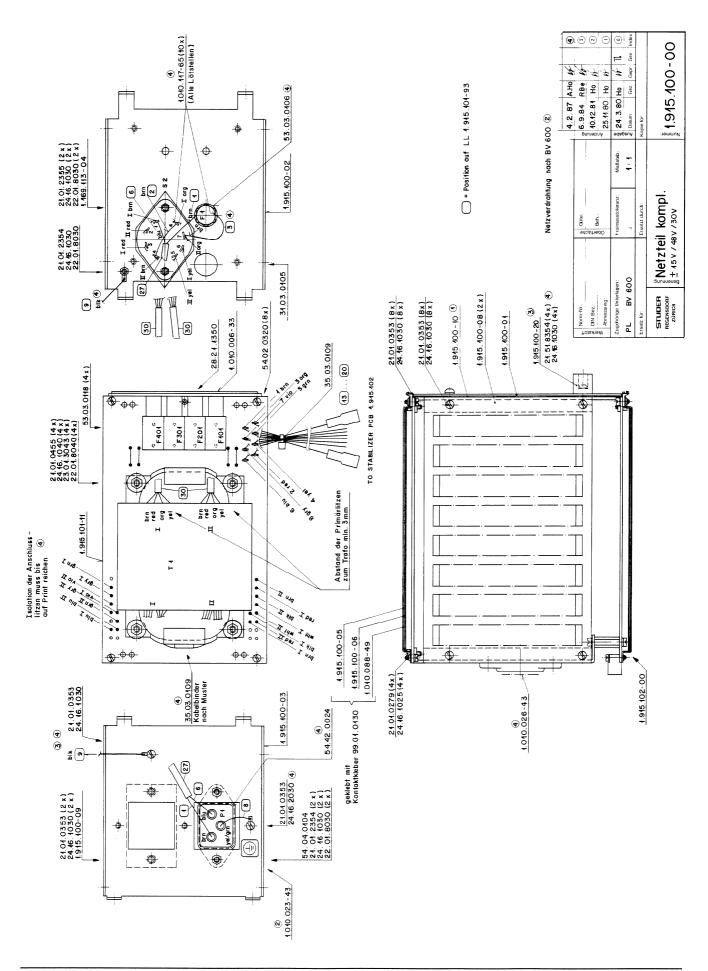
Fuses $2 \times T = 2.5 \text{ A (slow)}$

Phantom supply: 48 V/200 mA max., regulated voltage, according to DIN 45596

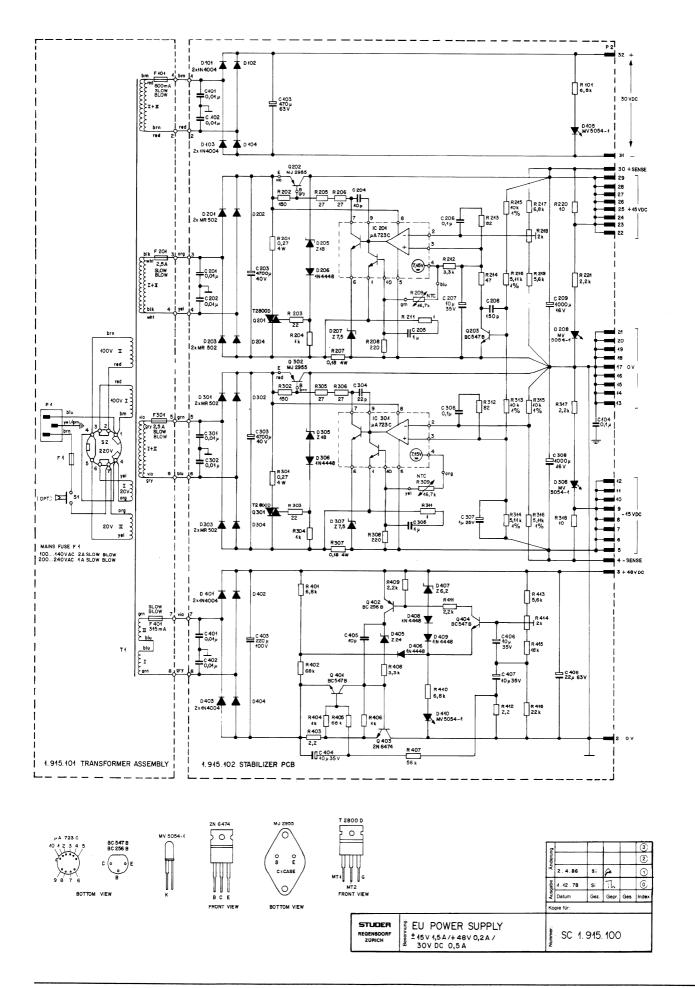
Ripple 100 μV

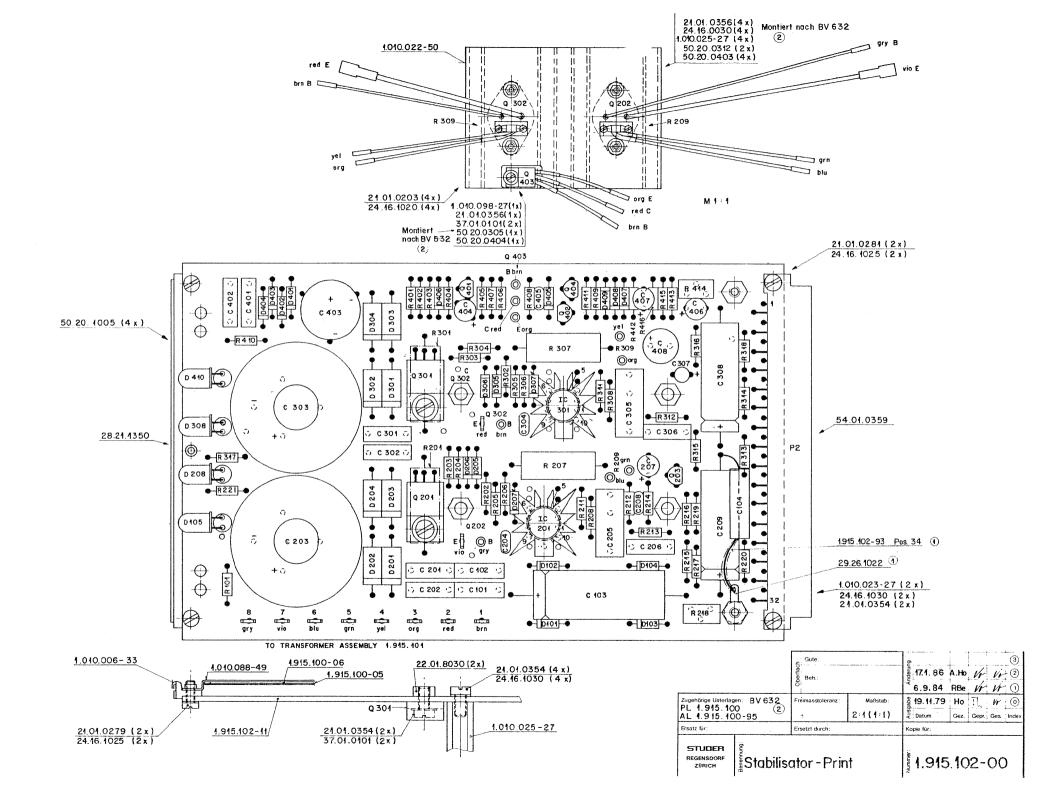
Fuse T 315 mA (slow)

Unregulated DC: 30 V/0.5 A max. Fuse T 0.8 A (slow)


Dimensions: W \times H \times D 140 \times 100 \times 160 mm, Euro-card/28M units

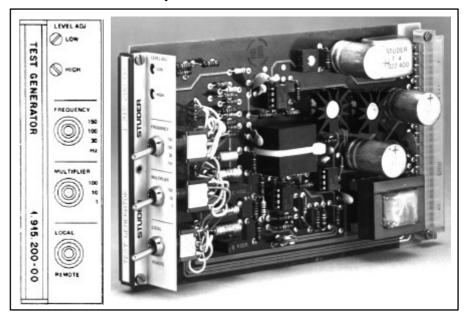
Weight 2.75 kg


Ordering Information: Power supply 1.915.100.xx


Mounting kit for installation in ELMA frame (1.918.318) 1.918.316.xx

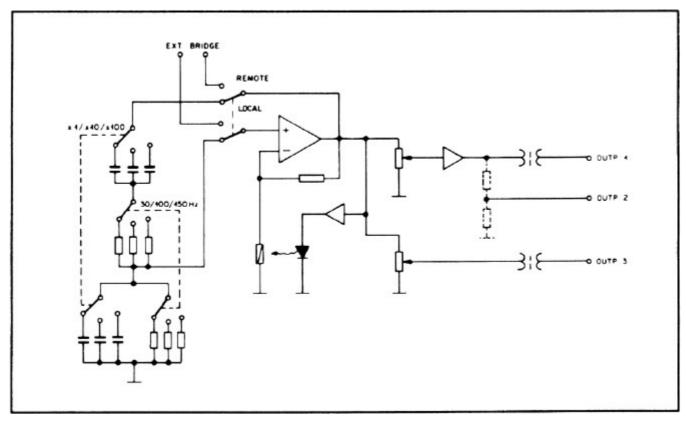
POWER SUPPLY

POWER SUPPLY


POWER SUPPLY

AdPOS.,	REF.No	DESCRIPTION	DN	MANUFACTURER	AdPOS.	REF.No	DESCRIPTIO	N		MANUFACTURER
C101 C102 C103 ② C104	59.31.2103 59.31.2103 59.25.6471 59.99.0453	0,01µ 0,01µ 470µ 0,1µ	250V PE 250V PE 63V EL 250V MP		R 201 R 202 R 203 R 204 R 205	57.56.5278 57.11.4151 57.11.4220 57.11.4102 57.11.4270	0,27 150 22 1k 27		4W	
C 201 C 202 C 203 C 204 C 205 C 206	59.31.2103 59.31.2103 59.35.4472 59.34.1100 59.34.6105 59.31.6104	0,01µ 0,01µ 4700µ 10p 1µ	250V PE 250V PE 40V EL CER 100V PE PE		R 206 R 207 R 208 R 209 R 210	57.11.4270 57.56.5188 57.11.4221 57.99.0208	27 0,18 220 16,7k	NTC R@ 100°	2W C	PH
C207 C208 C209	59.36.5100 59.34.4151 59.25.3102	0,1µ 10µ 150p 1000µ	35V TA CER 16V EL		R211 R212 R213 R214	57.11.4109 57.11.4332 57.11.4820 57.11.4470	1 3,3k 82 47			
C 301 C 302 C 303 C 304 C 305 C 306 C 307 C 308	59.31.2103 59.31.2103 59.35.4472 59.34.2220 59.31.6105 59.31.6104 59.36.4109 59.25.3102	0,01µ 0,01µ 4700µ 22p 1µ 0,1µ 1µ 1000µ	250V PE 250V PE 40V EL CER 100V PE PE 25V TA 16V EL		R 215 R 216 R 217 R 218 R 219 R 220	57.39.1002 57.39.5111 57.11.4682 58.01.7202 57.11.4562 57.11.4100 57.11.4222	10k 5,11k 6,8k 2k 5,6k 10	1% 1% TRIM	MF MF PMG	
C401 C402 C403 C404 C405 C406 C407 C408	59.31.2103 59.31.2103 59.22.9221 59.36.5100 59.34.1100 59.36.5100 59.36.5100 59.22.8220	0,01µ 0,01µ 220µ 10µ 10p 10µ 22µ	250V PE 250V PE 100V EL 35V TA CER 35V TA 35V TA 63V EL		R 301 R 302 R 303 R 304 R 305 R 306 R 307 R 308	57.56.5278 57.11.4151 57.11.4220 57.11.4102 57.11.4270 57.56.5188 57.11.4221	0,27 150 22 1k 27 27 0,18 220		4W 2W	
D101 D102 D103 D104 D105	50.04.0105 50.04.0105 50.04.0105 50.04.0105 50.04.2109	1N4004 1N4004 1N4004 1N4004 MV5054-1	1A 200V 1A 200V 1A 200V 1A 200V LED	ANY ANY ANY ANY	R310 R311 R312 R313	57.99.0208 57.11.4109 57.11.4820 57.39.1002	16,7k 1 82 10k	NTC R@ 100° (C MF	РН
D 201 D 202 D 203 D 204 D 205 D 206	50.04.0507 50.04.0507 50.04.0507 50.04.0507 50.04.1122 50.04.0125	MR502 MR502 MR502 MR502 ZPD 18 1N4448	3A 200V 3A 200V 3A 200V 3A 200V Z-DIODE 18V 400 mN	MOT MOT MOT MOT	R314 R315 R316 R317 R318	57.39.5111 57.39.1002 57.39.5111 57.11.4222 57.11.4100 57.11.4682	5,11k 10k 5,11k 2,2k 10 6,8k	1% 1% 1%	MF MF MF	
D 207 D 208 D 301 D 302 D 303 D 304 D 305	50.04.1503 50.04.2109 50.04.0507 50.04.0507 50.04.0507 50.04.0507 50.04.1122	ZPY7,5 MV5054-1 MR502 MR502 MR502 MR502 ZPD 18	Z-DIODE 7,5V 1,3W LED 1,3W 2,00V 3A 200V 3A 200V 2-DIODE 18V 400ml	MOT MOT MOT MOT	R 402 R 403 R 404 R 405 R 407 R 408 R 409	57.11.4683 57.11.4229 57.11.4102 57.11.4683 57.11.4102 57.11.4563 57.11.4332 57.11.4222	68k 2,2 1k 68k 1k 56k 3,3k 2,2k			
D 306 D 307 D 308 D 401 D 402	50.04.0125 50.04.1503 50.04.2109 50.04.0105 50.04.0105	1N4448 ZPY7,5 MV5054-1 1N4004 1N4004	Z-DIODE 7,5V 1,3W LED 1A 200V 1A 200V		R 410 R 411 R 412 R 413 R 414	57.11.4682 57.11.4222 57.11.4229 57.11.4562 58.01.7202	6,8k 2,2k 2,2 5,6k 2k	TRIM	PMG	
D403 D404 D405 D406 D407	50.04.0105 50.04.0105 50.04.1121 50.04.0125 50.04.1118	1N4004 1N4004 ZPD24 1N4448 ZPD6,2	1A 200V 1A 200V Z-DIODE 24V 400 mV Z-DIODE 6,2V 400 mV		R415 R416 S2	57.11.4183 57.11.4223 53.03.0128 1.169.113.04	18k 22k	VOLTAGE SELE		
D408 D409 D410	50.04.0125 50.04.0125 50.04.0125 50.04.2109	1N4448 1N4448 MV5054	LED LED	,	T1	1.915.103.00		MAINS-TRANSF		
F1	51.01.0120 51.01.0117	2A 1A	SLOW BLOW @ 1001- SLOW BLOW @ 2002-			53.03.0106 53.03.0118		FUSE HOLDER FUSE HOLDER		
F 101 F 201 F 301 F 401	51.01.0116 51.01.0121 51.01.0121 51.01.0112	800mA 2,5A 2,5A 315mA	SLOW BLOW SLOW BLOW			1.010.088.49 1.915.100.05 1.915.100.06		PCB SCREEN INSULATION PERMALLOY		
IC 201 IC 301	50.05.0119 50.05.0119	µA723C µA723C				1.010.001.50 1.915.101.00		TRANSFORMER	ASSEMBLY	
P î P 2	54.04.0104 54.01.0359	3p 32p	MAINS-PLUG Edge connector			1.915.102.00		STABILIZER PO		
Q201 Q202 Q203	50.99.0106 50.03.0481 50.03.0436	T2800D MJ2955 BC237B	TRIAC NPN GEN. PURP. BC	RCA MOT 547B		=Electrolytic, CER= MOT=Motorola, PH	=Philips	ntalum, PMG=C	ermet, MF=Meta	
Q301 Q302	50.99.0106 50.03.0481	T2800D MJ2955	TRIAC	RCA Mot		1.915.100 POWE				TH 28/08/79 ① HO 08/02/80
Q401 Q402 Q403 Q404	50.03.0436 50.03.0492 50.03.0344 50.03.0436	BC237B BC256B 2N6474 BC237B	NPN 50V BC547	RCA	END →	1.915.100 POWE	R SUPPLY			② V0 06/09/84
R101	57.11.4682	6,8k			-					

2.2.3 Audio Generator


1.915.200

This oscillator circuit provides a convenient source of 9 fixed audio frequencies with stable signal level, accommodated on one Euro-card. It is well suited for quick frequency-response measurements or for other calibration work in an audio system.

Two three-position rocker switches allow the selection of the 9 frequencies, a third switch permits changeover to an external Wien-bridge, if external frequency control should be desired.

An output amplifier with level control on its input is also implemented, providing three different outputs, as far as levels and balanced/unbalanced configurations are concerned.

Technical Specifications

General: Frequencies 30 / 100 / 150 / 300 Hz / 1 / 1.5 / 3 / 10 / 15 kHz, fixed (accuracy $\pm 5\%$)

Settling time < 5 s (30 Hz)

< 1 s (1 kHz)

Level accuracy $+0.1/-0.2 \text{ dB} (0...50^{\circ} \text{ C})$

Operating temperature $-10...+55^{\circ}$ C

Supply ± 15 V, regulated within ± 0.2 V (< 25 mA)

Output 1: balanced and floating separately adjustable

Output level range -**¥...**+**10 dBu** (0...2.45 V_{rms})

Level uniformity vs. frequency ±0.1 dB (20° C)

THD < **0.25%**, 30 Hz...15 kHz

< 0.1%, 100 Hz...10 kHz

Output impedance < 30 W
Minimum load 200 W

Output 2: unbalanced separately adjustable

Output level range -**¥...**+15 **dBu** (0...4.4 V_{rms})

Level uniformity vs. frequency ±0.2 dB (20° C)

THD < **0.15%**, 30 Hz...15 kHz

< **0.1%**, 100 Hz...10 kHz

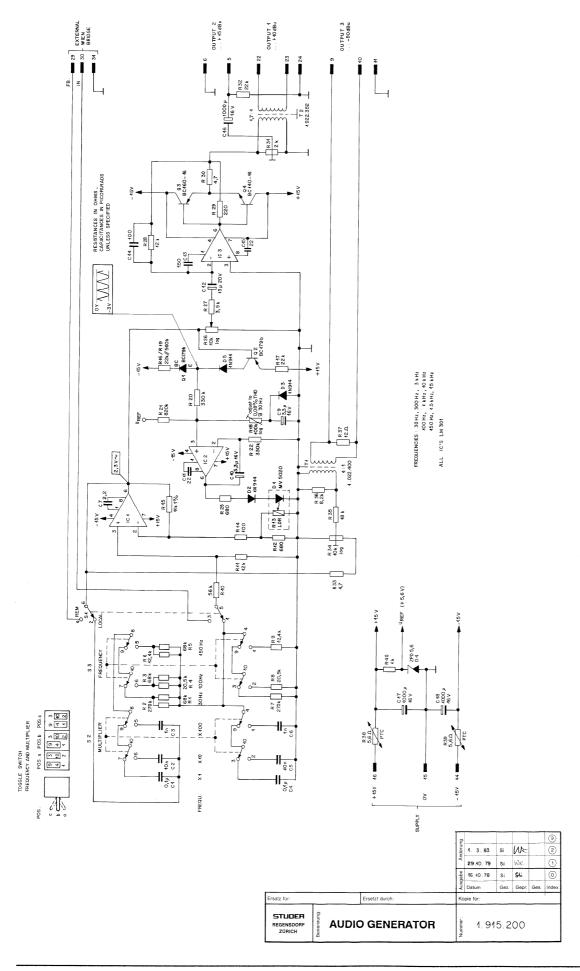
Minimum load 200 W

Output 3: balanced and floating separately adjustable

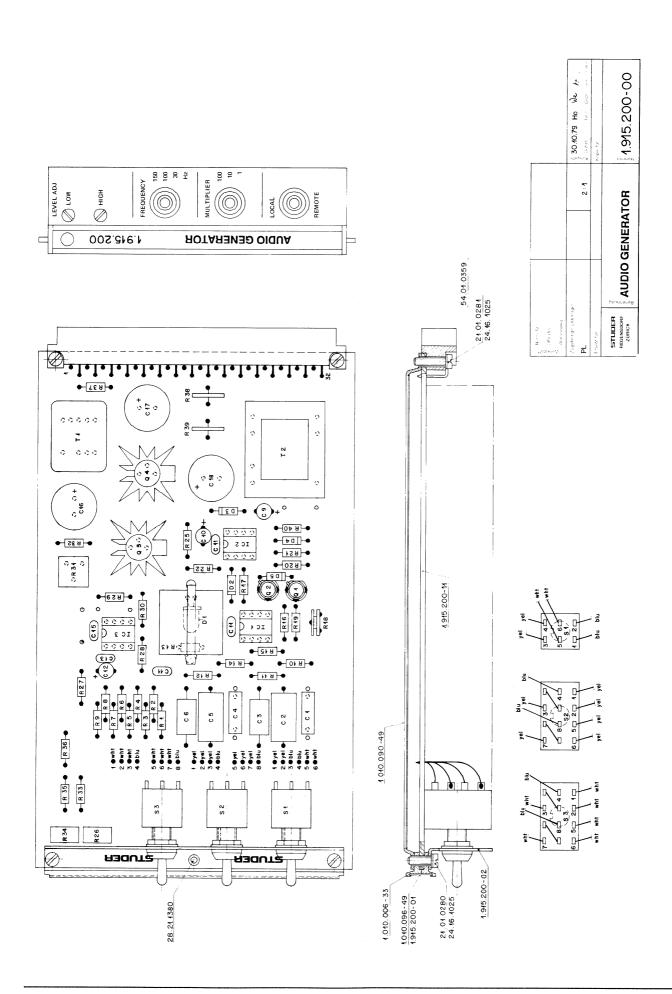
Output level range -**¥...**-**50 dBu** (0...2.5 mV_{rms})

Level uniformity vs. frequency $\pm 0.2 \text{ dB} (20^{\circ} \text{ C})$

THD < 0.2%, 30 Hz...15 kHz


Output impedance 12 W Minimum load 200 W

Dimensions: Euro-card 100×160 mm, 7M units wide


Weight approx. 350 g

Ordering Information: Audio generator 30 Hz...15 kHz 1.915.200.xx

AUDIO GENERATOR

AUDIO GENERATOR

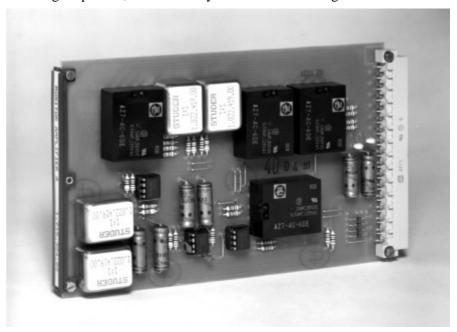
AUDIO GENERATOR

AdPOS, .	REF.No	DESCRIPTION	ON			 MANUFACTURER
C l	59.99.0254	0,1µ	2%	100V	PE	
C 2	59.12.7103	0,01μ	1%	63V	PS	
C 3	59.12.9102	1000p	1%	500V	PS	
C4	59.99.0254	0,1μ	2%	100V	PE	
C 5	59.12.7103	0,01μ	1%	63V	PS	
C6	59.12.9102	1000p	1%	500V	PS	
C7	59.34.0229	2,2p			CER	
C8	FO 20 2220		000/	101/		
C 9	59.36.3339	3,3µ	20%		TA	
C10	59.36.3339	3,3µ	20%	16V	TA	
C11	59.32.0220	22p	20%	400V	CER	
C12	59.36.4150	22p 15p	20%	25V	TA	
C13	59.32.1151	150p	10%		CER	
C14	59.32.0101	100p	20%	400V	CER	
C15	59.32.0220	22p	20%		CER	
C16	59.22.4102	1000µ		16V	EL	
C17	59.22.4102	1000µ		16V	EL	
C18	59.22.4102	1000μ	-10%	16V	EL	
D1	50.04.2104	MV5020	LED			
D 2	50.04.0125	1N4448	SI	1N914		
D3	50.04.0125	1N4448	SI	1N914		
D4	50.04.1104	Z5,6	5%	0,4W		
D5	50.04.0125	1N4448	SI	1N914		
10 .	F0 0F 044	1		110		
IC1	50.05.0144	LM301AN	OP A			
IC2	50.05.0144	LM301AN	OP A			
IC 3	50.05.0144	LM301AN	OP A	MP		
0 1	50 03 030F	BC 1700	DNO			
Q 1 Q 2	50.03.0305	BC179B	PNP			
Q3	50.03.0305	BC179B BC160-16	PNP			
Q 4	50.03.0315 50.03.0316	BC 140-16	PNP			
4	30.03.0316	BC 140-10	NPN			
R 1	57.41.4683	68k	5%	жw	CSCH	
R 2	57.39.2673	267k	1%	ИW	MF	
R3	57.41.4683	68k	5%	иW	CSCH	
R4	57.39.2052	20,5k	1%	иW	MF	
R 5	57.41.4683	68k	5%	УW	CSCH	
R 6	57.39.1242	12,4k	1%	₩	MF	
R 7	57.39.2673	267k	1%	иw	MF	
R8	57.39.2052	20,5k	1%	иw	MF	
R 9	57.39.1242	12,4k	1%	иw	MF	
R10	57.41.4563	56k	5%	иw	CSCH	
	F7 41 1100					
R11	57.41.4123	12k	5%	иw	CSCH	
R12	57.41.4681	680	5%	₩W.	CSCH	
R13	57.99.0135	1k	LDR	100UIX	00011	
R14 R15	57.41.4101	100	5%	74W	CSCH	
R 16	57.39.1102 57.41.4223	11k 22k	1% 5%	₩ ₩	MF	
R17	57.41.4223	22k	5%	ЖW	CSCH	
R 18	58.02.8104	100k LOG	20%	0,1W	PSCH	
R19	57.41.4564	560k	5%	W.	CSCH	
R20	57.41.4334	330k	5%	иw	CSCH	
		20011	٠,٠			
R21	57.41.4824	820k	5%	иw	CSCH	
R22	57.41.4334	330k	5%	иw	CSCH	
R23						
R24						
R25	57.41.4681	680	5%	₩W	CSCH	
R26	58.01.7103	10k	10%	₩	PMG	
R27	57.39.3921	3,92k	1%	иw	MF	
R28	57.41.4123	12k	5%	иw	CSCH	
R29	57.41.4221	220	5%	¥W.	CSCH	
R30	57.41.4479	4,7	5%	иw	CSCH	
R31	58.01.8202	01.	100/	1/14/	DMO	
		2k	10%	1/2W	PMG	
R32 R33	57.41.4223 57.41.4479	22k	5% 5%	14W	CSCH	
R34	57.41.4479 58.01.7103	4,7 10k	5% 10%	XW XW	CSCH	
R35	57.41.4183	10k 18k	5%	⅓W ₩	PMG CSCH	
R 36	57.41.4822	8,2k	5%	иw	CSCH	
R 37	57.41.4120	0,2k 12	5%	MW.	CSCH	
R 38	57.99.0209	5,6	PTC	A11	03011	
R39	57.99.0209	5,6	PTC			
R40	57.41.4102	3,0 1k	5%	иw	CSCH	
		•••				
S 1	55.01.0112	2x0N-0N	SWITC	H AU KIPF)	
S2	55.01.0114	4x0N-ON-ON		H AU KIPF		
S3	55.01.0114	4x0N-ON-ON		H AU KIPF		
T 1	1.022.400.00	4:1	TRAFO)		ST
T2	1.022.352.00					ST

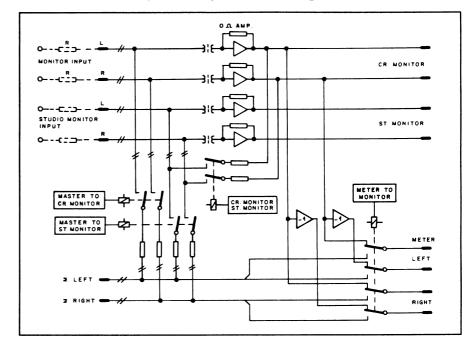
CER=Ceramic, PE=Polyester, PS=Polystyrol, PMG=Trimmer, MF=Metal Film, CSCH=Carbon Film PSCH=Potl, EL=Electrolytic, TA=Tantalum

MANUFACTURER: ST=Studer

1.915.200 AUDIO GENERATOR


WE 24/03/80

END →


2.2.4 Monitor Amplifier and Switching Relays (Studio/CR)

1.915.304

The circuit on this Euro-card is designed to form part of an audio monitoring system. The card is narrower than most others, i.e., $4\,M$ units only. It contains four amplifiers, each presenting a 0- Ω input impedance, two metering amplifiers, and four relays for audio switching.

Two stereo signal inputs from a combination of sources (with suitable isolation resistors at the output of each source) can thus be summed for Control Room (CR) and Studio Monitoring, for example. In addition, the signal from the stereo master can be assigned to either monitor line and, if needed, CR monitoring and studio monitoring can be paralleled. A further circuit permits switchover of level meters from the master bus to the CR monitor line. The relays are designed for 6 $V_{\rm DC}$ operation.

Technical Specifications

Inputs: balanced and floating (for CR monitor and studio monitor)

 $\begin{array}{ll} \text{Impedance} & > 10 \text{ kW} \\ \text{Maximum level} & +24 \text{ dBu} \end{array}$

Outputs: unbalanced (for CR monitor and studio monitor)

Impedance < 3 W

Maximum level +20 dBu into 1 kΩ

Maximum load 1 kW

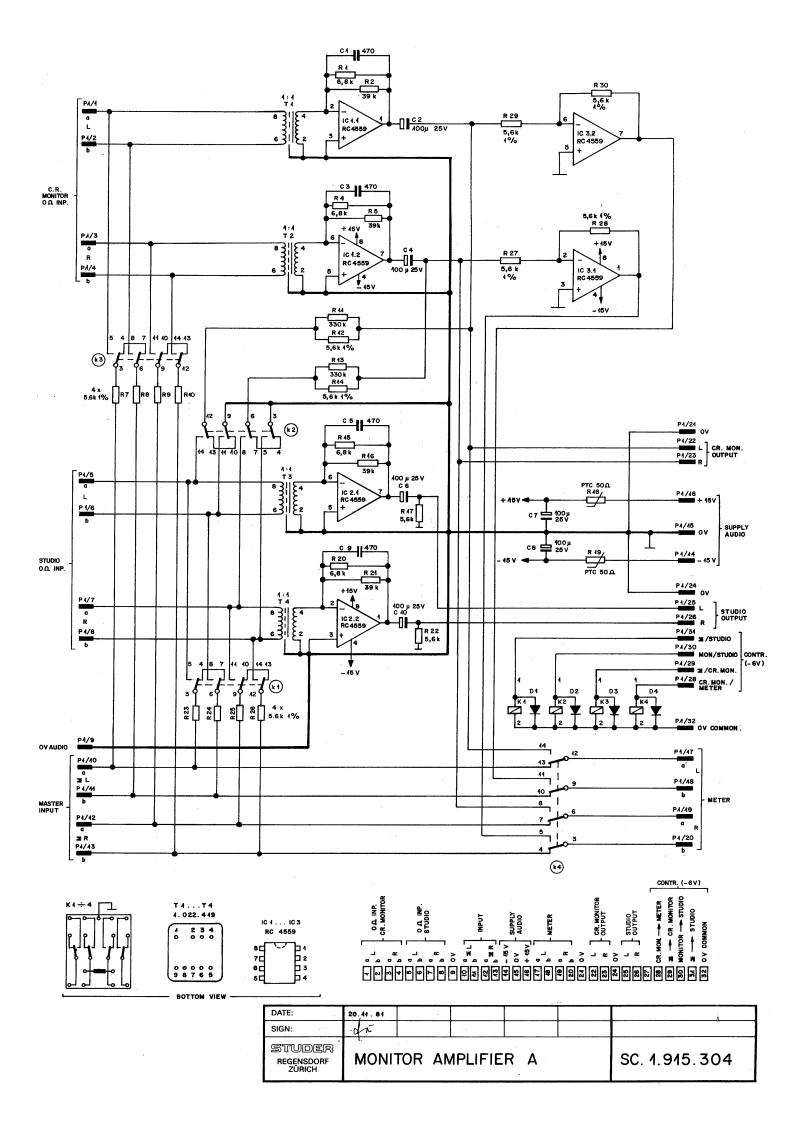
Meter outputs: push-pull

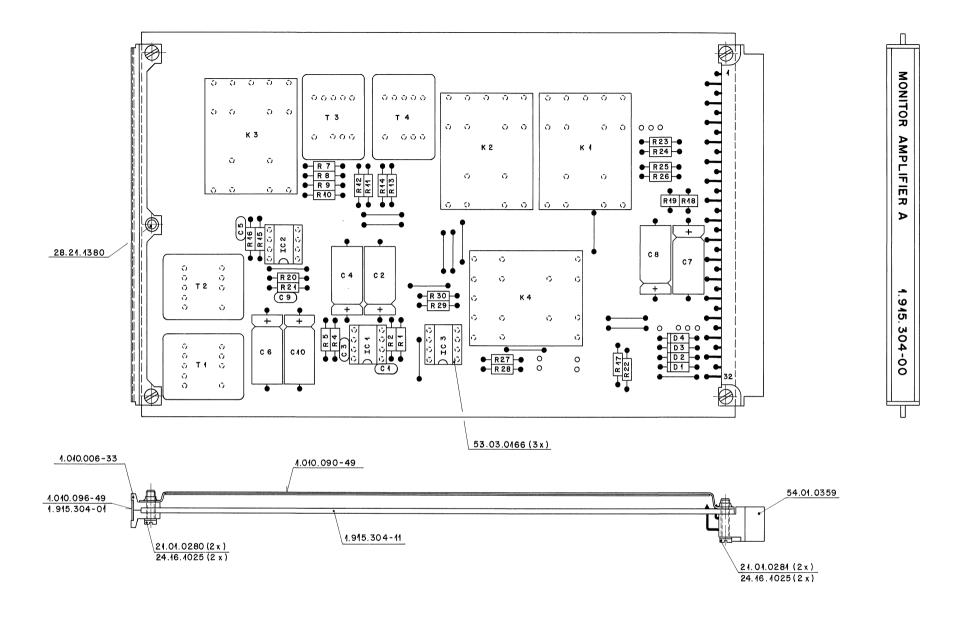
Maximum level +24 dBu

Frequency response ±0.5 dB, 30 Hz...16 kHz

THD **< 0.1%,** @ +6 dBu input, 30 Hz...16 kHz

S/N **105 dB**, 20 Hz...23 kHz


Supply: $\pm 15 \text{ V} (20 \text{ mA})$


Dimensions: Euro-card 100×160 mm, 4M units wide (19 mm)

Connector system DIN 41612, type B

Weight approx. 270 g

Ordering Information: Monitor amplifier and switching relay 1.915.304.xx

				Änderung	4.4.84	А.Но	Vr	Vo	3 2 1
				Ausgabe	8.10.81	Но	fr	Vo	0
				Aus	Datum	Gez.	Gepr.	Ges.	Index
				Ko	pie für:				
STUDER REGENSDORF ZÜRICH	Monitor	Amplifier	Α	Nummer:	1.915	5.3	04	-0	0

Description

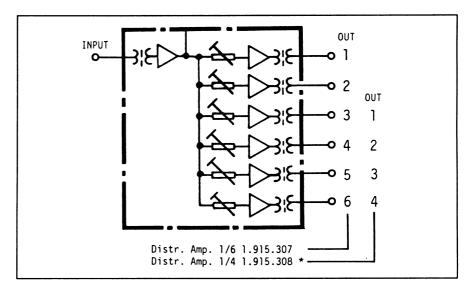
ldx. Pos.

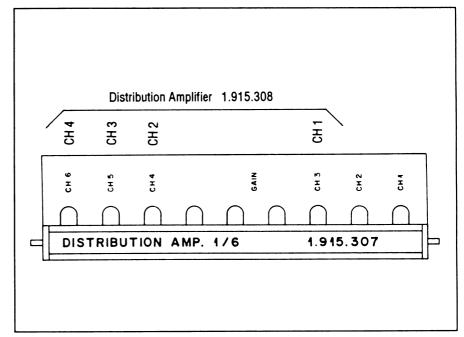
Part No. Qty. Type/Val.

Monitor Amp 1.915.304.00 (0)

Page: 1 of 1

ldx.	Pos.	Part No. Qty.	Type/Val.	Description
0	C 1	59.32.4471 1 pce	470p	CER , 20%, 50V
0	C 2	59.25.4101 1 pce	100u	EL 25V 20% axial
0	C3	59.32.4471 1 pce	470p	CER , 20%, 50V
0	C 4	59.25.4101 1 pce	100u	EL 25V 20% axial
0	C 5	59.32.4471 1 pce	470p	CER , 20%, 50V
0	C 6	59.25.4101 1 pce	100u	EL 25V 20% axial
0	C 7	59.25.4101 1 pce	100u	EL 25V 20% axial
0	C 8	59.25.4101 1 pce	100u	EL 25V 20% axial
0	C 9	59.32.4471 1 pce	470p	CER , 20%, 50V
0	C 10	59.25.4101 1 pce	100u	EL 25V 20% axial
0	D 1	50.04.0125 1 pce	1 N4448	75V, 150mA, 4ns, DO-35
0	D 2	50.04.0125 1 pce	1N4448	75V, 150mA, 4ns, DO-35
0	D 3	50.04.0125 1 pce	1N4448	75V, 150mA, 4ns, DO-35
0	D 4	50.04.0125 1 pce	1N4448	75V, 150mA, 4ns, DO-35
0	IC 1	50.09.0107 1 pce	4559	Dual Op-Amp
0	IC 2	50.09.0107 1 pce	4559	Dual Op-Amp
0	IC 3	50.09.0107 1 pce	4559	Dual Op-Amp
0	K 1		4559 4*u	6V, 220V/2A, PCB
0	K 2	56.04.0146 1 pce	4 u 4*u	6V, 220V/2A, PCB
		56.04.0146 1 pce		
0	K 3	56.04.0146 1 pce	4*u	6V, 220V/2A, PCB
	K 4	56.04.0146 1 pce	4*u	6V, 220V/2A, PCB
0	R 1	57.11.3682 1 pce	6k8	MF, 1%, 0207
0	R 2	57.11.3393 1 pce	39k	MF, 1%, 0207
0	R 4	57.11.3682 1 pce	6k8	MF, 1%, 0207
0	R 5	57.11.3393 1 pce	39k	MF, 1%, 0207
0	R 7	57.11.3562 1 pce	5k6	MF, 1%, 0207
0	R 8	57.11.3562 1 pce	5k6	MF, 1%, 0207
0	R 9	57.11.3562 1 pce	5k6	MF, 1%, 0207
0	R 10	57.11.3562 1 pce	5k6	MF, 1%, 0207
0	R 11	57.11.3334 1 pce	330k	MF, 1%, 0207
0	R 12	57.11.3562 1 pce	5k6	MF, 1%, 0207
0	R 13	57.11.3334 1 pce	330k	MF, 1%, 0207
0	R 14	57.11.3562 1 pce	5k6	MF, 1%, 0207
0	R 15	57.11.3682 1 pce	6k8	MF, 1%, 0207
0	R 16	57.11.3393 1 pce	39k	MF, 1%, 0207
0	R 17	57.11.3562 1 pce	5k6	MF, 1%, 0207
0	R 18	57.99.0206 1 pce	50R	PTC, 25V, 0.5W
0	R 19	57.99.0206 1 pce	50R	PTC, 25V, 0.5W
0	R 20	57.11.3682 1 pce	6k8	MF, 1%, 0207
0	R 21	57.11.3393 1 pce	39k	MF, 1%, 0207
0	R 22	57.11.3562 1 pce	5k6	MF, 1%, 0207
0	R 23	57.11.3562 1 pce	5k6	MF, 1%, 0207
0	R 24	57.11.3562 1 pce	5k6	MF, 1%, 0207
0	R 25	57.11.3562 1 pce	5k6	MF, 1%, 0207
0	R 26	57.11.3562 1 pce	5k6	MF, 1%, 0207
0	R 27	57.11.3562 1 pce	5k6	MF, 1%, 0207
0	R 28	57.11.3562 1 pce	5k6	MF, 1%, 0207
ō	R 29	57.11.3562 1 pce	5k6	MF, 1%, 0207
0	R 30	57.11.3562 1 pce	5k6	MF, 1%, 0207
0	T 1	1.022.419.00 1 pce		EINGANGSTRAFO 1:1
0	T 2	1.022.419.00 1 pce		EINGANGSTRAFO 1:1
0	T3	1.022.419.00 1 pce		EINGANGSTRAFO 1:1
	. •			
0	T 4	1.022.419.00 1 pce		EINGANGSTRAFO 1:1


End of Lis


Comments

2.2.5 Distribution Amplifier

1.915.307/308

The distribution amplifier cards offer splitting of one input to four or six individually adjustable outputs (versions 1.915.308 or 1.915.307, respectively). The input and all outputs are transformer-balanced and floating. These cards satisfy any complex requirement of signal routing and distribution.

Technical Specifications

General: Frequency range 31.5 Hz...16 kHz

Frequency response +0.2/–0.5 dB, $R_L = 300 \Omega$

Input: balanced and floating

Impedance 3 10 kW Symmetry 3 60 dB

Gain, adjustable **-20...+10 dB** (Jumper 2-3: +6 dB Gain)

Outputs: balanced and floating

Impedance £ 40 W

Maximum level +24 dBu, $R_L = 600 \Omega/THD < 1\%$

+21 dBu, $R_L = 200$ Ω/THD < 1%

THD **£** 0.02%, +6 dBu/300 Ω

Output noise voltage -100 dBu, 0 dB gain

Supply: $\pm 15 \text{ V}_{DC}$ (90 mA, all outputs +6 dBu, without load;

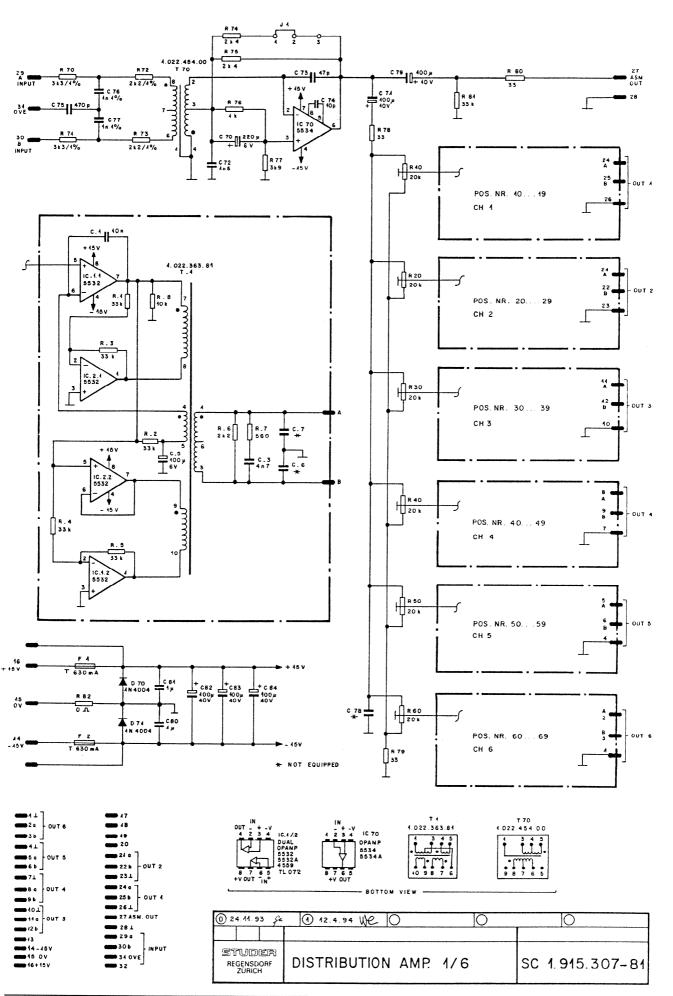
180 mA, all outputs +24 dBu into 300 Ω)

Dimensions: Euro-card 100×160 mm, 7 M units wide

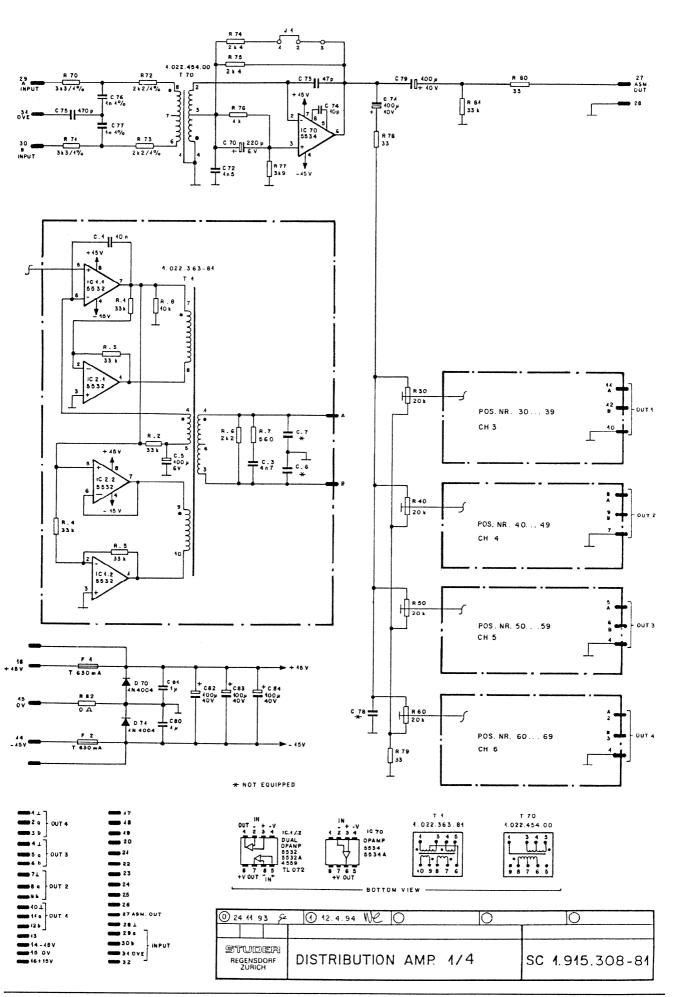
Weight **500 g** (1.915.308)

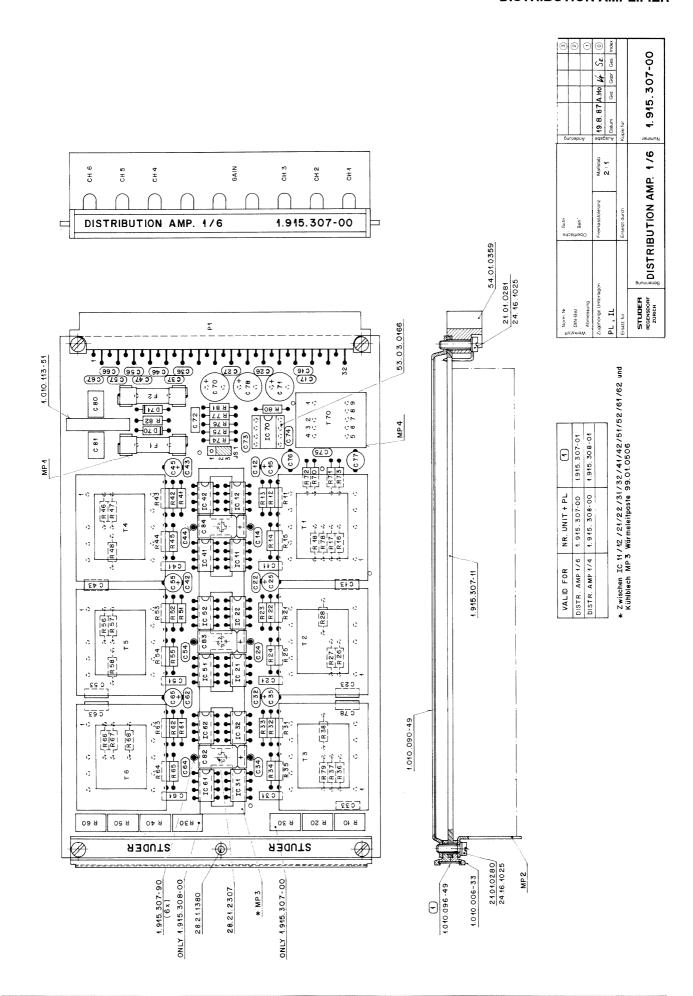
600 g (1.915.307)

Ordering Information:


Euro-cards: • Distribution amplifier 1 to 6 1.915.307.xx

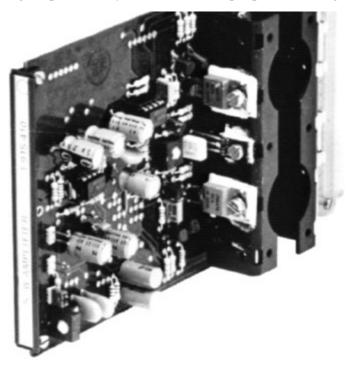
Distribution amplifier 1 to 4 1.915.308.xx


19"/1U standard products: • Distribution unit 2×1 in/4 out on XLR 75.700.89301


Distribution unit 3×1 in/4 out on XLR 75.700.89302

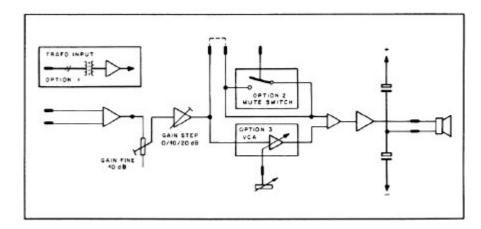
Distribution unit 2×1 in/6 out on XLR 75.700.89303

<u>Ad</u>	P0S	REF.No	DESCRIF	PTION	MANUFACTURER	AdPOS	REF.No	DESCRIPTION	MANUFACTURER
C C C	12 13 14 15 16	59.06.0222 59.34.2470 59.06.0472 59.34.2470 59.22.3101 59.32.1680	2.2 nF 47 pF 4.7 nF 47 pF 100 uF 68 pF	not used PE CER PE CER ALU 10Y CER 400V		R11 R12 R13 R14 R15 R16 R17	57.11.4333 57.11.4333 57.11.4333 57.11.4333 57.11.4222 57.11.4102 57.11.4103	33 kOhm 5% 0.25W 34 kOhm 5% 0.25W 34 kOhm 5% 0.25W 34 kOhm 5% 0.25W 34 kOhm 5% 0.25W 35 kOh	MF MF MF MF MF MF MF
01 C C C C C	22 23 24 25 26	59.06.0222 59.34.2470 59.06.0472 59.34.2470 59.22.3101 59.32.1680	2.2 nF 47 pF 4.7 nF 47 pF 100 uF 68 pF	PE CER PE CER ALU 10V CER 400Y		R20 R22 R23 R24 R25 R26 R26	58.01.9203 57.11.4333 57.11.4333 57.11.4333 57.11.4333 57.11.4222 57.11.4102	20 kOhm 10% 0.5 W 33 kOhm 5% 0.25W 2.2 kOhm 5% 0.25W 1 kOhm 5% 0.25W	PMG trimming resistor MF MF MF MF MF MF
01 C C C C C	323334353637	59.34.2470 59.34.2470 59.36.0472 59.34.2470 59.22.3101 59.32.1680	2.2 nF 47 pF 4.7 nF 47 pF 100 uF 68 pF	PE CER PE CER ALU 10V CER 400V not used		R28 R30 R31 R32 R33 R34 R35 R36 R37 R38	58.01.9203 57.11.4333 57.11.4333	20 kOhm 10% 0.5 M 8 33 kOhm 5% 0.25W N 22 kOhm 5% 0.25W N	MF PMG trimming resistor MF MF MF MF MF
01 C C C C C	42 43 45 45 46	59.06.0222 59.34.2470 59.06.0472 59.34.2470 59.22.3101 59.32.1680	2.2 nf 47 pf 4.7 nf 47 pf 100 uf 68 pf	PE		R41 R42 R43 R44 R45	57.11.4333 57.11.4333 57.11.4333 57.11.4333 57.11.4333	10 kOhm 5% 0.25M h 20 kOhm 10% 0.5 M F 33 kOhm 5% 0.25M h 36 kOhm 5% 0.25M h	WF WF WF trimming resistor WF WF WF WF WF
01 C C C C C	51 52 53 54 55 56	59.06.0222 59.34.2470 59.06.0472 59.34.2470 59.22.3101 59.32.1680	2.2 nF 47 pF 4.7 nF 47 pF 100 uF 68 pF	not used PE CER PE CER ALU 10V CER 400V not used		R46 R47 R50 R51 R52 R53	57.11.4222 57.11.4102 57.11.4103 58.01.9203 57.11.4333 57.11.4333 57.11.4333	1 kOhm 5% 0.25W M 10 kOhm 5% 0.25W M 20 kOhm 10% 0.5 W M 33 kOhm 5% 0.25W M 33 kOhm 5% 0.25W M 33 kOhm 5% 0.25W M	NF AF AF WG trimming resistor AF AF AF AF
01 C C C C	62 63 64 65 66	59.06.0222 59.34.2470 59.06.0472 59.34.2470 59.22.3101 59.32.1680	2.2 nF 47 pF 4.7 nF 47 pF 100 uF 68 pF	not used PE CER PE CER ALU 10V CER 400V not used		R54 R55 R56 R57 R58 R60	57.11.4333 57.11.4222 57.11.4102 57.11.4103 58.01.9203 57.11.4333 57.11.4333	33 kOhm 5% 0.25W M 2.2 kOhm 5% 0.25W M 1 kOhm 5% 0.25W M 10 kOhm 5% 0.25W M 20 kOhm 10% 0.5 W M 33 kOhm 5% 0.25W M	4F 4F 4F 4F WMG trimming resistor 4F
C C C C C	70 71 72 73 74 75 76	59.22.4221 59.22.4101 59.06.0152 59.34.2470 59.34.4100 59.34.5471 59.05.1102 59.05.1102	220 uF 100 uF 1.5 nF 47 pF 10 pF 470 pF 1 nF	ALU 6V ALU 10V CER CER CER CER CER 1%		R63 R64 R65 R66 R67 R68 R70	57.11.4333 57.11.4333 57.11.4333 57.11.4222 57.11.4102 57.11.4103 57.11.3332	33 kOhm 5% 0.25M M 33 kOhm 5% 0.25M M 33 kOhm 5% 0.25M M 1 kOhm 5% 0.25M M 1 kOhm 5% 0.25M M 10 kOhm 5% 0.25M M 3.3 kOhm 1% 0.25M M	if 17 17 18 18 18 18 18 18
C C C C	79 80 81 82 83 84	59.22.4101 59.06.5105 59.06.5105 59.25.5101 59.25.5101 59.25.5101 50.04.0105	100 uF 1 uF 1 uF 100 uF 100 uF 100 uF	ALU 10V PE PE 40V 40V 40V		R71 R72 R73 R74 R75 R76 R77 R78 R78	57.11.3222 57.11.3222 57.11.3242 57.11.3242 57.11.4102 57.11.4392 57.11.4330 57.11.4330	2.2 kOhm 1% 0.25W M 2.2 kOhm 1% 0.25W M 2.4 kOhm 1% 0.25W M	IF IF IF IF IF IF IF
D	71	50.04.0105	1N4004			R81 R82	57.11.4333	33 kOhm 5% 0.25W M 0 Ohm 5% 0.25W M	IF
F IC. IC.	1	51.01.0115 51.01.0115 50.09.0106 50.09.0106	NE5532AN NE5532AN	T 630mA /250V 5*20 T 630mA /250V 5*20 dual op. amp. dual op. amp.	Ra,NE Ra,NE	T20 T30 T40	1.022.363.00 1.022.363.00 1.022.363.00 1.022.363.00 1.022.363.00	output trafo output trafo output trafo output trafo output trafo	•
IC.	21	50.09.0106 50.09.0106	NE5532AN NE5532AN	dual op. amp. dual op. amp.	Ra, NE Ra, NE	T60	1.022.363.00 1.022.454.00	output trafo input trafo	
	31 32	50.09.0106 50.09.0106	NE5532AN NE5532AN	dual op. amp. dual op. amp.	Ra, NE Ra, NE		PE=Polyester m, PMG=Cermet		
IC.	41	50.09.0106 50.09.0106	NE5532AN NE5532AN	dual op. amp. dual op. amp.	Ra, NE Ra, NE	MANUFACTURER		=Nippon Electric Corp., Ph= s, St=Studer.	Philips, Ra=Rayth
IC.	52	50.09.0106 50.09.0106	NE5532AN NE5532AN	dual op. amp. dual op. amp.	Ra, NE Ra, NE		1.915.307.00	DISTRIBUTION AMP. 1/6	SE 87/09/0400
IC.	61 62 70	50.09.0106 50.09.0106 50.05.0244	NE5532AN NE5532AN NE5534AN	dual op. amp. dual op. amp. single op.amp.	Ra, NE Ra, NE Ra, NE	END	1.915.307.00	DISTRIBUTION AMP. 1/6	SE 92/07/0201
	1	54.01.0021		JUMPER JACK		7			
MP MP MP	3	53.03.0142 1.915.307.02 1.915.307.05 1.022.400.03	4 pcs 1 pcs 1 pcs 1 pcs	JUMPER PLUG 3-PIN Fuse holder Abdeckwinkel Kuelblech Isolation T 70					
	10	58.01.9203	20 k0hm	10% 0.5 W PMG trimming resist	tor				


Ad	POS	REF.No	DESCRIF	PTION	MANUFACTURER	AdPOS	REF.No	DESCRIPTION	MANUFACTURER
01	C31 C32 C33 C34 C35 C36	59.06.0222 59.34.2470 59.06.0472 59.34.2470 59.32.3101 59.32.1680	2.2 nF 47 pF 4.7 nF 47 pF 100 uF 68 pF	not used PE CER PE CER ALU 10V CER 400V		R56 R57 R58 R60 R61 R62	57.11.4222 57.11.4102 57.11.4103 58.01.9203	2.2 kOhm 5% 0.25W 1 kOhm 5% 0.25W 10 kOhm 5% 0.25W 20 kOhm 10% 0.5 W 33 kOhm 5% 0.25W 33 kOhm 5% 0.25W	MF HF MF PMG trimming resistor MF
01	C41 C42 C43 C44 C45	59.06.0222 59.34.2470 59.06.0472 59.34.2470 59.22.3101	2.2 nF 47 pF 4.7 nF 47 pF 100 uF	not used PE CER PE CER PE ALU 10Y		R62 R64 R65 R66 R67 R68	57.11.4333 57.11.4333 57.11.4333 57.11.4233 57.11.4222 57.11.4102 57.11.4103 57.11.3332	33 kOhm 5% 0.25W 33 kOhm 5% 0.25W 33 kOhm 5% 0.25W 33 kOhm 5% 0.25W 1 kOhm 5% 0.25W 10 kOhm 5% 0.25W 10 kOhm 5% 0.25W 3.3 kOhm 1% 0.25W	MF MF MF MF MF MF MF MF MF
01	C46 C51 C51 C52 C53 C54	59.32.1680 59.06.0222 59.34.2470 59.06.0472 59.34.2470	2.2 nF 47 pF 4.7 nF 47 pF	CER 400V not used PE CER PE CER PE CER		R71 R72 R73 R74 R75 R76 R77	57.11.3332 57.11.3222 57.11.3222 57.11.3242 57.11.3242 57.11.4102 57.11.4392 57.11.4330	3.3 kOhm 1% 0.25W 2.2 kOhm 1% 0.25W 2.2 kOhm 1% 0.25W 2.4 kOhm 1% 0.25W 2.4 kOhm 1% 0.25W 1 kOhm 5% 0.25W 3.9 kOhm 5% 0.25W 3.9 kOhm 5% 0.25W	MF MF MF MF MF MF MF
	C55 C56 C57	59.22.3101 59.32.1680	100 uF 68 pF	ALU 10V CER 400V not used		R79 R80 R81	57.11.4330 57.11.4330 57.11.4333	33 Ohm 5% 0.25W 33 Ohm 5% 0.25W	MF MF
	C61 C62 C63 C64 C65 C66 C67	59.06.0222 59.34.2470 59.06.0472 59.34.2470 59.22.3101 59.32.1680	2.2 nF 47 pF 4.7 nF 47 pF 100 uF 68 pF	not used PE CER PE CER ALU 10V CER 400V		R82 T30 T40 T50 T60	57.11.4000 1.022.363.00 1.022.363.00 1.022.363.00 1.022.363.00 1.022.454.00		MF
	C70	59.22.4221 59.22.4101	220 uF	ALU 6V ALU 10V		CER=Ceramic, MF=Metal Fil	PE=Polyester. m, PMG=Cermet	SAL=Solid Aluminium	
	C72 C73 C74 C75	59.06.0152 59.34.2470 59.34.4100 59.34.5471	1.5 nF 47 pF 10 pF 470 pF	CER CER CER CER		MANUFACTURER	Sig=Signetic:		
	C76 C77 C79 C80	59.05.1102 59.05.1102 59.22.4101 59.06.5105	1 nF 1 nF 100 uF 1 uF	1% 1% ALU 10V PE				DISTRIBUTION AMP.1/4 DISTRIBUTION AMP.1/4	SE 87/09/0400 SE 92/07/0201
	C81 C82 C83 C84	59.06.5105 59.25.5101 59.25.5101 59.25.5101	1 uF 100 uF 100 uF 100 uF	PE 40V 40V 40V		END →			
	D70 D71	50.04.0105 50.04.0105	1N4004 1N4004						
	F2	51.01.0115 51.01.0115		T 630mA /250V 5*20 T 630mA /250V 5*20					
	IC31 IC32	50.09.0106 50.09.0106	NE5532AN NE5532AN	dual op. amp. dual op. amp.	Ra, NE Ra, NE				
	IC41 IC42	50.09.0106 50.09.0106	NE5532AN NE5532AN	dual op. amp. dual op. amp.	Ra, NE Ra, NE				
	IC51 IC52	50.09.0106 50.09.0106	NE5532AN NE5532AN	dual op. amp. dual op. amp.	Ra,NE Ra,NE				
	IC61 IC62	50.09.0106 50.09.0106	NE5532AN NE5532AN	dual op. amp. dual op. amp.	Ra,NE Ra,NE				
	IC70	50.05.0244	NE5534AN	single op.amp.	Ra, NE				
	JP1 JS1	54.01.0021 54.01.0020		JUMPER JACK JUMPER PLUG 3-PIN					
	MP3	53.03.0142 1.915.307.02 1.915.307.05 1.022.400.03	4 pcs 1 pcs 1 pcs 1 pcs	Fuse holder Abdeckwinkel Kuelblech Isolation T 70					
	R30 R31 R32 R33 R34 R35 R36 R37 R38 R40	58.01.9203 57.11.4333 57.11.4333 57.11.4333 57.11.4333 57.11.4333 57.11.4222 57.11.4102 57.11.4103 58.01.9203	20 kOhm 33 kOhm 33 kOhm 33 kOhm 33 kOhm 2.2 kOhm 1 kOhm 10 kOhm 20 kOhm	10% 0.5 W PMG trimming resi 5% 0.25W MF 5% 0.25W MF					
	R41 R42 R43 R44 R45 R46 R47 R48 R50	57.11.4333 57.11.4333 57.11.4333 57.11.4333 57.11.4333 57.11.4222 57.11.4102 57.11.4103 58.01.9203	33 kOhm 33 kOhm 33 kOhm 33 kOhm 33 kOhm 2.2 kOhm 1 kOhm 10 kOhm 20 kOhm	5% 0.25W MF 5% 0.25W MF 10% 0.5 W PMG trimming resi:	stor				
1	R51 R52 R53 R54 R55	57.11.4333 57.11.4333 57.11.4333 57.11.4333 57.11.4333	33 kOhm 33 kOhm 33 kOhm 33 kOhm 33 kOhm	5% 0.25W MF 5% 0.25W MF 5% 0.25W MF 5% 0.25W MF 5% 0.25W MF					

2.2.6 5 W Power Amplifier

1.915.410/415


This amplifier on one Euro-card is designed for operation on a ± 15 V supply. It is capable of providing a power output of 5 W into a load of 8 Ω .

With its low-to-medium power level, this amplifier is ideally suited for applications such as pre-listening or talkback speaker operation. Its output stage is protected by instantaneous output power limiting.

The standard version has an electronically balanced (transformerless) input. It is also available with the following options:

- Input balancing transformer
- Remote muting
- Remote gain control (VCA)
- Input balancing transformer plus remote muting
- Input balancing transformer plus remote gain control (VCA).

Technical Specifications

Audio: Power output 4 W/15 W

5 W/8 W

2.5 W/4 W, continuous, sine wave

THD < **0.1%** @ rated output, 30 Hz...16 kHz

Frequency response $\pm 0.5 \text{ dB}$, 30 Hz...16 kHz

Input impedance 10 kW, balanced

Sensitivity $-17...+16 \text{ dBu} (0.11...4.9 \text{ V}_{rms})$ for rated output

Maximum input level +24 dBu (12.3 V_{ms}) clipping point

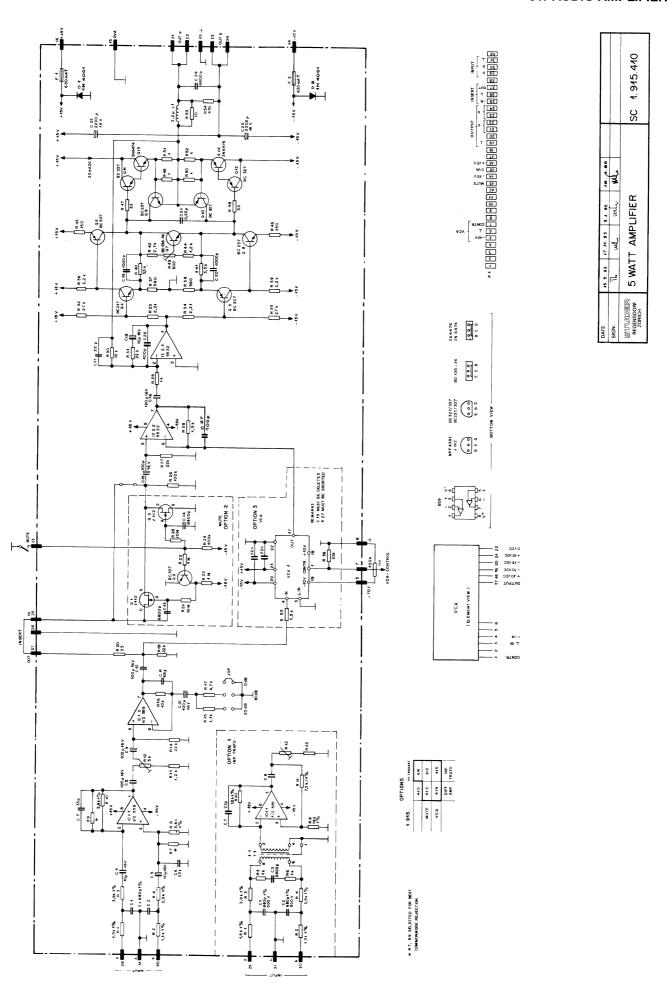
100 dB, linear to 23 kHz at normal operating gain (input +6 dBu)

85 dB, at maximum gain

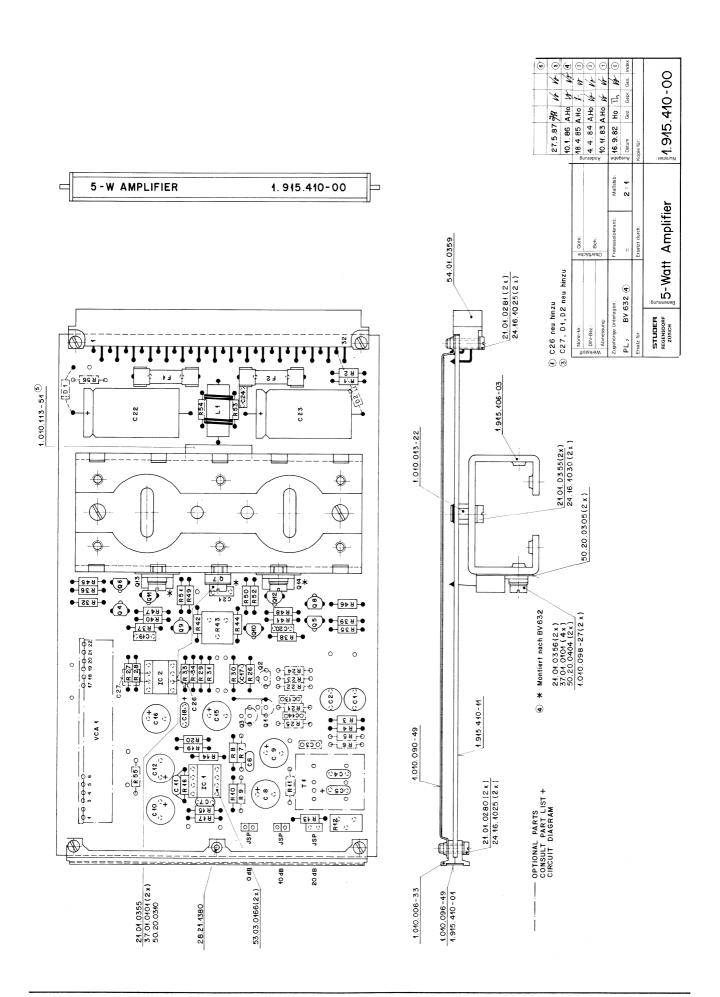
Supply: $\pm 15 \text{ V DC}$ (40 mA idling; 400 mA @ 5 W/8 Ω)

Output stage quiescent current 23 mA

Dimensions: Euro-card 100×160 mm, 7M units wide


S/N

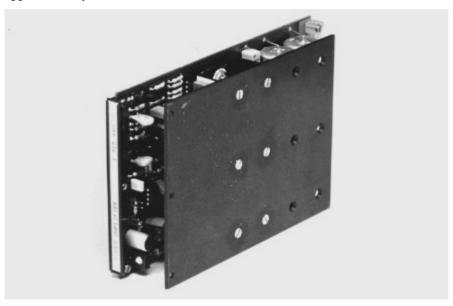
Weight approx. 210 g


Ordering Information: 5 W amplifier with

transformerless input
 input transformer
 transformerless input and remote muting facility
 input transformer and remote muting facility
 input transformer and remote muting facility
 transformerless input and remote gain control (VCA)
 input transformer and remote gain control (VCA)
 1.915.413.xx
 input transformer and remote gain control (VCA)
 1.915.415.xx

5W AUDIO AMPLIFIER

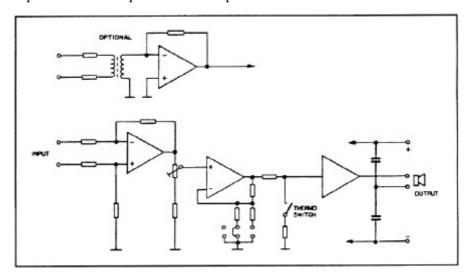
5W AUDIO AMPLIFIER


5W AUDIO AMPLIFIER

AdPOS. ,	REF.No.,.	DESCRIPT	10N	MANUFACTURER	AdPOS	REF.No	DESCRIPTI	DN		ANUFACTURER
C	59.05.1681 59.05.1681 59.26.2100 59.26.2100 59.34.2330 59.34.2330 59.22.5101 59.22.5101	680p 680p OPT 1 10µ 10µ 33p 33p 100µ 100µ	1% 500V PP 1% 500V PP 16V SAL 16V SAL CER CER 16V EL 16V EL		R 33 R 34 R 35 R 36 R 37 R 38 R 39 R 40	57.11.4222 57.11.4222 57.11.4273 57.11.4222 57.11.4561 57.11.4561 57.11.4222 57.11.4332	2,2k 2,2k 27k 2,2k 560 560 2,2k 3,3k			
C	59.22.5101 59.34.4680 59.22.5101 59.22.5101 59.22.5101 59.34.2220 59.36.2100 59.06.0102	68p 100µ 0PT 2 0PT 2 100µ 100µ 22p 10µ	16V EL 16V EL 16V EL 16V EL 16V SAL PE		R	57.11.4332 57.11.4272 58.01.8501 57.11.4122 57.11.4151 57.11.4330 57.11.4330 57.11.4109 57.11.4109	3,3k 2,7k 500 1,2k 150 150 33 33 1	TRIM		
C21 C22 C23 C24 C25	59.06.0102 59.06.0224 59.25.3222 59.25.3222 59.06.0682	0,22µ 2200µ 2200µ 6800p OPT 3	PE PE 16V EL 16V EL PE		R 51 R 52 R 53 R 54 R 55 R 56	57.11.4109 57.11.4109 57.11.4100 57.11.4471	1 10 470 OPT 3 OPT 3			
① C26 ② C27	59.34.4101 59.34.4101	100p 100p	CER CER		XF	53.03.0142		FUSE HOLDER		
F1 F2	51.01.0115 51.01.0115	630mA 630mA	SLOW BLOW 5+20 SLOW BLOW 5+20		XIC Options	53.03.0166	8pDIL			
IC1 ① IC2	50.09.0107 50.09.0106	4559 5532	DUAL OP AMP DUAL OP AMP	RA SIG	C 3	59.06.0682 59.34.3330	OPTION 1 6800p	PE		
JSP	54.01.0020 54.01.0021	PIN Jumper	(2•)		C 7 R 5	59.34.2220 57.11.4102	22p 1k	CER		
L1	1.068.614.00	2,2µH			R 6 R 8	57.11.4102 57.11.3181	1k 180	1%		
P 1	54.01.0359	32p	EDGE CONN. TYBE B		R10 R11	57.11.3752 57.11.3752	7,5k 7,5k	1% 1%		
Q1 Q2 Q3 Q4 Q5	50.03.0436 50.03.0515	OPT 2 OPT 2 OPT 2 BC237B BC307B	NPN GEN. PURPOSE PNP GEN. PURPOSE		T 1 C 13	1.022.419.00 1.022.400.03	1:1 OPTION 2 6800p	INSULATION		ST
Q6 Q7 Q8 Q9 Q10	50.03.0515 50.03.0495 50.03.0436 50.03.0436 50.03.0515	BC307B BD135-16 BC237B BC237B BC307B	PNP GEN. PURPOSE NPN NPN GEN. PURPOSE NPN GEN. PURPOSE NPN GEN. PURPOSE PNP GEN. PURPOSE		Q1 Q1 Q2 Q3	59.06.0682 59.06.0682 50.03.0350 50.03.0515 50.03.0350	6800p 6800p J112 BC307 J112	ND FET PNP GEN. PURPOSE ND FET	MPF4392 MPF4392	SIX, MOT
Q11 Q12 Q13 Q14	50.03.0340 50.03.0351 50.03.0344 50.03.0345	BC337 BC327 2N6474 2N6476	NPN 800mA PNP 800mA NPN PNP	RCA RCA	R 21 R 22 R 23 R 24 R 25	57.11.6106 57.11.4105 57.11.4105 57.11.4104 57.11.6106	10M 1M 1M 100k 10M			
R1 R2 R3 R4 R5	57.11.3152 57.11.3152 57.11.3392 57.11.3392	1,5k 1,5k 3,9k 3,9k OPT 1	1% 1% 1% 1%		② D1 ② D2	50.04.0122 50.04.0122	OPTION 3 1N4001 1N4001			MOT MOT
R 6 R 7 R 8	57.11.3362	OPT 1 Selected 3,6k	1%		R55 R56	57.11.4152 57.11.4223	1,5k 22k			
R 9 R 10	57.11.3362	SELECTED 3,6k	1%		VCA1	1.010.110.50		VOLTAGE CONTROLLED AMP	L	ST
R11 R12 R13 R14 R15	58.01.7502 57.11.4122 57.11.4223 57.11.3112	OPT 1 5k 1,2k 22k 1,1k	TRIM			e, SAL= Solid Alumi		amic, EL=Electrolytic, PE=Pol iliconix, RA=Raytheon, SIG=Si	-	
R16 R17	57.11.4103 57.11.4472	10k 4,7k	-72		NOTION OF CITE	1.915.410.00 5 V			-	TH 14/04/82
R18 R19	57.11.4223 57.11.4223	NOT USED 22k				1.915.410.00 5 V	VATT AMPLIFIER		① I	HO 04/11/83
R 20 R 21 R 22 R 23 R 24 R 25 R 26 R 27 R 28 R 29 R 30	57.11.4330 57.11.4104 57.11.4223 57.11.4152 57.11.4102 57.11.4103	33 OPT 2 OPT 2 OPT 2 OPT 2 OPT 2 100k 22k 1,5k 1k			END →	1.915.410.00 5 V	/ATT AMPLIFIER		②	PA 18/04/85
R31 R32	57.11.4223 57.11.4273	22k 27k								

2.2.7 40 W Power Amplifier

1.915.440/441


For applications where higher power level is needed, a 40 W amplifier has been realized on a Euro-card. Its width is 32 mm, which equals 7M widths approximately.

Power is supplied from a separate 45 V_{DC} source, as is contained in the 19" mounting frame 1.918.120.xx. Two amplifier cards will fit into that frame, making it suitable for applications where stereophonic monitoring is required.

Special Features

- Transformerless version with electronically balanced inputs standard
- Version with balanced and floating inputs available
- Output stage protected from overload by momentary power limiting
- Temperature sensing avoids thermal overload
- High-end frequency response limited to prevent transient intermodulation distortion
- Low distortion performance, even at low power output
- Operation with output transformer possible

Technical Specifications

Audio: Power output 40 W/4 W, continuous, sine-wave,

THD < **0.1** %, 30 Hz...15 kHz (up to rated output)

Output impedance 0.1 W
Input impedance 10 kW

Common mode rejection > **50 dB**, 30 Hz...16 kHz (with input transformer)

Input sensitivity $-12...+18 \text{ dBu } (0.195...6.2 \text{ V}_{rms})$ for rated output (adjustable with jumper

in three 10 dB-increments, plus fine-trim range of 12 dB)

Frequency response +**0.5**/-**1 dB**, 30 Hz...15 kHz

S/N **105 dB** @ maximum gain **90 dB** @ minimum gain

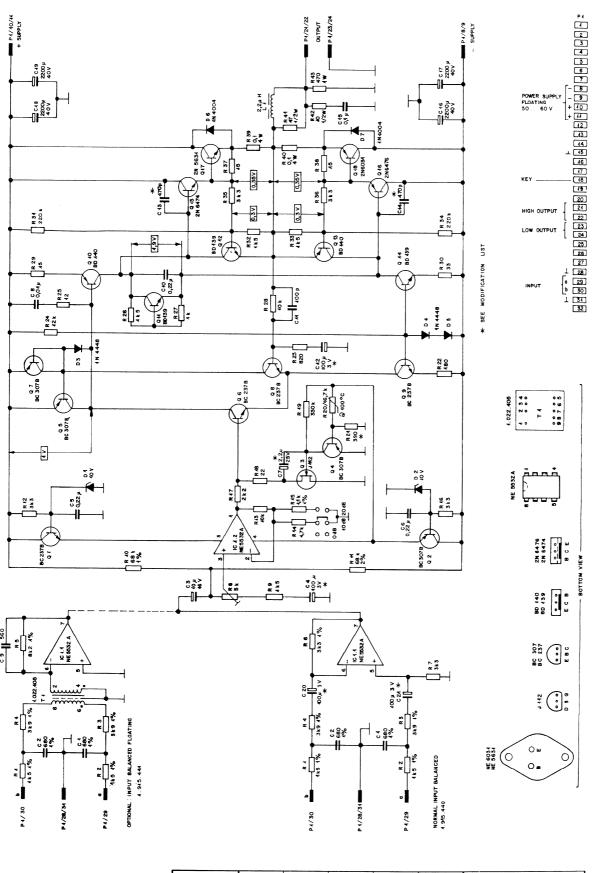
Supply: 45 V_{DC} (70 mA idling, 1.5 A @ 40 W/4 Ω)

Dimensions: Euro-card 100×160 mm, 7M units wide

Ordering Information:

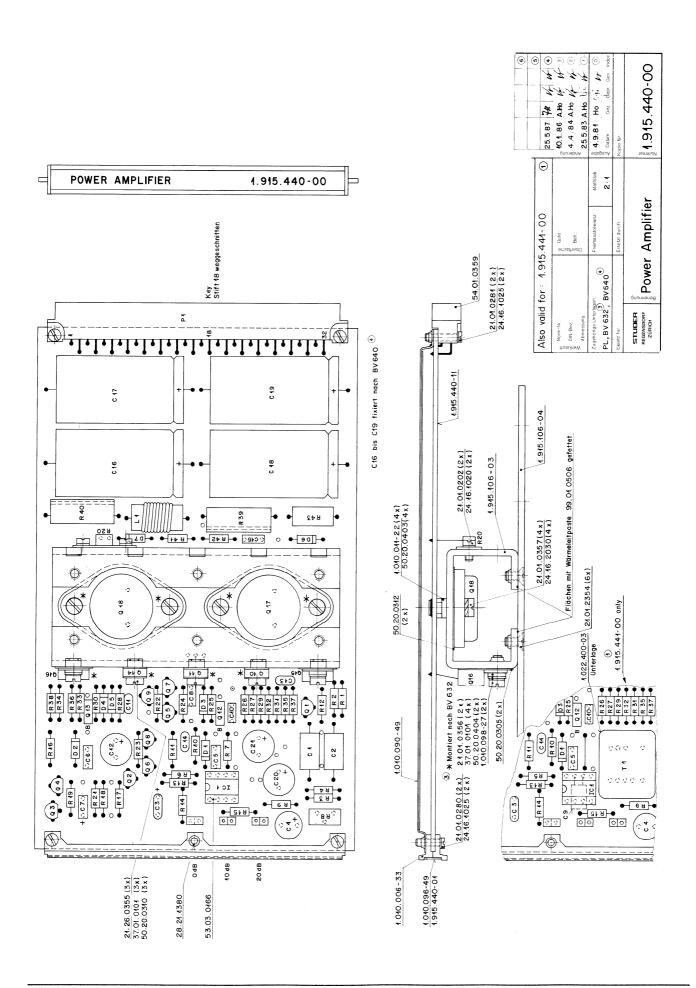
Euro-cards • 40 W power amplifier with transformerless input 1.915.440.xx

40 W power amplifier with input transformer 1.915.441.xx


19"/1U standard products 40 W power amplifier

• Mono version, 19"/1U 75.700.80311

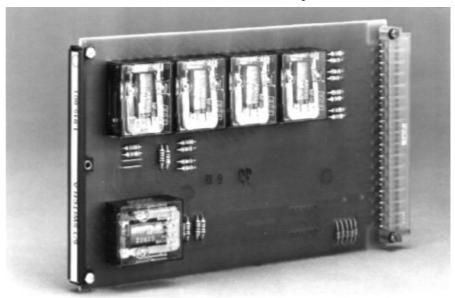
• Stereo version, 19"/1U 75.700.80322


• 19"/1U mounting frame (without amplifier cards) 1.918.120.xx

40W POWER AMPLIFIER

DATE:	12.1.82	24.5.83	24.6.83	23.41.83		
SIGN:	4ri	We	We	we		
STUDER REGENSDORF ZÜRICH			PLIFIER	sc	1.915.440 1.915.441	

40W POWER AMPLIFIER

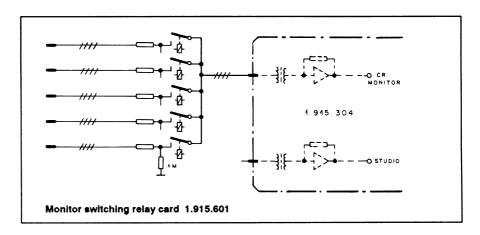

40W POWER AMPLIFIER

Ad	, .POS. ,	REF.No	DESCRIPT	ION		MANUFACTURER	Ad	P0\$	REF.No	DESCRIPTI	ON			MANUFACTURER
2	C	59.12.9681 59.12.9681 59.26.2100 59.30.1101 59.06.0224 59.06.0224 59.26.5229 59.06.0103 59.34.5561 59.06.0224	680 pF 680 pF 10 uF 10 0 uF 0,22 uF 0,22 uF 2,2 uF 0,01 uF 560 pF 0,22 uF	500V 1% 500V 1% 16V 3V	PS PS SAL TA PE PE SAL PE CER (1.915.441) PE			R 36 R 37 R 38 R 39 R 40 R 41 R 42 R 43	57.11.4332 57.11.4150 57.11.4150 57.56.5108 57.56.5108 57.11.4470 57.11.4470 57.13.4471	3,3k 15 15 0,1 0,1 47 10 470	10% 10%	4W 4W 0,4W 0,4W 1W	ww ww	
9 9 9	C11 C12 C13 C14 C15 C16 C17	59.34.4101 59.30.1101 59.32.1471 59.32.1471 59.06.0104 59.25.5222 59.25.5222 59.25.5222	100 pF 100 µF 470 pF 470 pF 0,1 µF 2200 µF 2200 µF 2200 µF	40V 40V 40V	CER TA CER CER PE EL EL EL		2 1 2 2	T1 MODIFICAT C4 C7 C12 C13	1.022.405.00 TION LIST 220µFEL→100µTA 0,22µF→2,2µF 100µFEL→100µTA 560pF→470pF	1:1	QUALITY IMPE BETTER INRU QUALITY IMPE PRODUCTION:	ROVEMEN ISH ROVEMEN	п	ST
2	C19 C20	59.25.5222 59.30.1101	2200µF 100µF	40V 3V	EL TA (1.915.440)		Ø Ø	C20	100µFEL→100µTA		QUALITY IMPR	ROVEMEN	т	
2	C21	59.30.1101	100µF	3V	TA (1.915.440)		2	R21	1kΩ→390Ω		SWITCH OFF			
	D	50.04.1114 50.04.1114 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0105	ZPD 10V ZPD 10V 1N4448 1N4448 1N4448 1N4004 1N4004	10V @ 5mA 10V @ 5mA 1,1V @ 1A 1,1V @ 1A				R31 R34	100k→220k 100k→220k EL=Electrolytic, SAL=Sc	ilid Alumini	CURRENT LIM	NT @ HIG NT @ HIG	GHER IDLE \	
	IC1	50.09.0105	NE5532A	DUAL OPA	Si .	SIG			: PH=Philips, SIG=Signe	etics, SIX=	Siliconix, SIE=Si	emens, T	T=Texas Ins	struments. R=RCA
	L1	1.068.614.00	2,2µH			ST	MOT	=Motorola, N	N=National, ST=Studer		·	·		,
	Q 1 Q 2	50.03.0436 50.03.0515	BC237B BC307B	NPN PNP		PH, TI PH, TI			Also Valid for: 1.915.4 1.915.440 POWER AN					PA 09/06/81
	Q 3 Q 4	50.03.0350 50.03.0515	J112 BC307B	FET PNP		SIX, N PH, TI			1.915.440 POWER AN					① V0 25/05/83
	Q5 Q6	50.03.0515 50.03.0436	BC307B BC237B	PNP NPN		PH, TI PH, TI			1.915.440 POWER AN					② FRI 06/07/83
	Q 7 Q 8	50.03.0515 50.03.0436	BC307B BC237B	PNP NPN		PH, TI PH, TI			1.915.440 POWER AN	MPLIFIER				③ V0 23/11/83
	Q9 Q10	50.03.0436 50.03.0452	BC237B BD140	npn Pnp		PH, TI PH, SIE			1.915.440 POWER AM	PLIFIER				⊕ V0 23/09/91
	Q11 Q12 Q13 Q14 Q15 Q16 Q17	50.03.0451 50.03.0451 50.03.0452 50.03.0451 50.03.0344 50.03.0345 50.03.0342 50.03.0343	BD139 BD139 BD140 BD139 2N6474 2N6476 2N5631 2N6031	NPN NPN PNP NPN NPN PNP NPN PNP NPN		PH, SIE PH, SIE PH, SIE PH, SIE R R MOT MOT	€t →	ID						
	R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R 10	57.11.3152 57.11.3152 57.11.3392 57.11.3392 57.11.3822 57.11.3332 57.11.3332 58.01.7502 57.11.4152 57.11.4683	1,5k 1,5k 3,9k 3,9k 8,2k 3,3k 3,3k 5k 1,5k 68k	1% (1.9	915.441) 915.440) 915.440) LIN									
•	R11 R12 R13 R14 R15 R16 R17 R18 R19 R20	57.11.4683 57.11.4332 57.11.4103 57.11.4472 57.11.3112 57.11.4332 57.11.4222 57.11.4220 57.11.4334 57.99.0803	68k 3,3k 10k 4,7k 1,1k 3,3k 2,2k 22 330k 16,7k	2% 2% 2% 2%	NTC	PH								
0	R	57.11.4391 57.11.4181 57.11.4821 57.11.4123 57.11.4120 57.11.4152 57.11.4102 57.11.4103 57.11.4103 57.11.4330	390 180 820 12k 12 1,5k 1k 10k 15											
	R 31 R 32 R 33 R 34 R 35	57.11.4224 57.11.4152 57.11.4152 57.11.4224 57.11.4332	220k 1,5k 1,5k 220k 3,3k											

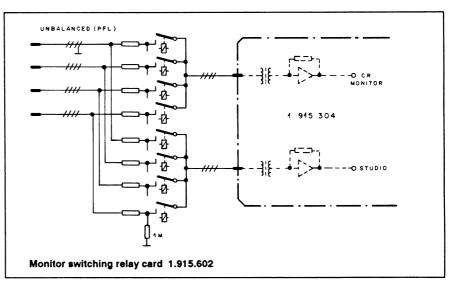
2.2.8 Monitor Switching Relays

1.915.601/602

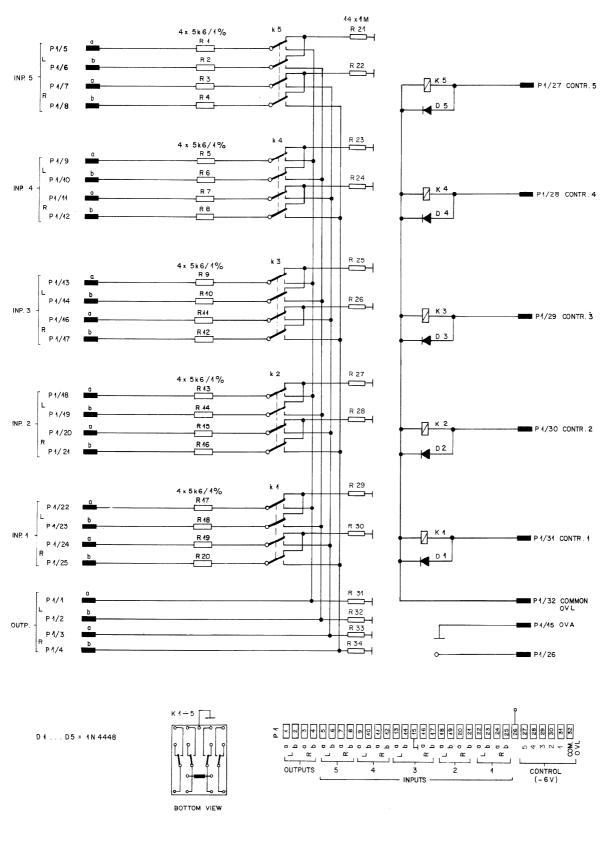
Two different monitor circuit switching cards are available. They are equipped with either five or eight relays for switching of a corresponding number of stereo sources to one or two stereo outputs in monitor circuits.

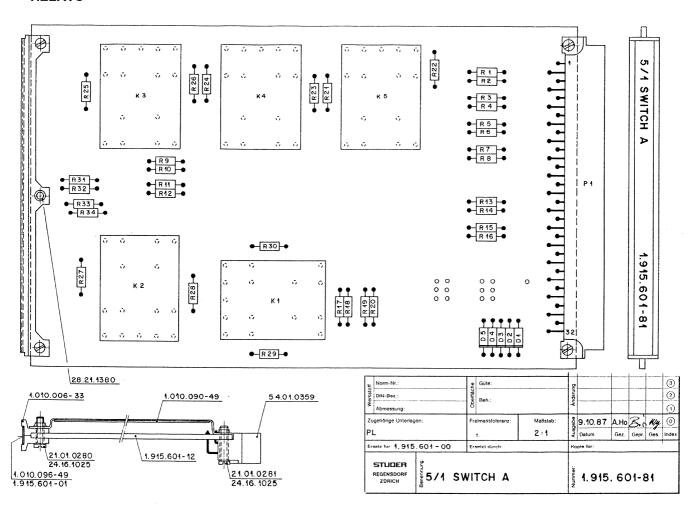


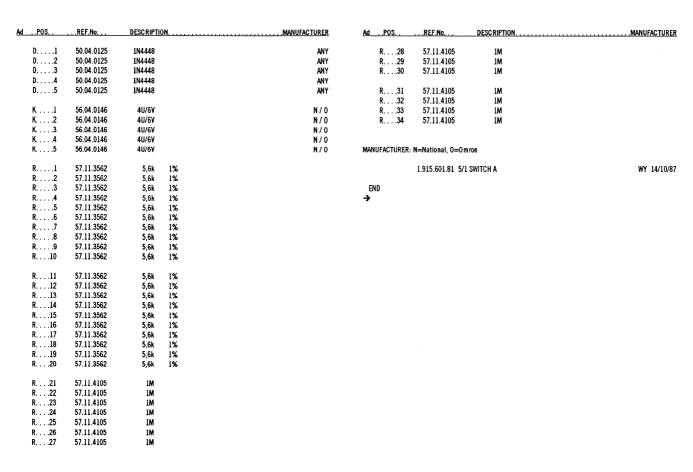
The relays are available with coil ratings of $6V_{DC}$ or $24V_{DC}$, depending on the user's requirement. Click-suppressing diodes are wired across each relay coil. The relays are equipped with four double throw (change-over) contacts each.

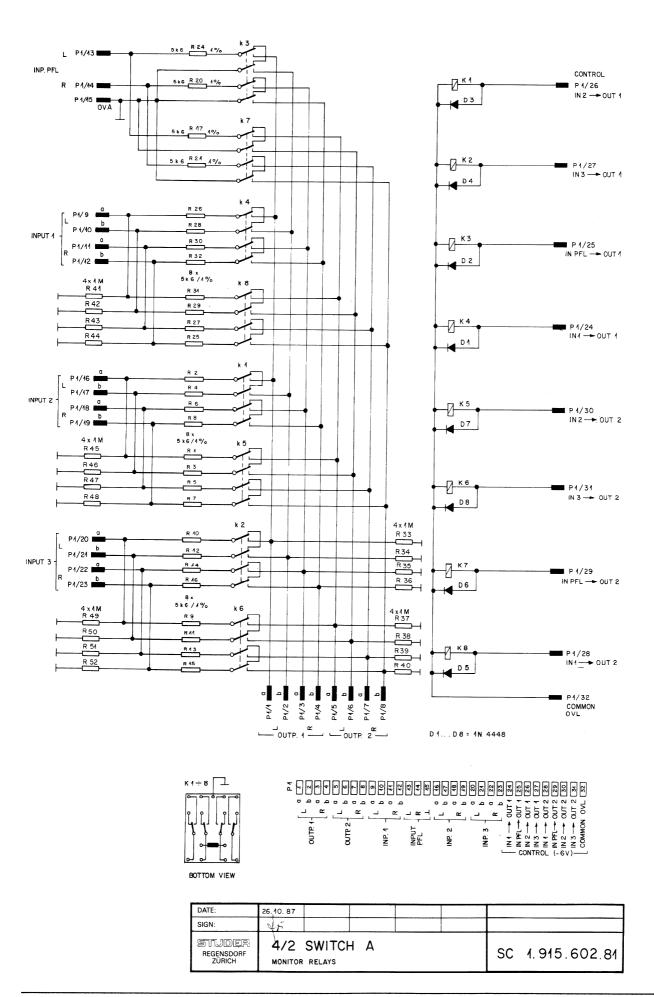


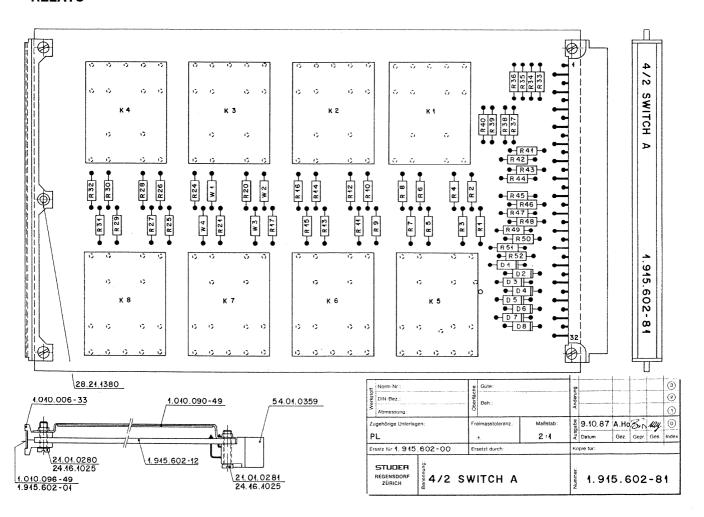
Isolation of the monitor lines from external circuitry is achieved by $5.6\,\mathrm{k}\Omega$ resistors in the "a" and "b" legs of each stereo line, thus a high impedance (bridging) load is presented to the outside source, even in deenergized (non-selected) status, when the respective pair of relay contacts shorts the lines after the respective isolation resistors. With a relay energized, the corresponding stereo pair is routed to a stereo bus available on four pins of the 32-contact edge connector (in case of the 5-input card 1.915.601.xx).


Card 1.915.602.xx features a similar circuit configuration with eight relays, to switch one unbalanced and three balanced stereo inputs. Two stereo buses appear on eight pins of the edge-connector; in this way, the four inputs can be switched to either one or to both outputs, such as may be the case with separate monitor circuits in the control room and in the studio.

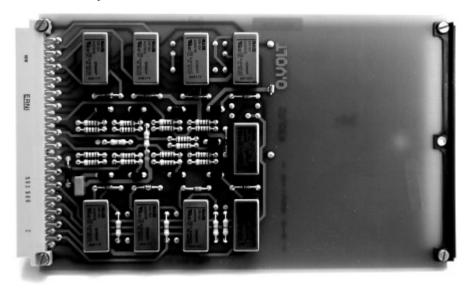

Dimensions: Euro-card 100×160 mm, 4 M units wide Weight approx. 250 g


 Ordering Information:
 • Relay card, 5 IN/1 OUT
 1.915.601.xx

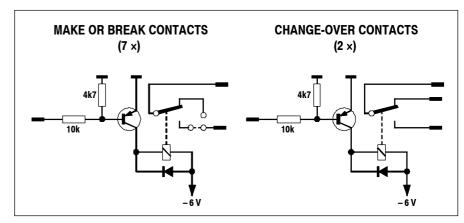

 • Relay card, 4 IN/2 OUT
 1.915.602.xx



DATE:	26.40.87			
SIGN:	C 47			
STUDER REGENSDORF ZÜRICH	5/1 SWITCH A		SC	1.915.601.84



AdPOS	REF.No	DESCRIPTION	ON		MANUFACTURER	AdPOS	REF.No	DESCRIPTION	ON		
D 1	50.04.0125	1N4448			ANY	R30	57.11.3562	5,6k	1%	28Stk.	
D 2	50.04.0125	1N4448			ANY						
D 3	50.04.0125	1N4448			ANY	R31	57.11.3562	5,6k	1%	28Stk.	
D4	50.04.0125	1N4448			ANY	R32	57.11.3562	5,6k	1%	28Stk.	
D5	50.04.0125	1N4448			ANY	R33	57.11.3105	1M	- /-	Loon.	
D6	50.04.0125	1N4448			ANY	R34	57.11.3105	1M			
D 7	50.04.0125	1N444B			ANY	R35	57.11.3105	1M			
D 8	50.04.0125	1N4448			ANY	R36	57.11.3105	1M			
2111111		2			7411	R37	57.11.3105	1M			
K 1	56.04.0146	4U/6V			N/0	R38	57.11.3105	1M			
K2	56.04.0146	4U/6V			N/0	R39	57.11.3105	1M			
K 3	56.04.0146	4U/6V			N/0	R40	57.11.3105	1M			
K4	56.04.0146	4U/6V			N/0	11	37.11.0103	2141			
K5	56.04.0146	4U/6V			N/0	R41	57.11.3105	1M			
K6	56.04.0146	4U/6V			N/O	R42	57.11.3105	1M			
K 7	56.04.0146	4U/6V			N/0	R43	57.11.3105	1M			
K 8	56.04.0146	4U/6V			N/0	R44	57.11.3105	1M			
11	00.04.0140	40/01			1170	R45	57.11.3105	1M			
R 1	57.11.3562	5,6k	1%	28Stk.		R46	57.11.3105	1M			
R 2	57.11.3562	5,6k	1%	28Stk.		R47	57.11.3105	1M			
R 3	57.11.3562	5,6k	1%	28Stk.		R48	57.11.3105	1M			
R 4	57.11.3562	5,6k	1%	28Stk.		R49	57.11.3105	1M			
R 5	57.11.3562	5,6k	1%	285tk.		R50	57.11.3105	1M			
R 6	57.11.3562	5,6k	1%	28Stk.		к эо	37.11.3103	IM			
R7	57.11.3562	5,6k	1%	28Stk.		R51	57.11.3105	1M			
R8	57.11.3562	5,6k	1%	28Stk.		R52	57.11.3105	1M 1M			
R 9	57.11.3562	5,6k	1%	285tk.		N J2	37.11.3103	1M			
R10	57.11.3562	5,6k	1%	285tk.		W 1	57.11.3000	0-Ω			
n	07.11.000E	3,0K	1 /0	200tk.		W2	57.11.3000	0- <u>52</u> 0-Ω			
R11	57.11.3562	5,6k	1%	28Stk.		W3	57.11.3000	0- <u>Ω</u>			
R12	57.11.3562	5,6k	1%	28Stk.		W4	57.11.3000	0- <u>\$2</u>			
R13	57.11.3562	5,6k	1%	285tk.		17 4	37.11.3000	0-52			
R14	57.11.3562	5,6k	1%	285tk.							
R15	57.11.3562	5,6k	1%	285tk.		MANUEACTURER	N=National, 0=0 n				
R16	57.11.3562	5,6k	1%	285tk.		MANUFACTORER:	n=national, 0=01	1104			
R17		5,6k					1.015.000.01 4/0	CWITCH A			WW 14/10/07
n /	57.11.3562	3,0K	1%	28Stk.			1.915.602.81 4/2	SWITCH			WY 14/10/87
R25	57.11.3562	5,6k	1%	28Stk.			1.915.602.81 4/2	SWITCH &			① WY 22/05/89
R 26	57.11.3562	5,6k	1%	28Stk.			1.313.002.01 4/2	STITUTA			W1 22/05/89
R27	57.11.3562	5,6k	1%	285tk.		END					
R 28	57.11.3562	5,6k	1%	28Stk.		→					
R 29	57.11.3562	5,6k	1%			7					
п 29	37.11.3302	3, 0 K	176	28Stk.							


2.2.9 Transistor-Driven Relays (7+2)

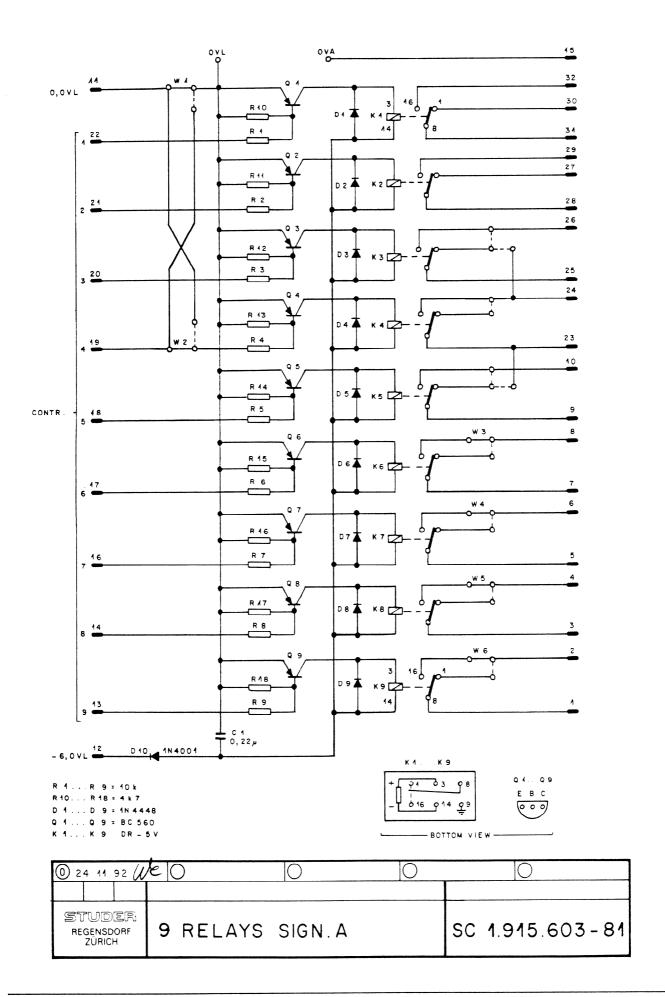
1.915.603

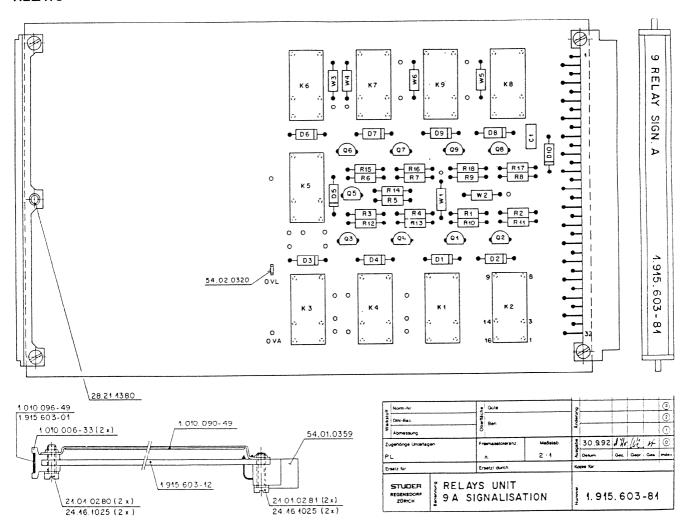
This Euro-card is supplied with nine transistor-driven relays with single-pole, double-throw (SPDT) contacts. For two of the relays, both normally-open and normally-closed contacts are routed to the edge connector; for the remaining seven it is jumper-selectable whether the normally-open or the normally-closed contact is used.

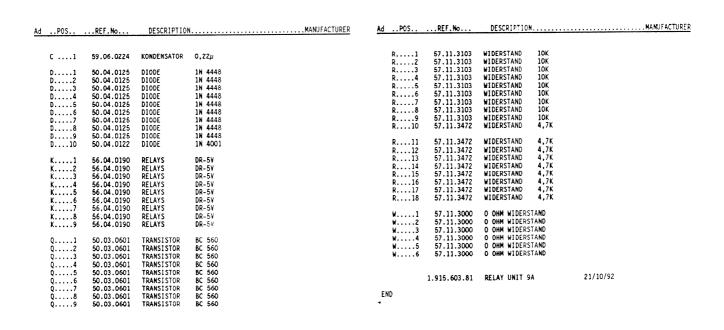
The relays are designed for operation on $6\,V_{DC}$, and each relay coil is bridged with a click-suppressing diode. PNP transistors in series with the coils are blocking the current flow, because each transistor is normally biased off. By applying the output from the gate of an external control logic to the base of a transistor, it is switched into saturation, thereby energizing the respective relay. This arrangement of nine relays was designed for use in signaling systems within a studio installation; however, it may find its use for other applications as well.

Polarity of the relay's supply voltage must be observed when utilizing this circuit.

Technical Specifications

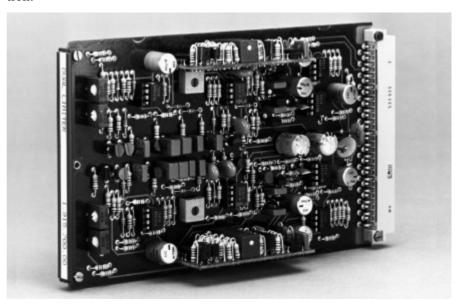

Contact Ratings: max. 1 A/30 V_{DC} or 0.3 A/125 V_{AC}

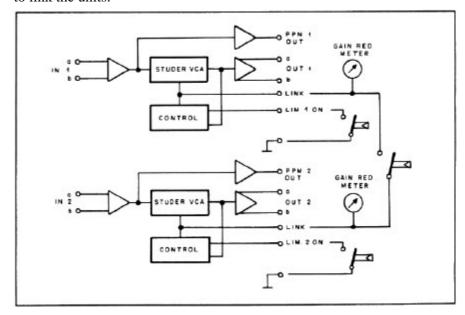

Note: *In this application* **48** *V must not be exceeded to avoid shock hazard.*


Switching power 60 VA (AC)100 W (DC)

Dimensions: Euro-card 100×160 mm, 4 M units wide

Ordering Information: Transistor-driven relays 1.915.603.xx




2.2.10 Dual Limiter

1.915.700

In sound work there are numerous situations where the signal amplitude has to be limited to a pre-determined level in order to prevent overloading of succeeding equipment, such as light modulators in film work, or radio transmitters. With this limiter, excessive levels are automatically reduced to a preset level, and, since regulation is controlled by the program's energy content, the performance of this limiter is free of any "pumping" effects. Gain reduction is achieved with a Studer Voltage Controlled Amplifier (VCA) which ensures low noise performance and negligible distortion.

Two identical, independent limiter circuits are contained on one Eurocard, plus additional, separate gain stages to drive peak program meters. The perfect tracking of the two VCAs makes this Dual Limiter suitable for stereo work as well, in which case a simple electrical connection is needed to link the units.

Note: Gain reduction meters (*not supplied*) can be connected to the LINK outputs as well, if required.

Technical Specifications

Input: Impedance **5.4 kW**, balanced configuration

2.7 kW, unbalanced configuration

Overload point $+20 \text{ dBu} (7.75 \text{ V}_{rms})$

Output: Impedance < 50 W, unbalanced

Frequency response +0/-0.5 dB, 30 Hz...15 kHz

+**0/–3 dB,** 2 Hz...200 kHz

Gain 0 dB, limiter off

Output noise level -102 dBu, Limiter on

-106 dBu, Limiter off

Limiting ratio 20:1

Threshold -15 dBu...+3 dBu, adjustable

Limited output level -14 dBu...+4 dBu, depending on threshold setting

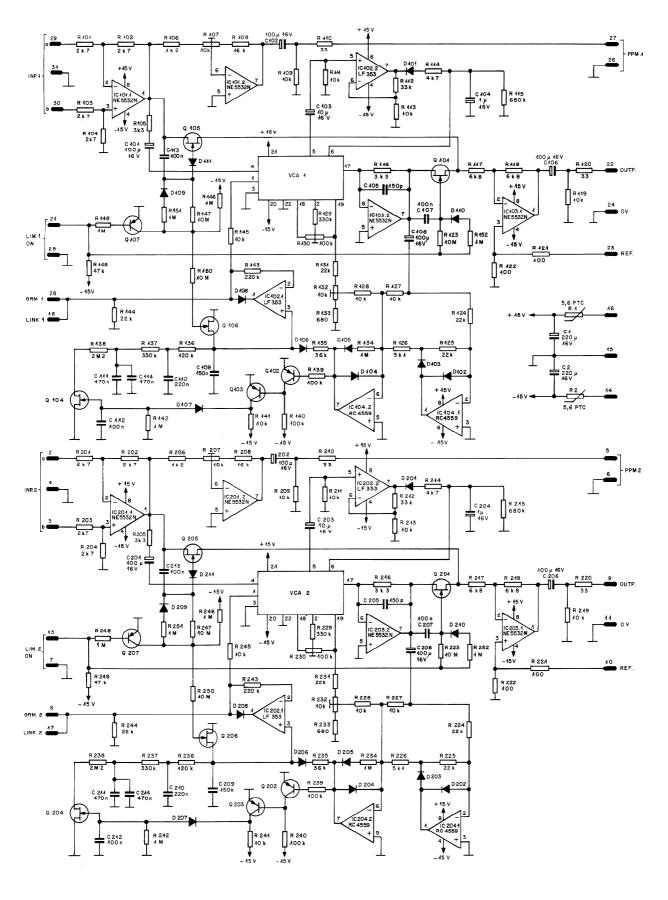
Attack time 1 ms

Release time 50 ms...5 s, program-dependent

PPM Section: Output impedance < 50 W, unbalanced

Maximum output level +20 dBu

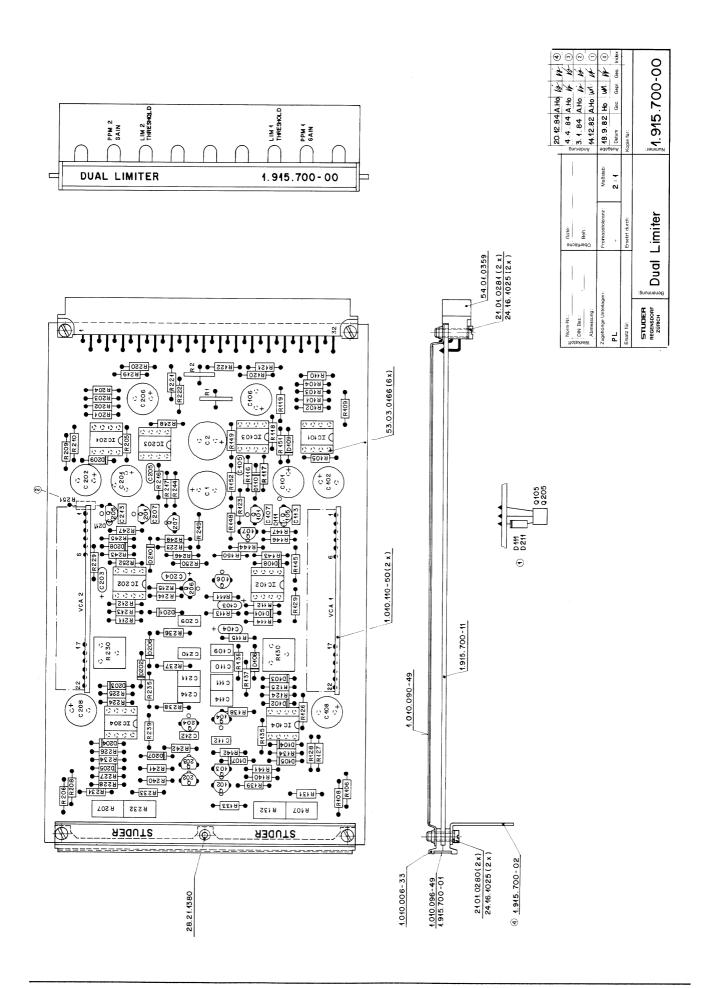
Gain 2.5 dB...27 dB, adjustable


Frequency response +0/-3 dB, 2 Hz...200 kHz

Supply: $\pm 15 \text{ V} (100 \text{ mA})$

Dimensions: Euro-card 100×160 mm, 7 M units wide

Ordering Information: Dual limiter 1.915.700.xx

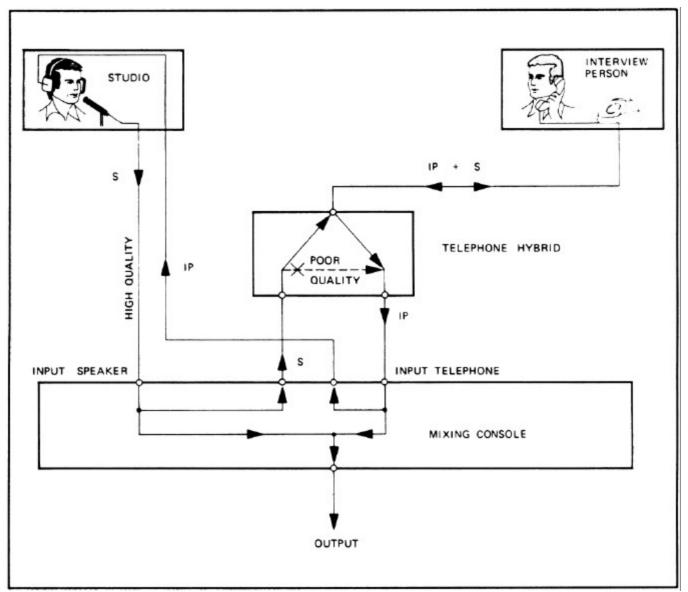

DUAL LIMITER

ALL DIODES 4N 4448 ALL PNP BC 560 ALL FET J 412

DATE:	3.3.83	16.7.84					
SIGN:	ul	ul.					
STUDER REGENSDORF ZÜRICH	DUAL	LIMIT	ER		sc ·	1.915.700	

DUAL LIMITER

DUAL LIMITER

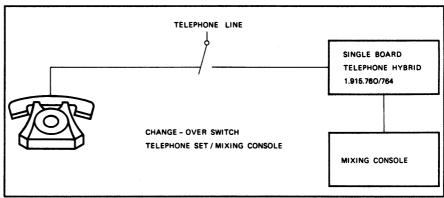

Ad	POS	REF.No	DESCRIPTI	ON			UFACTURER	AdPOS	REF.No	DESCRIPTI	ON	MANUFACTURER
	C 1	59.22.4221	220µ	16V	EL			R43	57.11.4224	220k		
	C2	59.22.4221	220µ	16V	EL			R44 R45	57.11.4223 57.11.4103	22k 10k		
	C1 C2	59.22.4101 59.22.4101	100µ 100µ	16V 16V	EL El			R46 R47	57.11.4105 57.11.6106	1M 10M		
	C 3 C 4	59.26.2100 59.26.5109	10µ 1µ	16V 16V	EL, SAL EL, SAL			R48 R49	57.11.4105 57.11.4473	1M 47k		
	C5 C6	59.34.4151 59.22.4101	150p 100µ	16 V	CER EL			R50	57.11.6106	10 M		
	C 7 C 8	59.06.5104 59.22.4101	100n 100µ	16V	PETP EL			R51 R52	57.11.4105 57.11.4105	1M 1M		
	C 9 C 10	59.06.5154 59.06.5224	150n 220n	5% 5%	PETP PETP			⊕⑤ VCA1	1.911.290.81		STUDER VCA-BOARD	ST
	C11	59.06.5474	470n	5%	PETP			⊕® VCA2	1.911.290.81		STUDER VCA-BOARD	ST
	C12 C13	59.06.5104 59.06.5104	100n 100n	3,6	PETP			XIC	53.03.0166	DIP8POL		
	C14	59.06.5474	470n	5%	PETP PETP			Fl. Flantschain (CAL Calid Alinin	OFD C	nic, PETP=Polyester, SI=Silici	DTO Dec Terre 0-16
	D1	50.04.0125	1N4448		SI			PMG=Cermet	SAL=SUNG AIGINING	III, GEK≡Gerai	nic, refr=rolyester, si=sinci	um, r≀c≡ros. Temp. Con.
	D 2 D 3	50.04.0125 50.04.0125	1N4448 1N4448		SI SI						onal, TI=Texas Instruments, R	A=Raytheon, SIX=Siliconix
	D 4 D 5	50.04.0125 50.04.0125	1N4448 1N4448		SI SI			SIE=Siemens, Pr	l=Philips, ST=Stud			
	D 6 D 7	50.04.0125 50.04.0125	1N4448 1N4448		SI SI				1.915.700.00 DU			W. Markl 14/06/82
	D 8 D 9	50.04.0125 50.04.0125	1N4448 1N4448		SI SI				1.915.700.00 DL			① W. Markl 14/12/82
_	D 10	50.04.0125	1N4448		SI				1.915.700.00 DU			② A. Ho 01/04/84
0	D11	50.04.0125	1N4448		SI				1.915.700.00 DU			③ VO 16/07/84
	IC 1 IC 2	50.09.0106 50.09.0101	NE5532N LF353N	DUAL OP Dual op		XR5532N TL072	SIG, EX N, TI		1.915.700.00 DL			⊕ PA 13/01/89
	IC 3 IC 4	50.09.0106 50.09.0107	NE5532N RC4559NB	DUAL OP Dual op		XR5532N	SIG, EX Ra, Ti		1.915.700.00 DU	AL LIMITER		® WY 17/01/90
	Q1	50.03.0350	J112	J-FET			SIX, N	END →				
	Q2 Q3	50.03.0496 50.03.0496	BC560 BC560	PNP PNP			SIE SIE					
	Q4 Q5	50.03.0350 50.03.0350	J112 J112	j-fet j-fet			SIX, N SIX, N					
	Q6 Q7	50.03.0350 50.03.0496	J112 BC560	J-FET PNP			SIX, N SIE					
	R 1	57.99.0209	5,6		PTC		PH					
	R2	57.99.0209	5,6		PTC		PH					
	R1 R2	57.11.4272 57.11.4272	2,7k 2,7k	2% 2%								
	R 3 R 4	57.11.4272 57.11.4272	2,7k 2,7k	2% 2%								
	R5 R6	57.11.4332 57.11.4122	3,3k 1,2k	2%								
	R7 R8	58.01.7103 57.11.3163	10k 16k	10% LIN	PMG							
	R9 R10	57.11.4103 57.11.4330	10k 33									
	R11	57.11.4103	10k									
	R12 R13	57.11.4333 57.11.4103	33k 10k									
	R14 R15	57.11.4472 57.11.4684	4,7k 680k									
	R16 R17	57.11.4332 57.11.4682	3,3k 6,8k	2% 2%								
	R 18 R 19	57.11.4682	6,8k	2%								
	R20	57.11.4103 57.11.4330	10k 33									
	R21	57.11.4101	100	2%								
	R22 R23	57.11.4101 57.11.6106	100 10M	2%								
	R24 R25	57.11.4223 57.11.4223	22k 22k	2% 2%								
	R26 R27	57.11.3512 57.11.4103	5,1k 10k	2% 2%								
	R28 R29	57.11.4103 57.11.4334	10k 330k	2%								
	R30	58.01.8104	100k	10% LIN	PMG							
	R31 R32	57.11.4223 58.01.7103	22k 10k	10% LIN	PMG							
2	R33 R34	57.11.4681 57.11.4105	680 1M									
3	R35 R36	57.11.3363 57.11.4124	36k 120k									
	R37 R38	57.11.4334 57.11.5225	330k 2,2M									
	R 40	57.11.4104 57.11.4104	100k 100k									
	R41	57.11.4103	10k									
	R42	57.11.4105	1M									

2.2.11 Telephone Hybrid

1.915.760/764

In order to record or transmit a conversation between the announcer in the studio and a person outside the studio being interviewed by telephone, the telephone line must be connected to the mixing console.

In such a case, the full conversation is transmitted, since both voice signals are carried on normal 2-wire telephone lines. However, also the voice of the announcer in the studio is then transmitted in telephone quality (300... 3400 Hz). By mixing the microphone signal of the announcer (in studio quality) to the conversation, the addition of the "good" and "poor" signals results in a distorted and untrue signal.


Principle of a telephone transmission via a mixing console

The telephone hybrid allows to greatly improve the quality of a telephone transmission by selectively suppressing the undesired "poor" announcer signal (side-tone attenuation). This side-tone attenuation is done in principle by a hybrid circuit which is a familiar feature in telephony.

The Studer telephone hybrid permits high-quality transmission of telephone conversations with the announcer in the studio. Apart from connecting it to the telephone line, the hybrid works automatically.

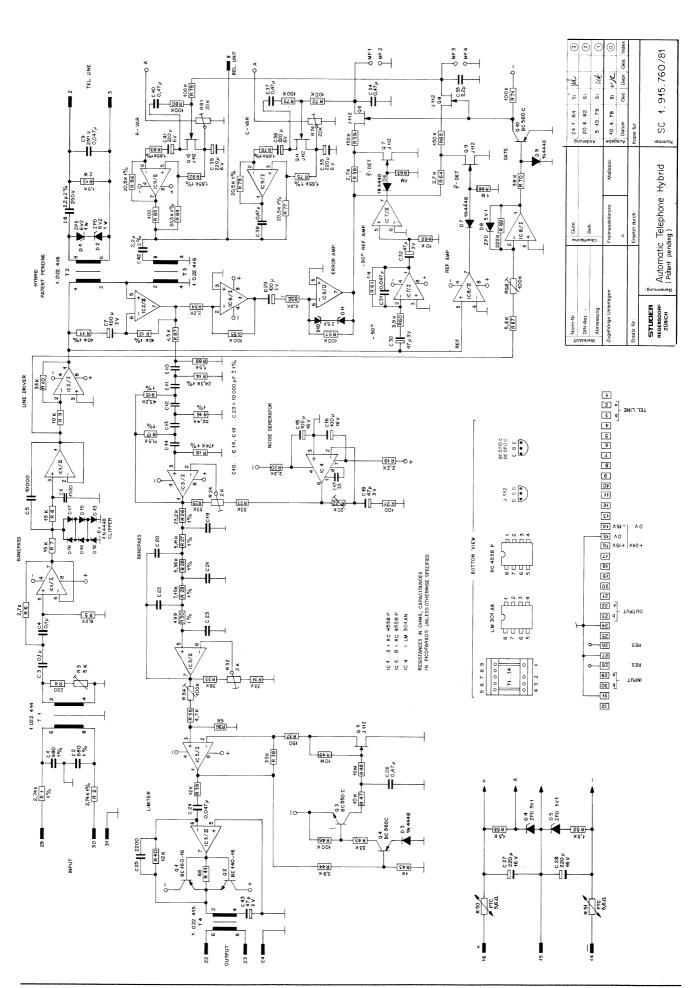
Maximum side-tone attenuation of the studio voice signal in the receiver line is achieved by automatically constituting a dummy load for the telephone line. This adjustment is performed electronically, the real (resistive) and imaginary (capacitive) components of the telephone line impedance being matched as near as possible. This automatical matching process begins as soon as an announcer signal is present.

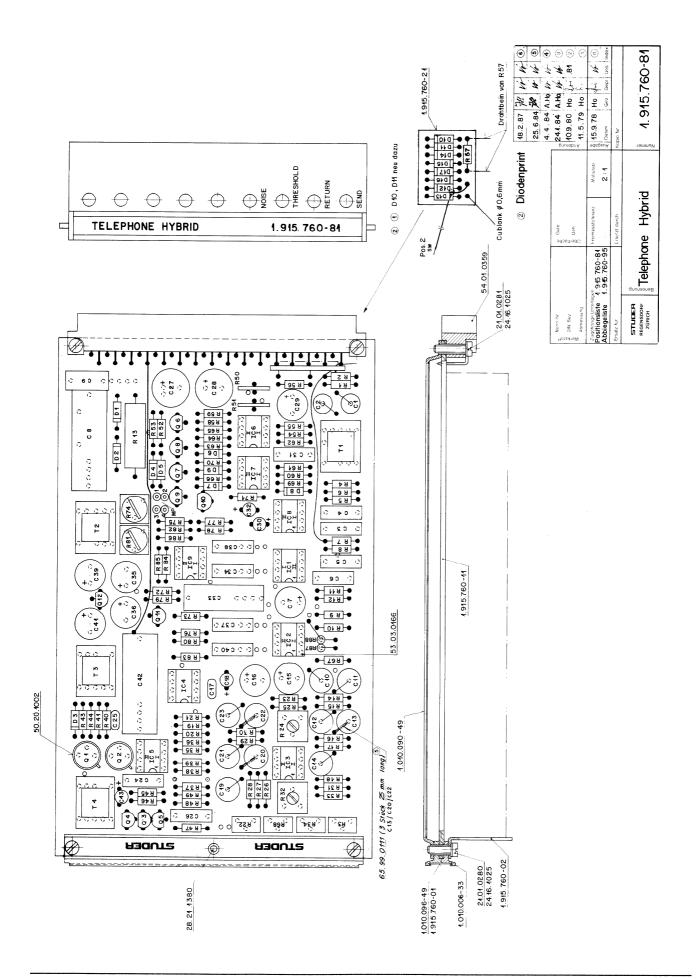
Operation with a single Telephone Hybrid Board

The telephone set is used to establish a telephone connection (call). After switching over to the mixing console, the holding current for the subscriber's relay is maintained by a resistor on the hybrid board.

A variety of 19" Telephone Hybrid units with one or two channels is available, consisting of the following versions:

- Standard version (ST) 19"/IU Telephone Hybrid unit for direct connection to the telephone line and a relay to switch the telephone line from the telephone set to the hybrid.
- Noise gate version (NG) same as standard version, equipped with a noise gate
- Current-adjustable version (CA) same as standard version, but additionally featuring adjustable holding current for the telephone line.


Ordering Information: Euro-cards:

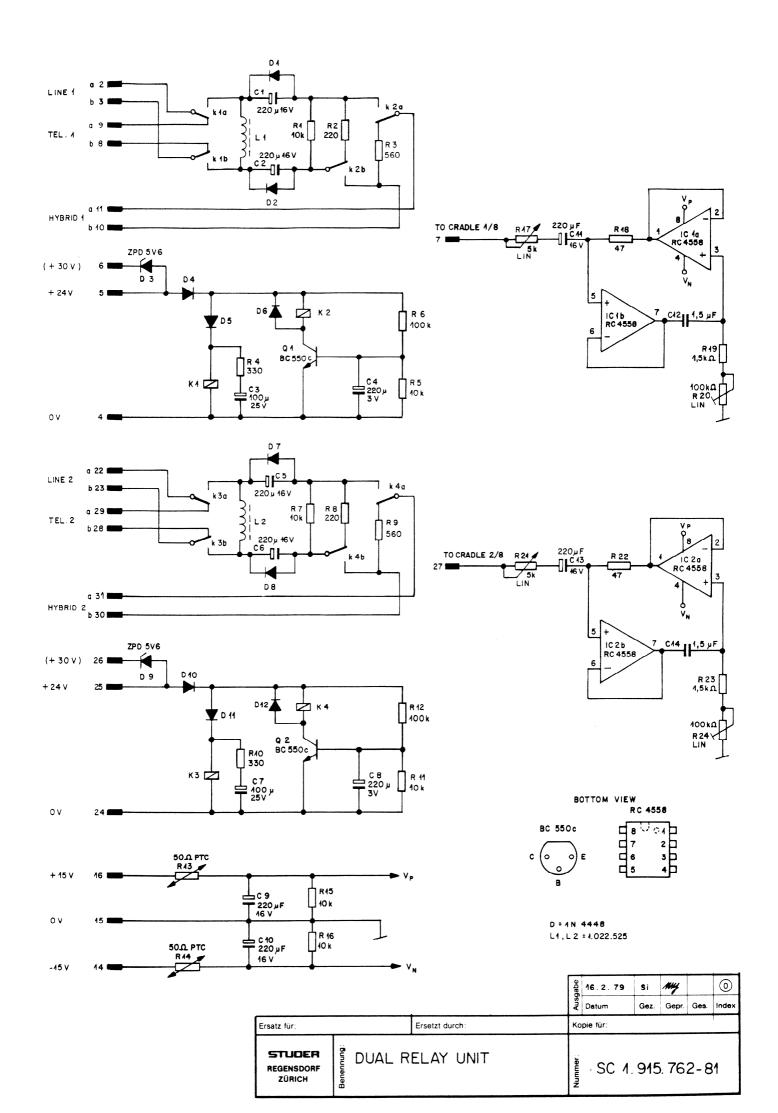

Versions:

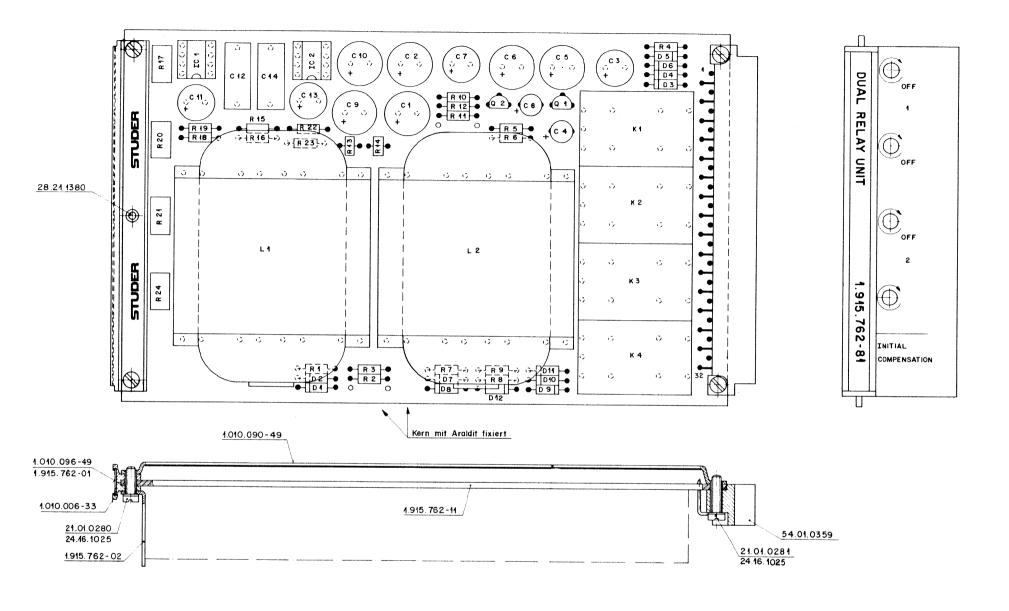
•	Telephone hybrid card	1.915.760.xx
•	Telephone hybrid card with noise gate	1.915.764.xx
•	Telephone hybrid 1CH-ST	75.700.89118

19" standard products:

•	Telephone hybrid 1CH-ST	75.700.89118
•	Telephone hybrid 2CH-ST	75.700.89228
•	Telephone hybrid 1CH-NG	75.700.89114
•	Telephone hybrid 2CH-NG	75.700.89224
•	Telephone hybrid 1CH-CA	75.700.89116
•	Telephone hybrid 2CH-CA	75.700.89226
•	Telephone hybrid 1CH-CA/NG	75.700.89117
•	Telephone hybrid 2CH-CA/NG	75.700.89227

Ad	POS	REF.No	DESCRIPTI	ON		CTURER	AdPOS	REF.No	DESCRIPTIO	N	MANUFACTURER
① ①©	C	59.12.9681 59.12.9681 59.31.6104 59.31.6104 59.12.4103 59.11.6152 59.22.4101 1.915.760.03 59.31.8473 59.12.7103	680 pF 680 pF 0.1 uF 0.1 uF 0.0 1 uF 1500 pF 100 uF 2.2 uF 0.047 uF 0.01 uF	1% 500V- 1% 10% 10% 5% 5% 3V 1% 250V- 400V- 1%	PS PS PE PE PC EL PE PE PS	ST	R 4 R 5 R 6 R 7 R 8 R 9 R 10 R 11 R 12	57.11.4221 57.11.4822 57.11.4272 57.11.4153 57.11.4153 57.11.4103 57.11.4333 57.39.1002 57.39.1002	220 8,2k 2,7k 15k 15k 10k 33k	2% 2% 2% 1%	
	C11 C12 C13 C14 C15 C16 C17 C18	59.12.7103 59.12.7103 59.12.7103 59.12.7103 59.22.4101 59.22.4101 59.34.2330 59.36.0470 59.12.7103	0,01µF 0,01µF 0,01µF 0,01µF 100µF 100µF 47µF 0,01µF	1% 1% 1% 16V 16V 3V	PS PS PS EL CER TA PS		R13 R14 R15 R16 R17 R18 R19 R20	57.56.5152 57.39.2432 57.39.4322 57.39.3242 57.39.7152 57.39.1743 57.11.4222 57.11.4222	1,5k 24,3k 43,2k 32,4k 71,5k 174k 2,2k 2,2k	2W 1% 1% 1% 1%	
	C20 C21 C22 C23 C24 C25 C26 C27 C28 C29	59.12.7103 59.12.7103 59.12.7103 59.12.7103 59.12.4473 59.32.2222 59.02.0474 59.22.4221 59.22.4221 59.22.4211	0,01µF 0,01µF 0,01µF 0,01µF 0,047µF 2200pF 0,47µF 220µF 220µF	1% 1% 1% 1% 5% 16V 16V 3V	PS PS PS PS PE CER PC EL EL		R	58.01.7203 57.11.4333 58.01.8202 57.11.4333 57.39.2322 57.39.5111 57.39.5361 57.39.7151 57.39.4990	20k 33k 2k 33k 23,2k 5,11k 5,36k 7,15k 499	LIN 10% 2% 11N 10% 2% 1% 1% 1% 1%	TR, SP
•	C30 C31 C32 C33 C34 C35 C36 C37 C38	59.36.0470 59.12.4473 59.36.0470 59.02.2225 59.02.0474 59.22.2221 59.22.2221 59.02.0474 59.02.0474	47µF 0,047µF 47µF 2,2µF 0,47µF 220µF 220µF 0,47µF 0,47µF	3V 3V 6V 6Y	TA PE TA PC PE EL EL PC PC		R 31 R 32 R 33 R 34 R 35 R 36 R 37 R 38 R 39 R 40	57.11.4333 58.01.8202 57.11.4393 58.01.7104 57.11.4472 57.11.4680 57.11.4151 57.11.4333 57.11.4123	33k 2k 39k 100k 4,7k 68 150 33k 12k	2% LIN 10% 2% LIN 10%	TR, SP
1	C40 C41 C42 C43 D1 D2 D3	59.22.2221 59.02.0474 59.22.2221 1.915.760.03 59.36.0470 50.04.1511 50.04.1511	220µF 0,47µF 220µF 2,2µF 47µF U, 6,2V U, 6,2V	6V 1% 250V- 3V ZPD 6V2 1W ZPD 6V2 1W	EL PC EL PE TA	ST	R 41 R 42 R 43 R 44 R 45 R 46 R 47 R 48	57.11.4680 57.11.4102 57.11.4392 57.11.4333 57.11.4104 57.11.4103 57.02.5106 57.02.5106	1k 3,9k 33k 100k 10k 10M	DTG 0200 CCG 0100F	Pi.
2	D 4 D 5 D 6 D 7 D 8 D 9 D 10	50.04.0125 50.04.1112 50.04.1112 50.04.0125 50.04.0125 50.04.1112 50.04.0125 50.04.1112	1Ñ4448 U ₂ 5, 1V U ₂ 5, 1V 1Ñ4448 1Ñ4448 U ₂ 5, 1V 1Ñ4448 U ₂ 5, 1V	ZPD 5V1 0,4W ZPD 5V1 0,4W ZPD 5V1 0,4W ZPD 5V1 0,4W	SI SI		R50 R51 R52 R53 R54 R55 R56 R57	57.99.0209 57.99.0209 57.11.4152 57.11.4152 57.11.4222 57.11.4104 57.11.4222 57.11.4104	5,6Ω 5,6Ω 1,5k 1,5k 2,2k 100k 2,2k 100k	PTC 2322 662 91005	PH PH
0 000000	D11 D12 D13 D14 D15 D16 D17	50.04.1112 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125 50.04.0125	U ₂ 5, 1V 1N4448 1N4448 1N4448 1N4448 1N4448 1N4448	ZPD 5V1 0,4W	SI SI SI SI SI		R 58 R 59 R 60 R 61 R 62 R 63	57.11.4272 57.11.4154 57.11.4392 57.11.4105 57.11.4103 57.11.4105	2,7k 150k 3,9k 1M 10k 1M		
(4)(4)(5)(6)(7)(7)(8)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)(9)<l< td=""><td>IC 1 IC 2 IC 3 IC 4 IC 5 IC 6 IC 7 IC 8</td><td>50.09.0107 50.09.0107 50.09.0107 50.05.0144 50.09.0107 50.09.0107 50.09.0107</td><td>RC4559NB RC4559NB RC4559NB LM301AN RC4559NB RC4559NB RC4559NB RC4559NB</td><td>DUAL OP AMP</td><td></td><td>TI, RA NS</td><td>R 64 R 65 R 66 R 67 R 69 R 70</td><td>57.11.4272 57.11.4154 57.11.4105 57.11.4562 58.01.7104 57.11.4224 57.11.4393</td><td>2,7k 150k 1M 5,6k 100k 220k 39k</td><td>LIN 10%</td><td>TR, SP</td></l<>	IC 1 IC 2 IC 3 IC 4 IC 5 IC 6 IC 7 IC 8	50.09.0107 50.09.0107 50.09.0107 50.05.0144 50.09.0107 50.09.0107 50.09.0107	RC4559NB RC4559NB RC4559NB LM301AN RC4559NB RC4559NB RC4559NB RC4559NB	DUAL OP AMP		TI, RA NS	R 64 R 65 R 66 R 67 R 69 R 70	57.11.4272 57.11.4154 57.11.4105 57.11.4562 58.01.7104 57.11.4224 57.11.4393	2,7k 150k 1M 5,6k 100k 220k 39k	LIN 10%	TR, SP
•	Q1 Q2 Q3 Q4 Q5 Q6 Q7	50.09.0107 50.03.0315 50.03.0316 50.03.0497 50.03.0496 50.03.0350 50.03.0350 50.03.0350 50.03.0350	RC4559NB BC160-16 BC140-16 BC550-C BC560-C J112 J112 J112 J112			SIE, F SIE, F T, ITT T, ITT SIX, NS SIX, NS	R	57.11.4104 57.11.4104 58.01.8203 57.39.1651 57.39.1651 57.39.2052 57.39.2052 57.11.4104	100k 100k 20k 1,65k 1,65k 20,5k 20,5k 100k	LIN 10% 1% 1% 1% 1%	TR, SP
	Q9 Q10 Q11 Q12	50.03.0350 50.03.0496 50.03.0350 50.03.0350	J112 J112 BC560-C J112 J112		:	SIX, NS SIX, NS T, ITT SIX, NS SIX, NS	R81 R82 R83 R84 R85	58.01.8203 57.39.1651 57.39.1651 57.39.2052 57.11.4101	20k 1,65k 1,65k 20,5k 100	LIN 10% 1% 1% 1% 2%	TR, SP
•	R 2 R 3	57.39.2741 57.39.2741 58.01.7502	2,74k 2,74K 5k	1% 1% Lin		TR, SP	R86 ① R87 ① R88	57.39.2052 57.02.5152 57.02.5152	20,5k 1,5k 1,5k	1%	

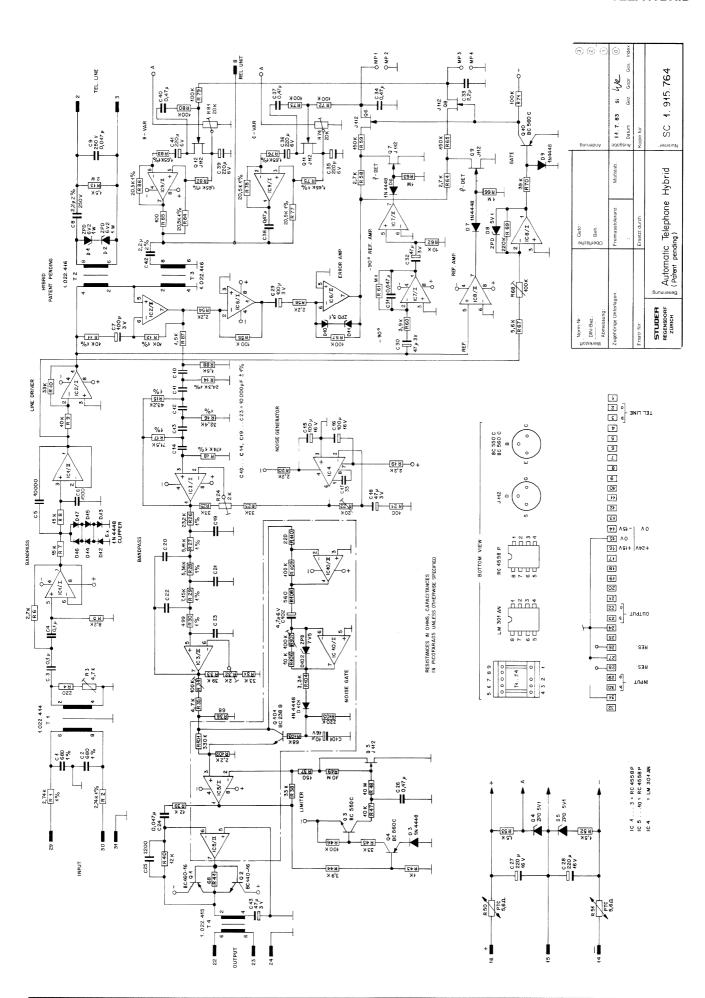

T1	1.022.414	1:1	ST
T2	1.022.416	1:1	ST
T3	1.022.416	1:1	ST
T4	1.022.415	1:2	ST

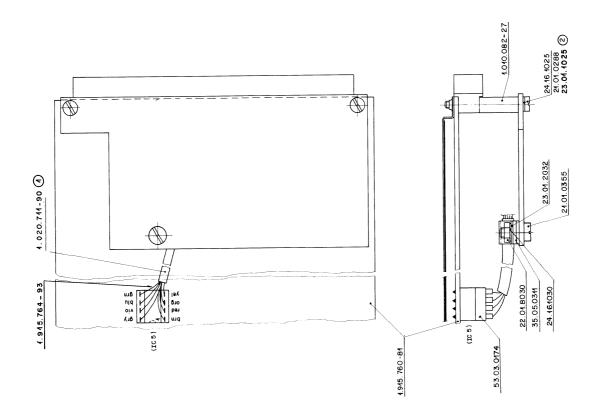

CER=Ceramic, EL=Electrolytic, TA=Tantalum, PE=Polyester, PS=Polystyrene, PC=Polycarbonate

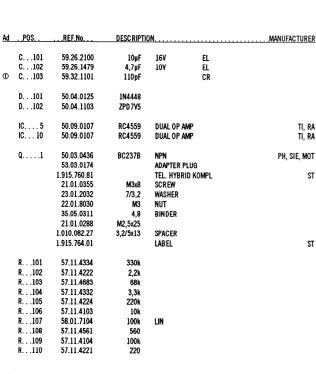
MANUFACTURER: ST=Studer, PH=Philips, TR=TRW, SP=Spectrol, TI=Texas Instruments, RA=Raytheon NS=National Sem., SIX=Siliconix, T=Telefunken, SIE=Siemens, F=Fairchild

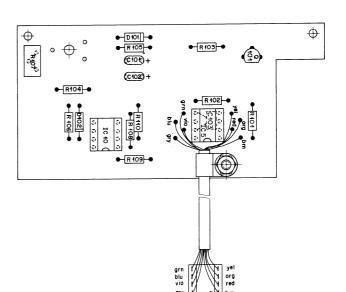
1.915.760.81 TELEPHONE HYBRID	FRI 14/03/78
1.915.760.81 TELEPHONE HYBRID	① FRI 06/11/78
1.915.760.81 TELEPHONE HYBRID	② HO 11/05/79
1.915.760.81 TELEPHONE HYBRID	③ HO 10/09/80
1.915.760.81 TELEPHONE HYBRID	● V0 11/03/81
1.915.760.81 TELEPHONE HYBRID	⑤ V0 20/08/82

END →


Norm Nr QS DIN-Bez ⇒ Abmessung		Obertach Beu Cutt		4.4.84 A.Ho Vr Vr			
Zugetjorige Unterlac	gen	Freimasstoleranz	Maßstab	a 18.7.79 Ho My Vr 0			
Ersatz fur	•	Ersetzt durch	2:1	₹ Datum Gez Gepr Ges Index Kopie tur			
STUDER REGENSDORF ZURICH	Dual R	1.915. 762 - 81					


ND	POS NO	PART NO	VALUE	SPEC	IFICATIONS/EQUIVALENT	MFR
C	1	59.22.4224	220 uF	16 V	EL	
C	2	59.22.4224	220µF	16 V	EL	
С	3	59,22.5104	100 MF	251	EL	
С	4	59.30.1221	220 MF	3 ٧	TA	
С	5	59.22.4221	220 MF	16 V	EL	
С	6	59.22.4221	220juF	16 V	EL	
C	7	59.22.5404	100 MF	257	EL	
С	8	59.30.4224	220juF	31	TA	
С	9	59.22.4224	220µF	16 V	EL	
С	10	59.22.4221	220MF	16 V	EL	
С	11	59.22.2221	220nF	6 V	EL	
C	12	59.05.4155	1,5mF	63V	MPC	
C	43	59.22.2221	220 uF	6 V	EL	
C	14	59.05.1155	1,5,nF	63 V	MPC	
D	112	50.04.0125	N4448	or equ	vivalent	ANY
<u> </u>	except					
D	3,9	50.04.11.08	ZPD5V6		BZX83 5V6	ITT,
IC	1,2	50.09.0107	RC 4559 NB	Dual 0	1p. Amp.	TI,R
K	14	56.04.0143	2u, AgAu	Relay		NA
L	1,2	4.022.525		Induct	ivity	ST
P		54.04.0359		Edge	Connector	
Q	1,2	50.03.0497	BC550C			T,P,1


IND	DATE	NAME		
4			ITT INTERMETALL	ST STUDER
3			NA NATIONAL	TI TEXAS INSTRUMENTS
2	15.9.82	zse ,	P PHILIPS	EL ELECTROLYTIC
1	11. 3้ , 81	1/2	RA RAYTHEON	TA TANTALLUM
0	18.7.79	WY	S SIEMENS	MPC POLYCARBONATE
STUDER DUAL		RELAY UNIT	1.915.762-81 PAGE 1 OF 2	


IND	POS NO	PÁRT NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
R	1	57.11.4103	10 k		
R	2	57.11.4221	220		
R	3	57.41.4561	560		
R	4	57.11.4331	330		
R	5	57. 11. 4103	10 k		
R	6	57.11.4104	100k		
R	7	57.11.4103	10 k		
R	8	57.11.4221	220		
R	9	57,11.4561	560		
R	10	57.11.4331	330		
R	11	57.11.4103	10 k		
R	12	57.11.4104	100k		
R	43	57.99.0206	50	PTC	
R	14	57.99,0206	50	PTC	
R	15	57,11.4103	10 k		
R	16	57.11.4103	10 K		
R	17	58.04.7502	5k	Potm.	
R	18	57.11.4470	47		
R	19	57.11.4152	1,5k		
R	20	58:07.7/104	100k	Potm.	
R	21	58.04.7502	5 k	Potm.	
R	22	57.11.4470	47		
R	23	57.11.4152	1,5k		
R	24	58.04.7404	100k	Potm.	
-					
XIC		53.03.0166		IC-Socket DIL 8 pins	
-					

IND	DATE	NAME		
4				
3				
2	15.9.82	788		
1	11. 3, 81	Vo		
0	18.7.79	WY		
5	STUDER	DUAL	RELAY UNIT	1.915, 762-81 page 2 of 2

DIN-Bez

PL,LL

TEL. HYB. NOISE GATE

EL=Electrolytic

 $\textbf{MANUFACTURER: ST=Studer, Tl=Texas\ Instruments,\ RA=Raytheon,\ PH=Philips,\ SiE=Siemens,\ MOT=Motorolar and Siemens,\ Motorolar and Siemens,\ Moto$

1.915.764.00 TEL. HYBRID WITH NOISE GATE FRI 30/11/81

1.915.764.00 TEL. HYBRID WITH NOISE GATE

① VO 19/10/87

END → 49.40.87 Si *Şe* 27.5.87 Si *Şe* 3.6.86 Ho *Şe*

2:4

Telephone Hybrid

with Noise Gate

0

 \bigcirc

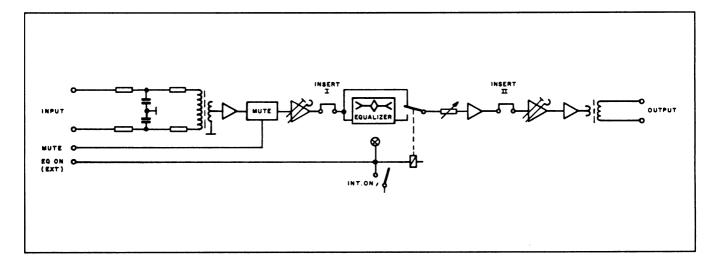
1.915.764

 \oplus

2.2.12 Line Equalizer

1.915.776/777/779

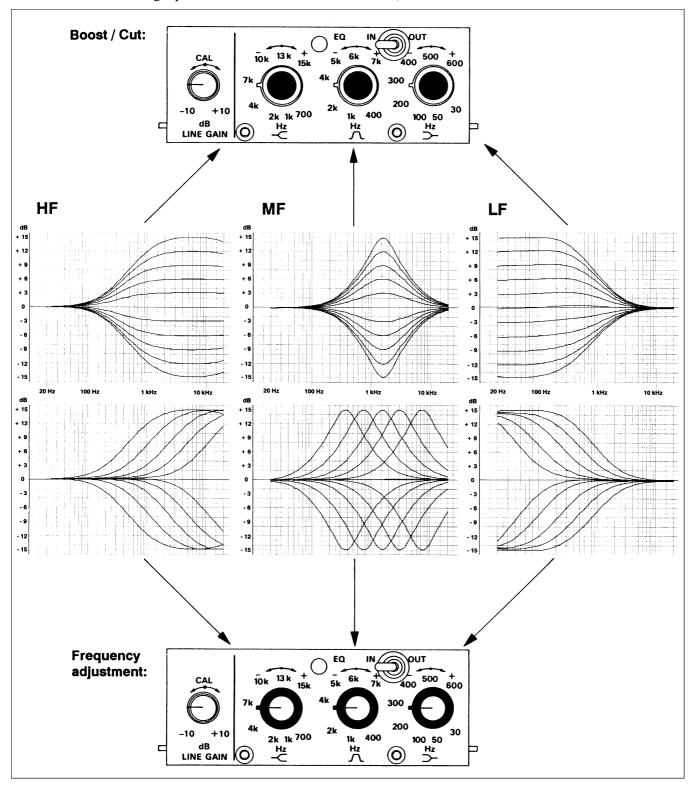
The Line Equalizer Euro-card is the ideal component to cope with situations as inadequate frequency response or excessive level loss on long-haul audio lines. Special effects equalization may be another application.


The frequency response can be varied in three bands over a ± 15 dB range, as shown by the respective graphs below. Gain is normally set to unity, with 10 dB of continuously variable gain or attenuation available. Remote controlled muting or bypassing is possible.

The equalizer cards are supplied with a choice of different front panels for either horizontal recessed, vertical recessed, or vertical flush installation into suitable mounting frames.

When installed vertically, each equalizer occupies 8 M units.

A 19" mounting frame for three equalizer cards plus the required power supply is described below.



Parametric filter diagrams:

HF shelving equalizer: Treble filter 700 Hz...15 kHz, ±15 dB

MF bell-shaped equalizer: Center frequency 400 Hz...7 kHz, ±15 dB; Q approx. 1

LF shelving equalizer: Bass filter 30 Hz...600 Hz, ±15 dB

Technical Specifications

Input: balanced and floating, with RF filter

Impedance > 10 kW

Clipping point +24 dBu (12.3 V)

Common mode rejection > 50 dB, unbalanced to ground

Output: balanced and floating

Minimum permissible load 200 W

Maximum output level +24 dBu (12.3 V)

Frequency response ±0.2 dB, 30 Hz...60 kHz, equalization off

THD < 0.01%, at nominal level

Equalization: Characteristics **see diagram,** referred to +6 dBu in/out

S/N > 96 dB, equalizer off

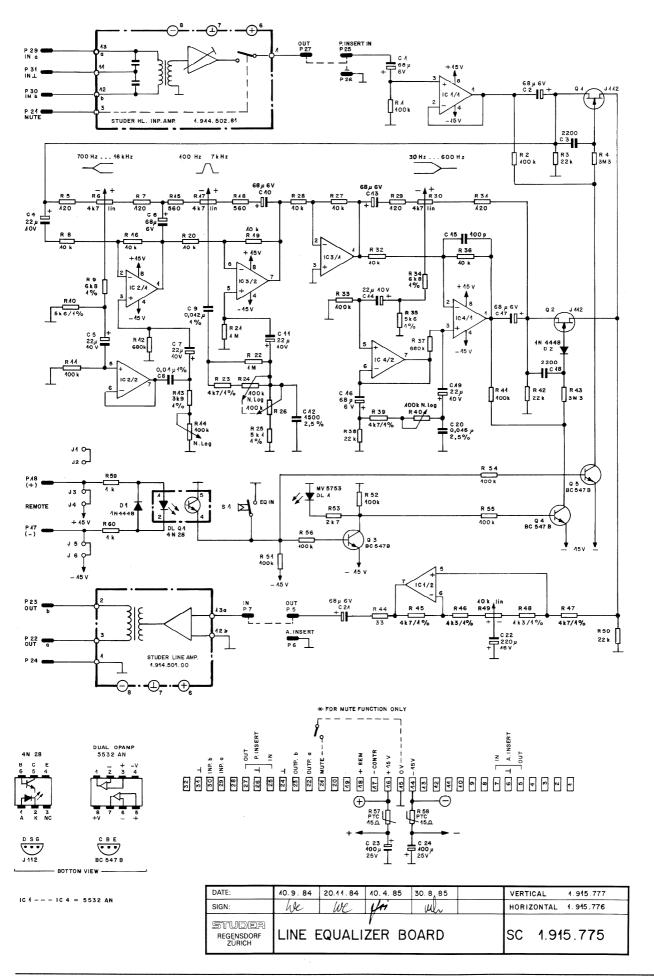
> 93 dB, equalizer on (linear)

Supply: $\pm 15 \text{ V}$ (80 mA idling, 170 mA @ +24 dBu into 200 Ω)

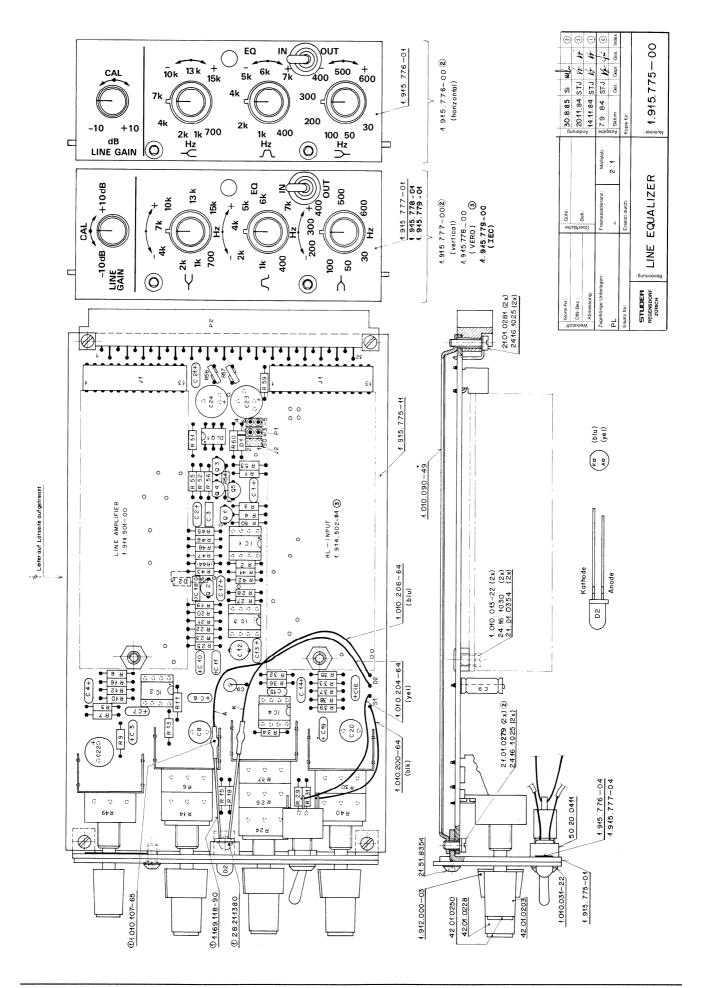
Dimensions: Euro-card 100×160 mm, 8 M units wide

Ordering Information:

Euro-cards: • Line equalizer, horizontal, for recessed mounting 1.915.776.xx


• Line equalizer, vertical, for recessed mounting 1.915.777.xx

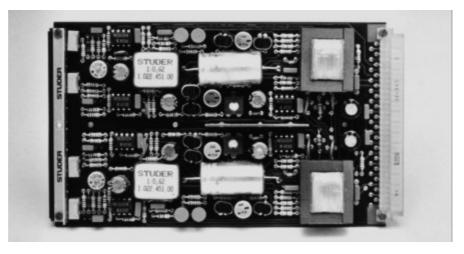
• Line equalizer, vertical, for flush mounting (ELMA) 1.915.779.xx

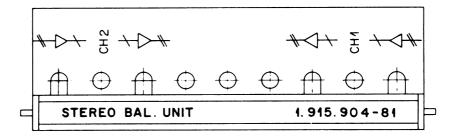

19" standard product • Mounting frame (19"/1U) with power supply and front panel,

wired for three equalizer cards 1.915.776 (not incl.) 1.918.117.xx

LINE EQUALIZER

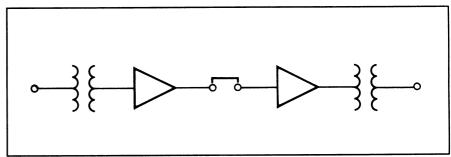
LINE EQUALIZER

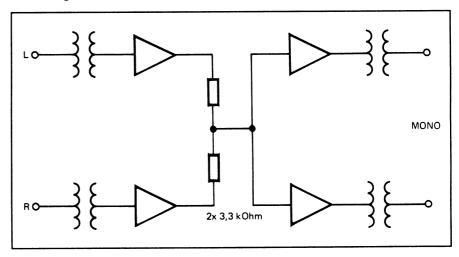

LINE EQUALIZER


AdPOS	REF.No	DESCRIP	TIONMANUFACTURER	AdPOSREF.No DESCRIPTIONMANUFACTURER
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10	59.26.0680 59.26.0222 59.26.1220 59.26.1220 59.26.0680 59.26.1220 59.05.1103 59.12.7123 59.26.0680	68 uF 68 uF 2.2nF 22 uF 22 uF 68 uF 22 uF 10nF 12nF 68 uF	20% 6.3V SAL 20% 6.3V SAL 10% 63V PETP 20% 10V SAL 20% 10V SAL 20% 6.3V SAL 20% 6.3V SAL 1% 63V PP 1% 63V PP 1% 63V PS 20% 6.3V SAL	R43 57.11.5335 3.3 MOhm 5% 0.25W MF R44 57.11.4330 33 Ohm 2% 0.25W MF R45 57.11.3472 4.7 kOhm 1% 0.25W MF R46 57.11.3132 1.3 kOhm 1% 0.25W MF R47 57.11.3132 1.3 kOhm 1% 0.25W MF R48 57.11.3132 1.3 kOhm 1% 0.25W MF R49 1.010.001.58 10 kOhm 2% 0.25W MF R50 57.11.4223 22 kOhm 2% 0.25W MF R51 57.11.4104 100 kOhm 2% 0.25W MF
C11 C12 C13 C14 C15 C16 C17 C18 C19	59.26.1220 59.05.2152 59.26.0680 59.26.1220 59.32.1101 59.26.0680 59.06.0222 59.26.1220 59.05.2153	22 uF 1.5nF 68 uF 22 uF 100pF 68 uF 68 uF 2.2nF 22 uF 15nF	20% 10V SAL 2.5% 160V PP 20% 6.3V SAL 20% 10V SAL 10% 400V CE 20% 6.3V SAL 20% 6.3V SAL 10% 63V PETP 20% 10V SAL 2.5% 63V PP	R52 57.11.4104 100 kOhm 2% 0.25W MF R53 57.11.4272 2.7 kOhm 2% 0.25W MF R54 57.11.4104 100 kOhm 2% 0.25W MF R55 57.11.4104 100 kOhm 2% 0.25W MF R56 57.11.4104 100 kOhm 2% 0.25W MF R57 57.92.1121 120 mA R-PTC 56V 15 ohm Philips R58 57.92.1121 120 mA R-PTC 56V 15 ohm Philips R59 57.11.4102 1 kOhm 2% 0.25W MF R60 57.11.4102 1 kOhm 2% 0.25W MF S1 55.01.0111 ON-ON SWITCH C & K
C21 C22	59.26.0680 59.22.3221	68 uF 220uF	20% 6.3Y SAL 20% 10Y EL	V1 1.914.501.00 LINE AMPLIFIER St V2 1.914.502.00 HL. INPUT AMP. (FLOATING) St
C23 C24	59.22.5101 59.22.5101	100 uF 100 uF	20% 25V EL 20% 25V EL	XIC1 53.03.0166 DIL 8-PIN 4X
D1 D2	50.04.0125 50.04.0125	1N4448 1N4448	any any	1.915.775.00 LINE EQUALIZER - BOARD 1.915.776.00 LINE EQUALIZER - HORIZONTAL
DL1	50.04.2111	MV5753	red GI,HP	1.915.777.00 LINE EQUALIZER - VERTICAL
DLQ1	50.99.0126	4N28		CE=Ceramic, CF=Carbon Film, EL=Electrolytic, MF=Metal Film, PE=Polyester, PP=Polypropylen, PS=Polystyrol
IC1 IC2 IC3 IC4	50.09.0106 50.09.0106 50.09.0106 50.09.0106	NE5532AN NE5532AN NE5532AN NE5532AN	dual op. amp. RA,SIG dual op. amp. RA,SIG dual op. amp. RA,SIG dual op. amp. RA,SIG	MANUFACTURER: Bu-Burndy, Ex-Exar, Fc-Fairchild, GI-General Instrument HP-Hewlett Packard, ITT-Intermetall, Mot-Motorola, Nat-National (Matsushita), NS-National Semiconductors, Ph-Philips, Ra-Raytheon, Sig-Signetics, Six-Siliconix, St-Studer,
J1 J2	54.01.0309 54.01.0021	13 PIN- JUMPER	CIS 2X	TI=Texas Instrument 1.915.775.00 LINE-EQUALIZER BOARD FRI 84/09/0600
P1 P2	54.01.0020 54.01.0359	J-PLUG 2*16	6X Euro – Plug	1.915.775.00 LINE-EQUALIZER BOARD FRI 84/11/2001
MP5 MP6 01 MP6 MP7	42.01.0203 42.01.0228 42.01.0250 1.912.000.03 1.010.090.49 1.915.776.01 1.915.777.01 1.915.777.01	GRY GRY L-GRY L-GRY	UPPER KNOB 3X,4/10 KNOB 1X,4/10 COVER 4X, LOMER KNOB 3X,6/13 SCREEN PLATE FRONT PANEL VERTICAL FRONT PANEL HORIZONTAL FRONT PANEL HORIZONTAL FRONT PANEL WERTICAL	END →
Q1 Q2 Q3 Q4 Q5	50.03.0350 50.03.0350 50.03.0436 50.03.0436 50.03.0436	J 112 J 112 BC 547 BC 547 BC 547	N-JFET NS,Mot,Six N-JFET NS,Mot,Six NPN IC>100mA, B>100 any NPN IC>100mA, B>100 any NPN IC>100mA, B>100 any	
R1 R2 R3 R4 R5 R6 R7 R8 R9	57.11.4104 57.11.4223 57.11.4233 57.11.4335 57.11.4121 1.010.003.58 57.11.4103 57.11.4603 57.11.3682 57.11.3562	100 kOhm 100 kOhm 22 kOhm 3.3 MOhm 120 Ohm 4.7 kOhm 120 Ohm 10 kOhm 6.8 kOhm 5.6 kOhm	2% 0.25N MF 2% 0.25N MF 2% 0.25N MF 2% 0.25N MF 20% lin. variable resistor 2% 0.25N MF 2% 0.25N MF 1% 0.25N MF 1% 0.25N MF	
R	57.11.4104 57.11.4684 57.11.3392 57.11.4561 57.11.4103 1.010.005.58 57.11.4561 57.11.4103 57.11.4103	100 kOhm 680 kOhm 3.9 kOhm 100 kOhm 560 Ohm 10 kOhm 4.7 kOhm 560 Ohm 10 kOhm	2% 0.25W MF 2% 0.25N MF 1% 0.25N MF 10% neg.log. 2% 0.25W MF 2% 0.25W MF 20% lin. 2% 0.25W MF 2% 0.25W MF 2% 0.25W MF	
R21 R22 R23 R24 R25 R26 R27 R28 R29 R30	57.11.4105 57.11.4105 57.11.3472 57.11.3512 57.11.4103 57.11.4103 57.11.4121 1.010.003.58	1 MOhm 1 MOhm 4.7 kOhm 100 kOhm 5.1 kOhm 100 kOhm 10 kOhm 10 kOhm 120 Ohm 4.7 kOhm	2% 0.25W MF 2% 0.25W MF 1% 0.25W MF 10% neg.log. 1% 0.25W MF 2% 0.25W MF	
R	57.11.4121 57.11.4104 57.11.400 57.11.3682 57.11.3562 57.11.4103 57.11.4684 57.11.4223 57.11.4104 57.11.4242	120 Ohm 10 kOhm 100 kOhm 6.8 kOhm 5.6 kOhm 10 kOhm 22 kOhm 4.7 kOhm 100 kOhm 100 kOhm 22 kOhm	2% 0.25W MF 2% 0.25W MF 1% 0.25W MF 1% 0.25W MF 2% 0.25W MF 2% 0.25W MF 2% 0.25W MF 2% 0.25W MF 1% 0.25W MF 10% neg.log. variable resistor,see R30 2% 0.25W MF 2% 0.25W MF	

2.2.13 Dual Balancing Unit/Dual Line Amplifier

1.915.904


In professional audio work it is not uncommon that equipment with unbalanced input or output configuration must be connected to a system that is based on a strictly balanced design. The Dual Balancing Unit is the ideal component if the requirement of matching unbalanced to balanced equipment or vice versa has to be satisfied.



The Dual Balancing Unit consists of one Euro-card which contains four separate circuits to accommodate unbalanced-to-balanced or balanced-to-unbalanced matching in a stereo system. It is the ideal choice for applications in which consumer-type stereo equipment has to be integrated into a professional audio system, where balanced audio lines are a must. The Dual Balancing Unit will also be used in situations where balanced auxiliary units must be connected to unbalanced insert points on a mixing desk.

The use of the balancing unit is not restricted to matching of balanced and unbalanced audio system components, because it can also be utilized as a (line) booster amplifier or as a stereo-to-mono mixer. By simply connecting the unbalanced outputs and inputs together and by adjusting again within the available ranges, two booster amplifiers with a maximum gain of 30 dB and a maximum output capability of +24 dBu*) can be realized.

For stereo-to-mono mixing, the unbalanced sides of the amplifier sections simply are connected by means of combining (mixing) resistors, as shown in the diagram below.

*) To avoid signal clipping, a system should always be designed in such a way that signal peaks stay well below an amplifier's maximum output capacity. Alignment procedures and level settings depend to a large degree on the type of metering used in an audio system. When making measurements with a steady-state signal, a margin of 6 dB below a system's clipping point and the PPM deflected to "zero volume", or a margin of 15 dB (for programs with extreme crest factors, even 20 dB) when utilizing a VU-meter, is considered good engineering practice.

Technical Specifications

Balanced to unbalanced (Section 1):

Input impedance 3 10 kW, balanced/floating

Maximum input level +24 dBu

Output impedance < 100 W, unbalanced

Maximum output level +20 dBu
Minimum load 600 W

Frequency response $\pm 0.2 \text{ dB}$, 30 Hz...16 kHz

Attenuation **0/15 dB**; two fixed steps

0...15 dB; variable

S/N > 100 dB; attenuation set to 6 dB, line level +6 dBu

Unbalanced to balanced (Section 2):

Input impedance 5 kW, unbalanced

Maximum input level +20 dBu

Output impedance £ 50 W, balanced/floating

Minimum load 200 W
Maximum output level +24 dBu

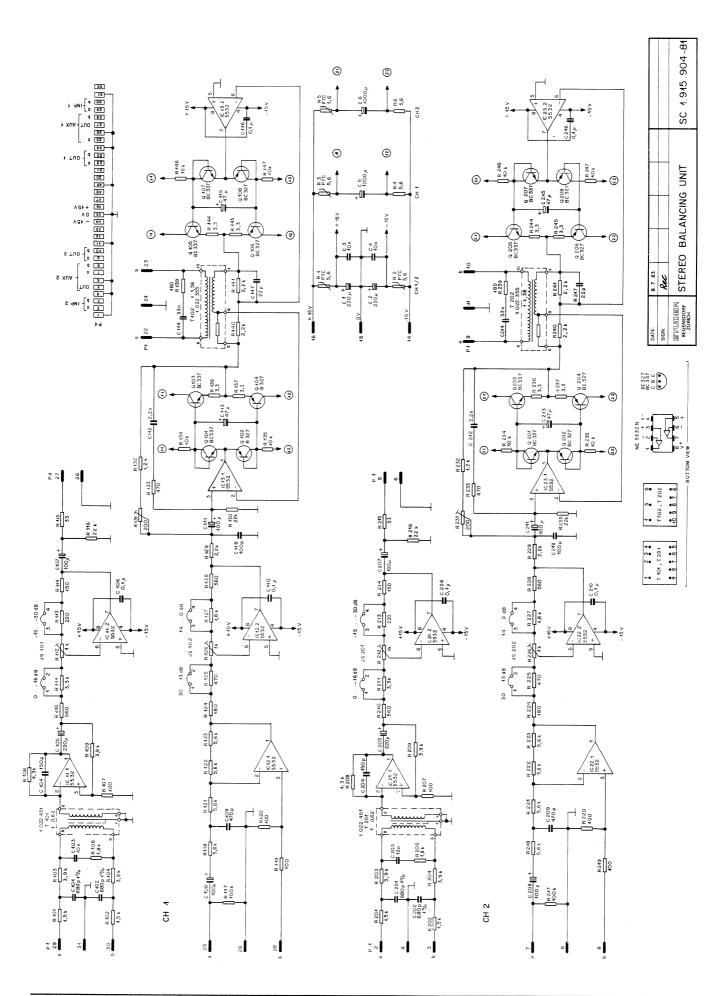
Frequency response ±0.2 dB, 30 Hz...16 kHz

Gain 14/30 dB; two fixed steps

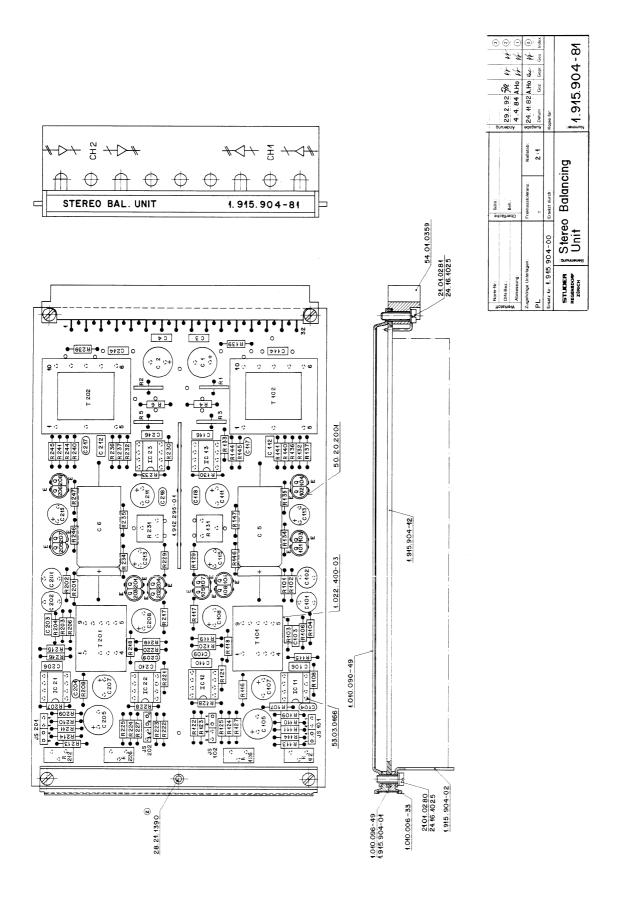
0...17 dB; variable

S/N > 100 dB; gain set to 6 dB, line level +6 dBu

Supply: $\pm 15 \text{ V}$ (70 mA, idling; 170 mA, each channel +24 dBu into 200 Ω)


Dimensions: Euro-card 100×160 mm, 7 M units wide

Ordering Information:

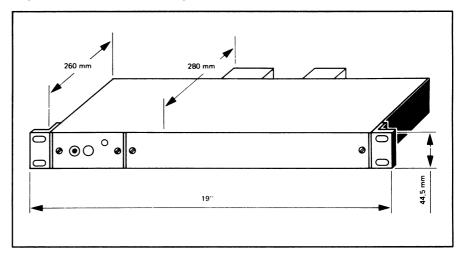

Euro-card:• Dual balancing unit
1.915.904.xx **19"/1U standard products:**• 2CH balancing unit (1 × 1.915.904)
75.700.89212

4CH balancing unit (2 × 1.915.904) 75.700.89422 6CH balancing unit (3 × 1.915.904) 75.700.89632

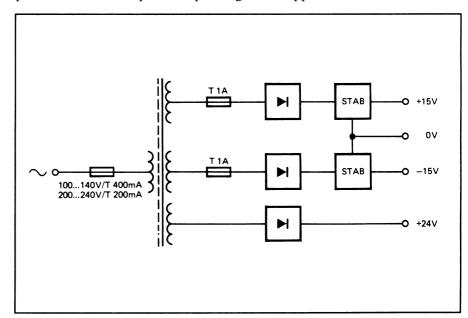
DUAL BALANCING UNIT

DUAL BALANCING UNIT

DUAL BALANCING UNIT


AdP	os	REF.No	DESCRIPTI	ON		MANUFA	CTURER	AdPOS	REF.No	DESCRIPTION)N	MANUFACTURER
C. C. C.	1 2 3 4 5	59.22.4221 59.22.4221 59.06.0103 59.06.0103 59.25.5102 59.25.5102	220µ 220µ 10n 10n 1000µ 1000µ	16V 16V 63V 63V 40V 40V	EL EL PE PE EL EL			R41 R42 R43 R44 R45 R46	57.11.4222 57.11.4339 57.11.4339 57.11.4103	2,2k 3,3 3,3 10k	2%	
C. C. C. C. C.	123456789	59.05.1681 59.05.1681 59.06.0103 59.34.4151 59.22.2221 59.06.0104 59.22.5101 59.34.5471	680p 680p 10n 150p 220µ 0,1µ 100µ 470p	1% 630V 1% 630V 63V 63V 63V 25V 25V 25V	PP PP CER EL PE EL EL CER				57.11.4103 1.022.451.00 1.022.355.00 53.03.0166 PE=Polyester, PP=Po			ST ST
C. C. C. C. C.	10 11 12 13 14 15 16 17	59.06.0104 59.22.5101 59.06.0222 59.22.5470 59.06.0333 59.22.5470 59.06.0104 59.34.2220 59.34.4101	0,1µ 100µ 2,2n 47µ 33n 47µ 0,1µ 22p 100p	63V 25V 63V 25V 63V 25V 63V 63V 63Y	PE EL PE EL PE EL PE CER CER			MANUFACTURER: END →	SIG=Signetics, PH= 1.915.904.81 STE			BR 24/11/82
IC.	2	50.09.0105 50.09.0105 50.09.0105	NE5532 NE5532 NE5532	DUAL OP AMP DUAL OP AMP DUAL OP AMP		XR5532 XR5532 XR5532	SIG, EX					
	1	54.01.0020 54.01.0021 54.01.0021 54.01.0021	4PIN Jumper 4PIN Jumper									
P	1	54.01.0359	2•16P									
Q Q Q Q Q	1 2 3 4 5 6 7	1.010.037.50 1.010.036.50 1.010.037.50 1.010.036.50 1.010.037.50 1.010.036.50 1.010.037.50 1.010.036.50	BC337 BC327 BC337 BC327 BC337 BC327 BC327 BC327	NPN PNP NPN PNP NPN PNP NPN PNP NPN PNP PNP	MATCHED							
R R R R	123456	57.99.0209 57.99.0209 57.99.0209 57.11.4569 57.99.0209 57.11.4569	5,6 5,6 5,6 5,6 5,6 5,6	PTC PTC PTC PTC			PH PH PH					
R R R	1 2 3 4 5	57.11.3152 57.11.3152 57.11.3392 57.11.3392	1,5k 1,5k 3,9k 3,9k	1% 1% 1% 1%								
R R R	6 7 8 9 10	57.11.4182 57.11.3101 57.11.3432 57.11.3392 57.11.4561	1,8k 100 4,3k 3,9k 560	2%								
R R R R R R R	11 12 13 14 15 16 17 18 19	57.11.4332 58.01.9102 57.11.4221 57.11.4151 57.11.4330 57.11.4223 57.11.4104 57.11.3562 57.11.3101 57.11.3101	3,3k	10% TRIM 2% 2% 1%								
R R R R R R	. 21 . 22 . 23 . 24 . 25 . 26 . 27 . 28 . 29 . 30	57.11.3562 57.11.3562 57.11.3562 57.11.4561 57.11.4471 58.01.9102 57.11.4561 57.11.4561 57.11.4222 57.11.4223	5,6k 5,6k 5,6k 180 470 1k 1,8k 560 2,2k 22k	2% 2% 10% TRIM 2% 2%								
R R R R	31 32 33 34 35 36	58.01.8201 57.11.4122 57.11.4471 57.11.4103 57.11.4339 57.11.4339	200 1,2k 470 10k 10k 3,3 3,3	TRIM								
R R	38 39 40	57.11.4181 57.11.4222	180 2,2k	2%								

2.3 Racks and Frames


2.3.1 19" Mounting Frame for 3 Euro-Cards

1.918.100

This 19" mounting frame (height: 44.5 mm/1U) offers space for three Euro-cards next to the power supply. The power supply provides $\pm 15~V_{DC}$ (regulated) and 24 V_{DC} (unregulated).

The frame comes equipped with three edge connectors to accommodate three Euro-cards horizontally, side by side. A blank back panel of anodized aluminium is provided and permits the installation of input and output connectors as required, depending on the application.

Technical Specifications

Primary: Voltage selector for 100, 120, 140, 200, 220, 240 V_{AC}

Fuse (slow-blow) $$ 400 mA (for 100...140 $V_{AC})$

200 mA (for 200...240 V_{AC})

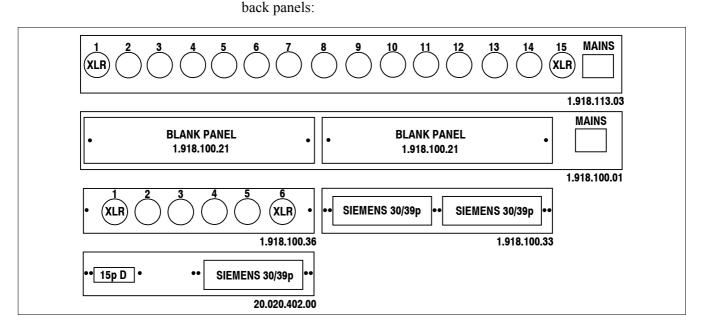
Secondary: Regulated voltage $\pm 15 V_{DC}$, 0.5 A max.

Unregulated voltage 24 V_{DC}, 0.2 A max. (for signaling)

Fuses (slow-blow) $2 \times 1 A$

Ordering Information:

19"/1U standard product • Mounting frame for three Euro-cards with power


supply and stabilizer PCB, with two blank aluminium

back panels (1.918.100.21)

1.918.100.xx

Alternative Back Panels:

The mounting frame 1.918.100.xx can be equipped with the following

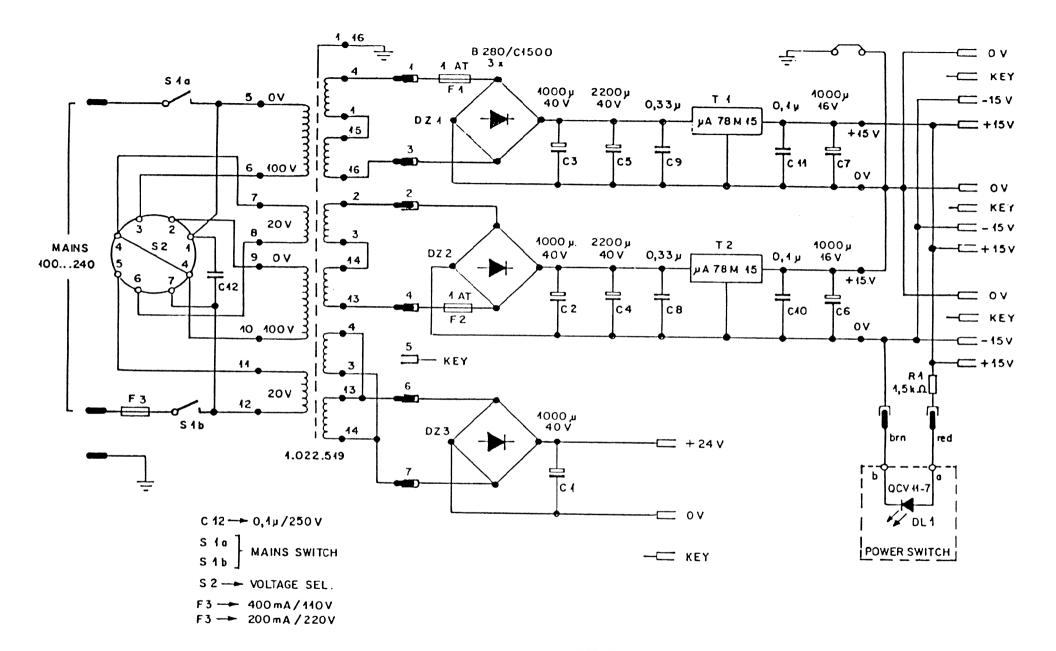
Ordering Information:

Alternative Back Panels for Mounting Frame 1.918.100

Steel back panel for 15 × XLR sockets (Neutrik) 1.918.113.03

Alternative Back Panels for Blank Panels 1.918.100.21

• Aluminium back panel for 6 × XLR sockets (Neutrik) 1.918.100.36


 Aluminium back panel for 1 × Siemens 30/39 pin and 1 × 15pin D-type sockets

Aluminium back panel for 2 × Siemens 30/39 pin sockets 1.918.100.33

Administration back panel for 2 × Stemens 30/39 pin sockets 1.918.100.33
 Mechanical interface Siemens panel → D-type connector: see chapter

2.3.4.

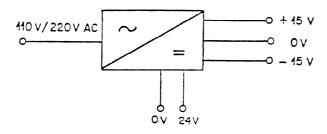
20.020.402.00

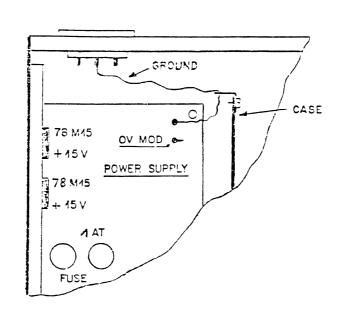
DATÉ:	9.4.85			REPLACES 4.948.099-84
SiGN:	We			
STUDER REGENSORF ZURICH	POWER	 Y		1.918.098-00

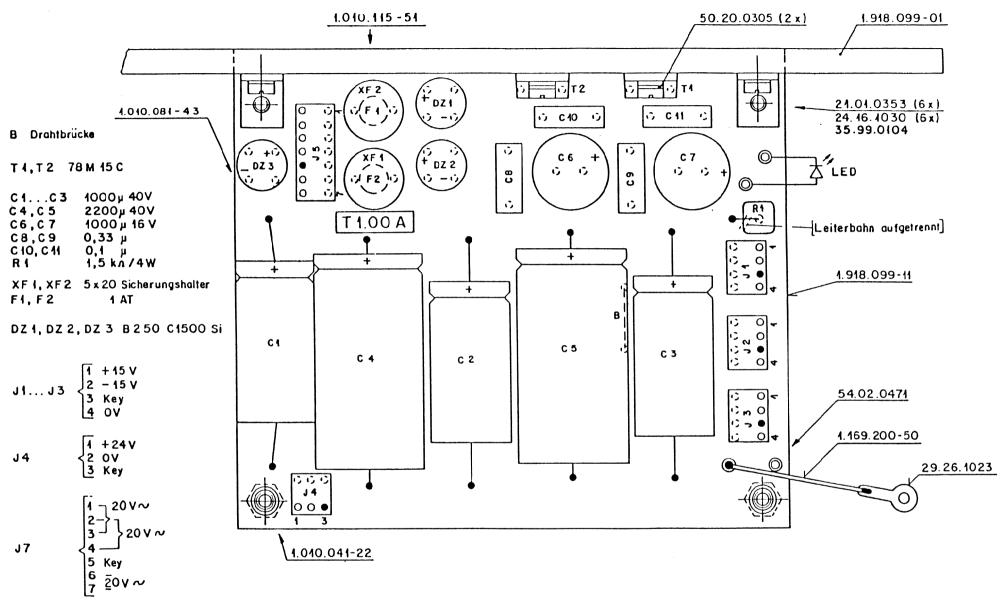
POWER SUPPLY 1.918.098

Technical data:

Input 100 ... 240 V AC

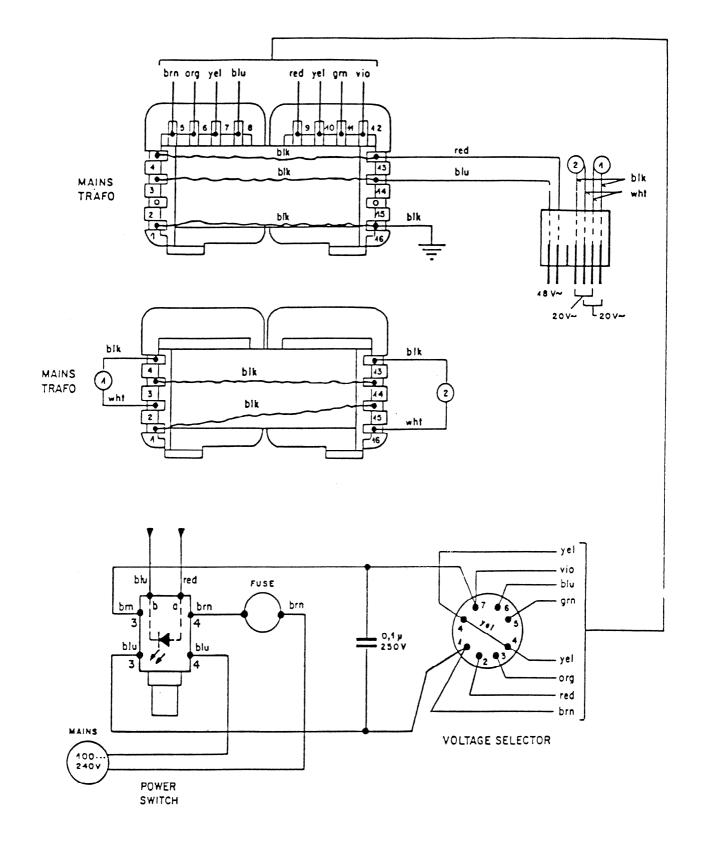

Output ±15 V, O.5A (audio)


24 V, O.2A (signalling)


Prim.fuse 400 mAT (100 ... 140 V AC)

200 mAT (200 ... 240 V AC)

Sec. fuse 1 AT (\pm 15 V DC)



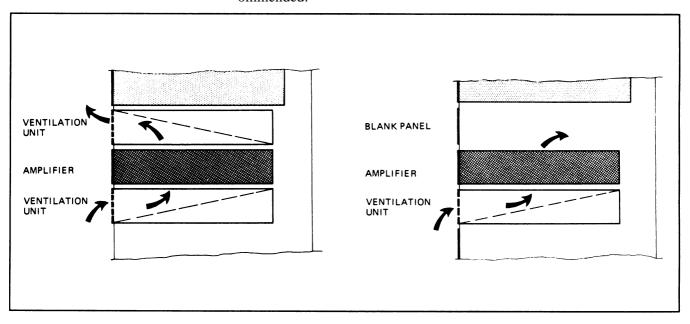
Codierung: Schattdraht 64.01.0108 #0,8x8mm (muss 4mm vorstehen)

In	Buchsenleiste	11	in	Kontakt	3
#	н	J2			3
#		J3			3
	u	J 4			3
	•	J 5			5

DATE:	9.4.85				REPLACES 4.948.099-84
SIGN:	We				
STUDER REGENSDORF ZÜRICH	POWER	SUPPL 24 V	Y		1.918.098

DATE:	6.44.79	25.3.85		
SIGN:	we	we		
STUDER REGENSDORF ZÜRICH	WIRING			1.918.100 1.918.101 1.918.102

2.3.2 19" Ventilation Unit/19" Blank Panels


1.918.119/0XX

1.918.011.xx

1.918.012.xx

1.918.013.xx

When filling a cabinet rack with various electronic equipment, considerable heat may be generated, which could be harmful to other nearby components. To provide for sufficient convection cooling, the use of ventilation units above and below the heat-generating equipment is strongly recommended.

A ventilation unit consists of a 19" wide and 1U high sheet metal structure, which extends about 340 mm into the rack. The unit's front section is perforated, with a slanting metal panel mounted inside. By installing the ventilation unit with that panel either slanting upwards or downwards, the air flow can be directed as desired.

If only moderate heat problems have to be coped with, it may be sufficient to use one ventilation unit above or below the heat source, and to provide sufficient spacing from adjacent equipment by installing a 1U blank panel on the opposite side.

Ordering Information:

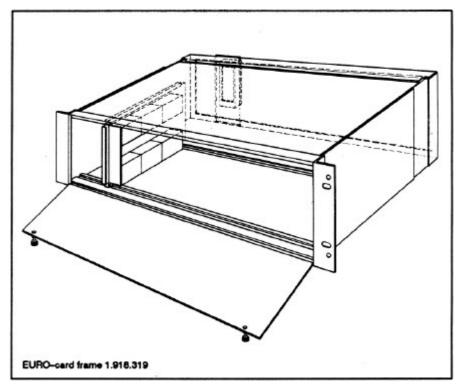
19" Ventilation Units

•	Ventilation unit 19"/1U	1.918.119.xx
•	Ventilation unit without air guide panel	1.918.119.09
19" Blank Panels		
•	Blank panel 19"/1U high, anodized finish	1.918.001.xx
•	Blank panel 19"/2U high, anodized finish	1.918.002.xx
•	Blank panel 19"/3U high, anodized finish	1.918.003.xx
•	Blank panel 19"/1U high, plastic coated, grey	1.918.001.09
•	Blank panel 19"/2U high, plastic coated, grey	1.918.002.09
•	Blank panel 19"/3U high, plastic coated, grey	1.918.003.09

Blank panel 19"/1U high, paint finish, grey

Blank panel 19"/2U high, paint finish, grey

Blank panel 19"/3U high, paint finish, grey


2.3.3 19" Euro-Card Mounting Frames

1.918.318/319

The Euro-card mounting frame (sometimes also referred to as 19" Sub Rack) is an empty structure which fits into any standard 19" rack. It is intended to accommodate PCBs of the Euro format vertically, side by side. The available space within the sub rack is divided into 84 Modular Widths, each measuring 5.08 mm (0.2 inches). One Euro-card usually occupies 7 M (Module) widths, thus up to 12 Euro-cards may be installed.

The Euro-card frame is supplied as a kit for assembly by the user. Assembly instructions are included with each kit.

Supplied with the kit is a hinged front panel of anodized aluminium, providing quick access to the plug-in PCBs if required. This front panel and its hinges are available separately in case a damaged panel or hinge needs to be replaced.

Separate edge connectors and slide rails are required for each Euro-card and power supply unit installed into the Euro-card frame. Mounting kits containing the slide rails, edge connectors, and other accessories are described below (1.918.315/316).

To provide for convection cooling within an equipment rack, the Ventilation Unit 1.918.119.xx is recommended.

Euro-Card Racks, Ordering Information:

Euro-card frame (19"/3U, ELMA), direct access to 32pin connectors on back panel

1.918.318.xx

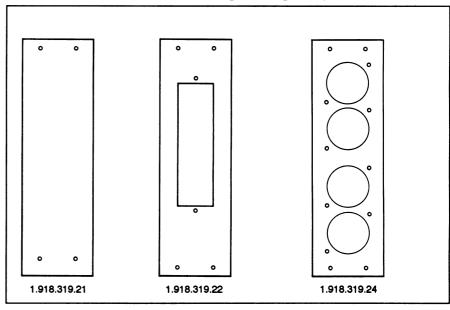
• Euro-card frame (19"/3U, ELMA) with additional rear panel, for max. 10 freely assignable connector panels

1.918.319.xx

2.3.4 19" Euro-Card Mounting Accessories

Euro-Card Mounting Kit

For installing Euro-cards and/or a power supply unit into a Euro-card frame 1.918.318/319, suitable edge connectors and guide rails are required.


Euro-Card Mounting Kit, Ordering Information:

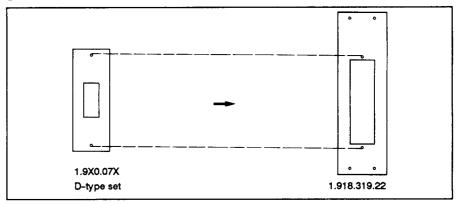
- Mounting kit for 1 Euro-card (ELMA rack); see photograph 1.918.315.xx
- Mounting kit for power supply 1.915.100

1.918.316.xx

Connector Panels:

The connector panels fit into the Euro-card frame with back panel (1.918.319). Please order the suitable panels separately.

Connector Panel (3U high) Ordering Information:


•	Blank panel	1.918.319.21
•	Panel for Siemens connector (cut out 18 × 67 mm) *	1.918.319.22
•	Panel for mains inlet and 2 banana sockets	1.918.319.23
•	Panel for 4 XLR sockets	1.918.319.24

* Siemens Connector Sets: Including male and female connector:

_	Siemens 30pin,	without connector pane	1.900.0	080.xx
_	Siemens 39pin,	without connector pane	1.900.0)81.xx

* D-Type Adapter Panels:

The Siemens connector panel can be used as a base for mounting a D-type connector adapter panel. The adapter sets listed below include male and female connectors, connector cover, bolting spring, clamp, and adapter panel:

Adapter Panel Ordering Information:

The adapter kits consist of male and female D-type connector, metal or plastic connector cover, adapter panel, and mounting hardware, to fit on the Siemens connector panels 1.918.319.22 (for 3U frames) or 1.918.100.33 (for 1U frames):

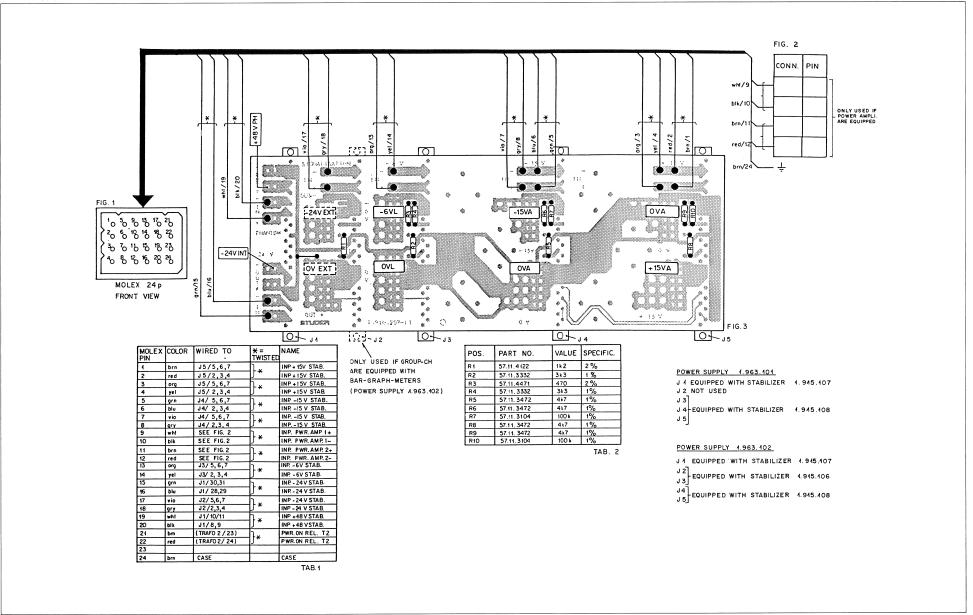
 D-type set, 9pin, metal connector cover 	1.900.075.xx
 D-type set, 15pin, metal connector cover 	1.900.076.xx
 D-type set, 25pin, metal connector cover 	1.900.077.xx
 D-type set, 37pin, metal connector cover 	1.900.078.xx
 D-type set, 50pin, metal connector cover 	1.900.079.xx
 D-type set, 9pin, plastic connector cover 	1.970.075.xx
 D-type set, 15pin, plastic connector cover 	1.970.076.xx
 D-type set, 25pin, plastic connector cover 	1.970.077.xx
 D-type set, 37pin, plastic connector cover 	1.970.078.xx
 D-type set, 50pin, plastic connector cover 	1.970.079.xx

1.228.327.82

Extension Board:

For alignment and repair, a Euro-card may have to be operated outside the mounting frame. To facilitate any service work that has to be performed on individual cards, extending the card's 32 electrical connections is possible by means of a flexible extension board.

Ordering Information: Extension PCB for Euro-cards, 2×32 pin, flexible


Date printed: 29.11.01

7 Europe PCB + Power supply

1.970.101/102

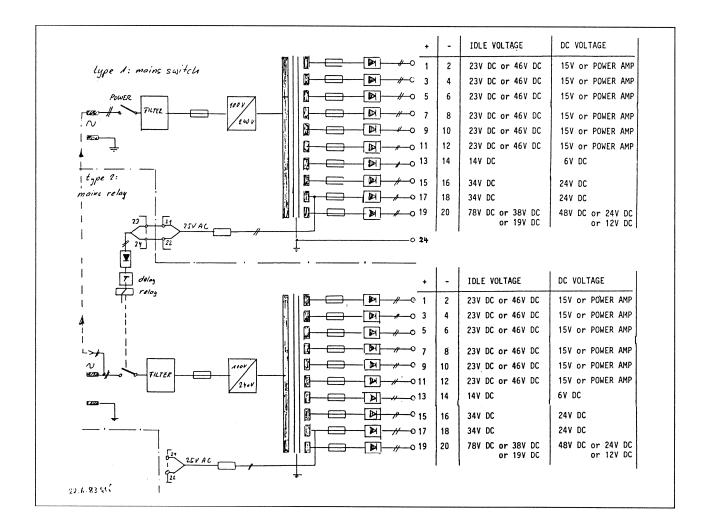
1.970.101 Power Supply 20,34 20,34 28,29 PHANTOM **由中国中国** (1) 3. 7. 87 We 0 3.7.87 We 0 0 О Ю 0 O STUDER **POWER SUPPLY** STUDER **POWER SUPPLY** SC 1.970.101 SC 1.970.102 REGENSDORF ZÜRICH REGENSDORF ZÜRICH 970 AUDIO CONSOLE 970 AUDIO CONSOLE

Power Supply 1.970.101/102

7/2 EDITION: 23. Oktober 1990

Trafoblock mit Gleichrichter

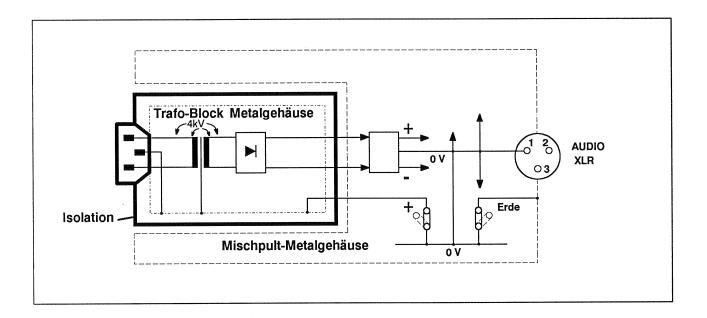
1.910.50X


Trafoblock mit Gleichrichter. Es bestehen zwei Grundausführungen:

- mit Netzschalter
- mit Netzrelais

1. Beschreibung

- Die Ausgangsspannungen sind programmierbar.
- Die Gleichrichter sind stark überdimensioniert.
- Die Sekundärseite ist mit 4 kV Prüfspannung von der Primärseite isoliert.
- Der Trafoblock ist allseitig geschlossen und liegt isoliert im Mischpult.
- Alle Primär- und Sekundärspannungen sind einzeln abgesichert.

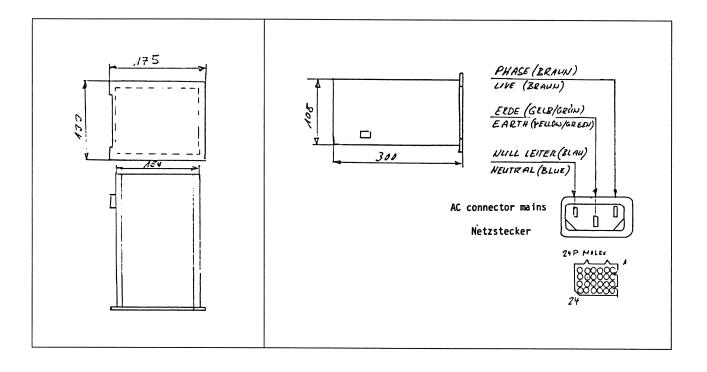

Blockschaltbild

EDITION: 23. Oktober 1990 7/3

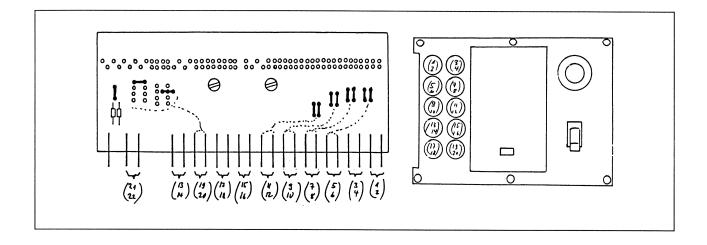
2. Sicherheit

Der Trafoblock ist aufgebaut wie ein schutzisoliertes Gerät nach IEC 65, Klasse II. Als zusätzliche Sicherheit wird der Endleiter eingeführt. Der Trafoblock 1.910.50X ist im Mischpult isoliert eingebaut, so dass die Verbindung zwischen Schutzleiter und Mischpultgehäuse gefahrlos aufgetrennt werden kann.

3. Spezielle Daten


Siehe unter spezielle1.910.500Datenblätter1.910.505

4. Mechanische Daten


Sekundär Buchse: 24P Molex

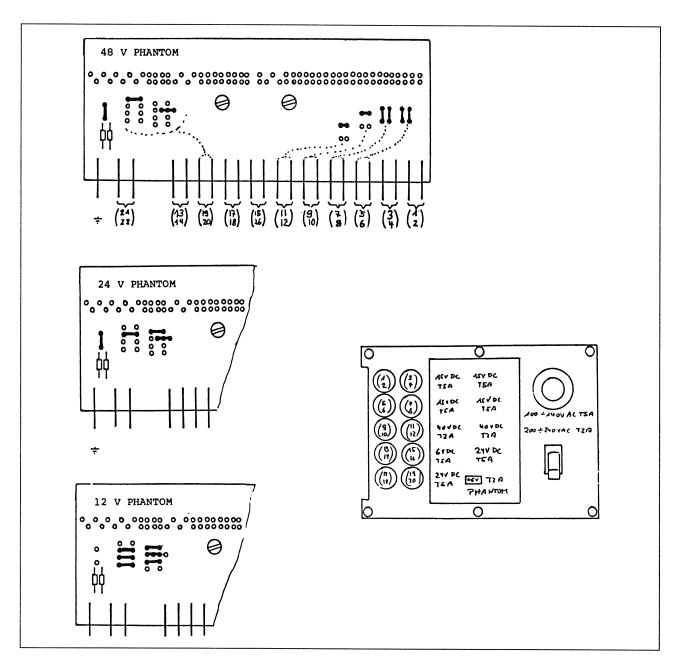
Gewicht: 9400 gr

7/4 EDITION: 23. Oktober 1990

Trafoblock 1.910.50X

Trafoblock

TRAFO BLOCK			TRAFO BLOCK						
Grenzwerte:	Einzel S	Stabikarte Sicherung	Limiting values	SINGLE max. current	STABI PC				
6V Wicklung (13)	4A	T 5A	6V winding (13) (14)	4A	T 5A	7			
12V Wicklung	2,4A	T 5A	12V winding	2,4A	T 5A				
24V Wicklung (19)	1,2A	T 5A	24V winding >(19) (20)	1,2A	T 5A				
48V Wicklung	0,6A	T 2A	48V winding	0,6A	T 2A				
15V Wicklung	2,1A	T 5A	15V winding	2,1A	T 5A				
24V Wicklung	1,2A	T 5A	24V winding	1,2A	T 5A				
40V Wicklung	1,2A	T 2A	40V winding	1,2A	T 2A				
Grenzwerte:	Doppel S max.Strom	tabikarte Sicherung	Limiting values	DUAL ST		parallel schalten parallel connection			
6V Wicklung (13)	8A	2 x T 5A	6V winding (13) (14)	88	2 x T 5A				
12V Wicklung	5A	2 x T 4A	12V winding	5A	2 x T 4A				
24V Wicklung (19)			24V winding (19) (20)						
48V Wicklung			48V winding						
,	4-5 A	2 x T 4A	15V winding	4-5A	2 x T 4A	$\binom{1}{2}\binom{3}{4}\binom{5}{6}\binom{7}{8}\binom{7}{10}\binom{9}{12}$			
15V Wicklung	ı	Į.	24V winding	2,5A	1				
15V Wicklung 24V Wicklung	2,5 A	1	40V winding	i	l l				


 Die maximale Belastung darf auf der gleichgerichteten Seite 350W nicht überschreiten.

7/6 EDITION: 23. Oktober 1990

Trafoblock 1.910.500.81

1.910.500.81 1 x 6 V DC 2 x 15 V DC 4 x 40 V DC 2 x 24 V DC

1 x 48 V DC PHANTOM

Umbau auf andere Phantomspannungen

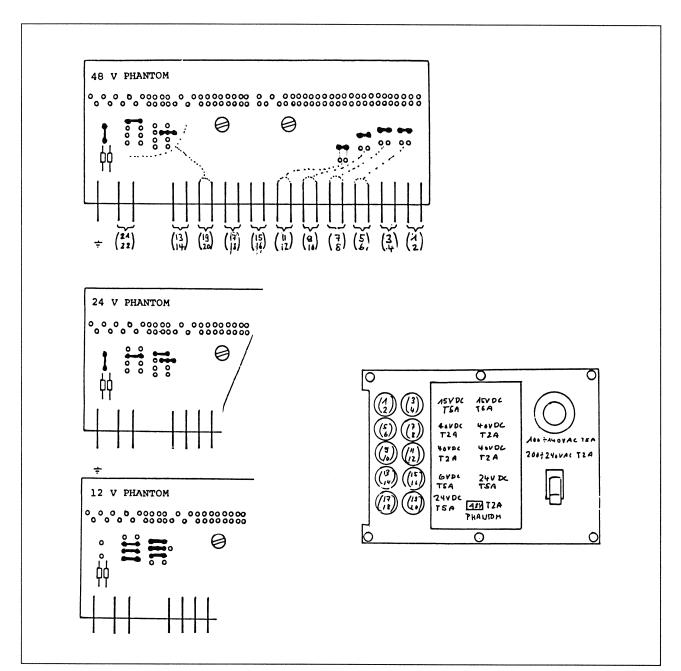
■ Trafo-Block umbauen

 Widerstände auf dem Anschlussprint der Eingangseinheit ändern 48V 6,8 kOhm/0,4 %

1.169.200.21 Entwurf IEC 268-15A

24V 4,3 kOhm/0,4 % 12V 580 Ohm/0,4 %

1.169.200.20


■ Stabilisatorkarte 1.915.107 Litze umstecken

Trafoblock 1.910.505.81

1.910.505.81

1 x 6 V DC 4 x 15 V DC 2 x 40 V DC 2 x 24 V DC

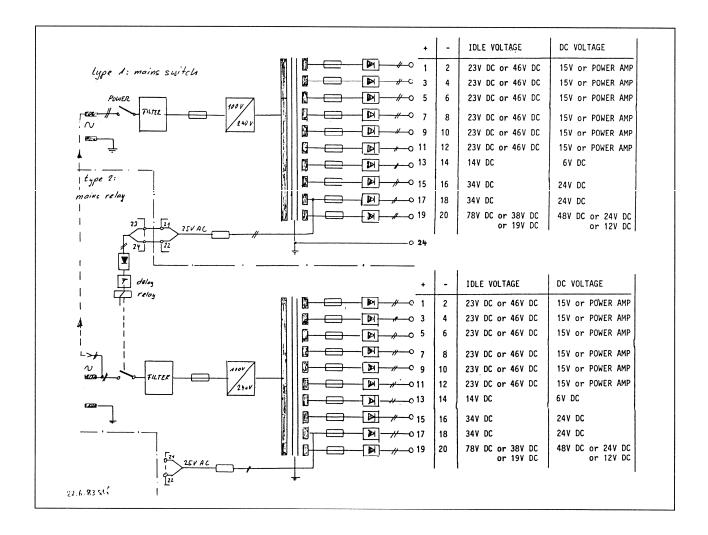
1 x 48 V DC PHANTOM

Umbau auf andere Phantomspannungen ■ Trafo-Block umbauen

Widerstände auf dem Anschlussprint der Eingangseinheit ändern 48V 6,8 kOhm/0,4 % 1.169.200.21 24V 4,3 kOhm/0,4 % Entwurf IEC 268–15A 12V 580 Ohm/0,4 % 1.169.200.20

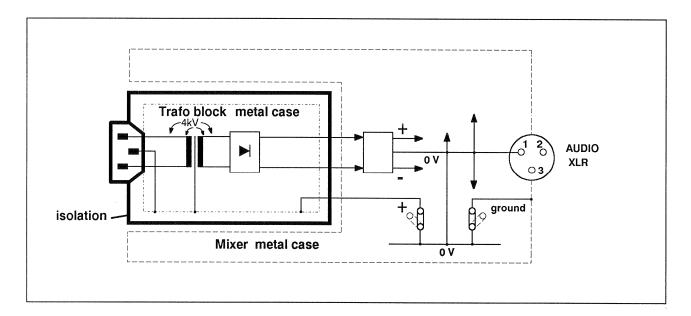
■ Stabilisatorkarte 1.915.107 Litze umstecken

Mains Trafo Block 1.910.50X


Trafo with rectifier. Two basic types are available:

- with mains switch
- with mains relay

1. Features


- Output voltages are programmable.
- Rectifiers are heavely oversized.
- Secondary wirings are isolated by 4 kV against the primary side.
- The trafo-block is separately boxed and fixture by means of isulators.
- All voltages are protected by fuses individually.

Block Diagram

2. Safety

The trafo-block is built like a double-isolated electric device (IEC 65 clause II). For improved safety, the connection to earth is also wired. In the mixer, the trafo-block 1.910.50X is built-in isolated. On the back side of the mixer the connection between earth and ground can be opened without the danger of an electric shock.

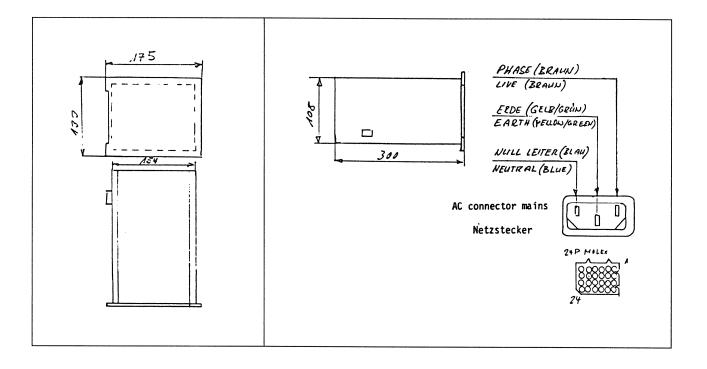
3. Specifications

See special data sheet

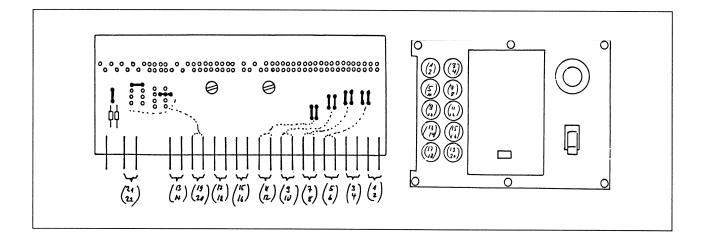
1.910.500

1.910.505

4. Dimensions


Secondary connector:

24P Molex


Weight:

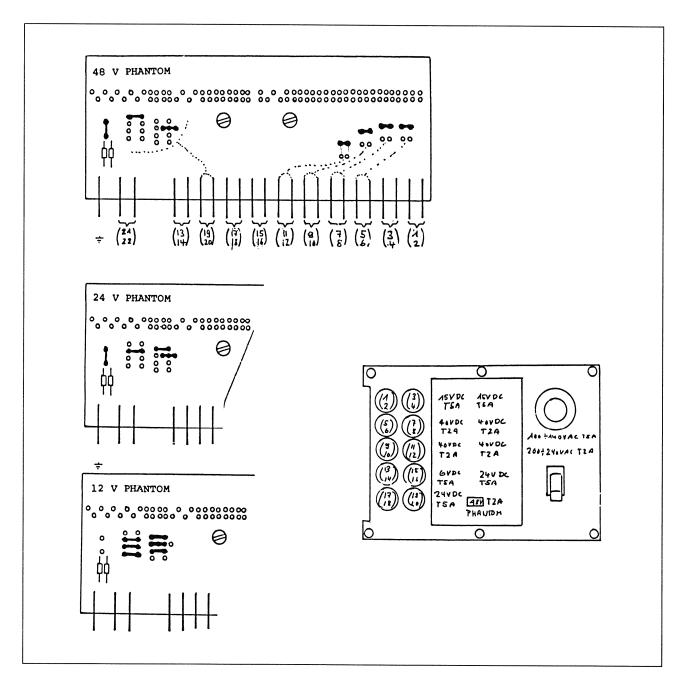
9400 gr

7/10

Trafo Block 1.910.50X

Trafo Block

TRAFO BLOCK			TRAFO BLOCK			
Grenzwerte:	Einzel Stabikarte max. Strom Sicherung		Limiting values	SINGLE ST	ABI PC	
6V Wicklung (13)	4A	T 5A	6V winding (13) (14)	4A	T 5A	
12V Wicklung	2,4A	T · 5A	12V winding	2,4A	T 5A	
24V Wicklung (19)	1,2A	T 5A	24V winding >(19) (20)	1,2A	T 5A	
48V Wicklung	0,6A	T 2A	48V winding	0,6A	T 2A	
15V Wicklung	2,1A	T 5A	15V winding	2,1A	T 5A	
24V Wicklung	1,2A	T 5A	24V winding	1,2A	T 5A	
40V Wicklung	1,2A	T 2A	40V winding	1,2A	T 2A	
Grenzwerte:	Doppel S max.Strom	tabikarte Sicherung	Limiting values	DUAL STAB	I PC FUSE	parallel schalten parallel connection
6V Wicklung (13)	8A	2 x T 5A	6V winding (13) (14)	8A	2 x T 5A	
(14)	5A	2 x T 4A	12V winding	5A	2 x T 4A	
12V Wicklung			24V winding (19) (20)			
-1		l	1 1	l	1	1 3 / 5 7 / 0 11
12V Wicklung 24V Wicklung (19) 48V Wicklung			48V winding			
24V Wicklung (19) (20)	4-5 A	2 x T 4A	15V winding	4-5A	2 x T 4A	$\binom{\binom{1}{2}\binom{3}{4}}{\binom{6}{6}\binom{6}{8}}{\binom{6}{10}\binom{10}{12}}$
24V Wicklung (19) 48V Wicklung		2 x T 4A	1	4-5A 2,5A	2 x T 4A	$\binom{1}{2}\binom{3}{4}\binom{5}{6}\binom{7}{8}\binom{9}{10}\binom{11}{12}$


■ The maximum load should not exceed 350 W on the rectifier side.

7/12 EDITION: 23. Oktober 1990

Trafo Block 1.910.500.81

1.910.500.81 1 x 6 V DC 2 x 15 V DC 4 x 40 V DC 2 x 24 V DC

1 x 48 V DC PHANTOM

Conversion of phantom powering

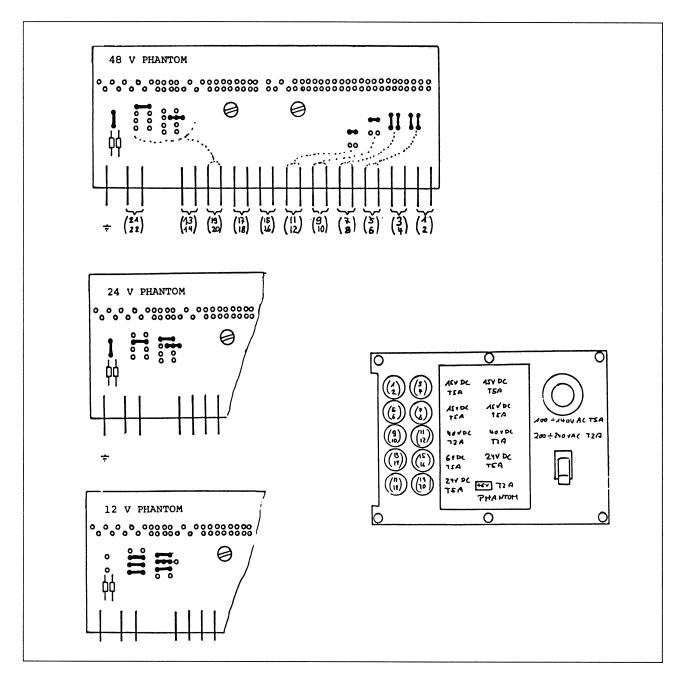
■ Convert trafo-block

 Change resistor on the connection PCB of the input unit 48V 6,8 kOhm/0,4 %
 24V 4,3 kOhm/0,4 %
 12V 580 Ohm/0,4 %

Draft IEC 268–15A 1.169.200.20

1.169.200.21

Reconnect the stranded wire on the stabilizer PCB 1.915.107


Trafo Block 1.910.505.81

1.910.505.81

1 x 6 V DC 4 x 15 V DC 2 x 24 V DC

2 x 40 V DC

1 x 48 V DC PHANTOM

Conversion of phantom powering

- Convert trafo-block
- Change resistor on the connection PCB of the input unit 48V 6,8 kOhm/0,4 % 24V 4,3 kOhm/0,4 % 12V 580 Ohm/0,4 %

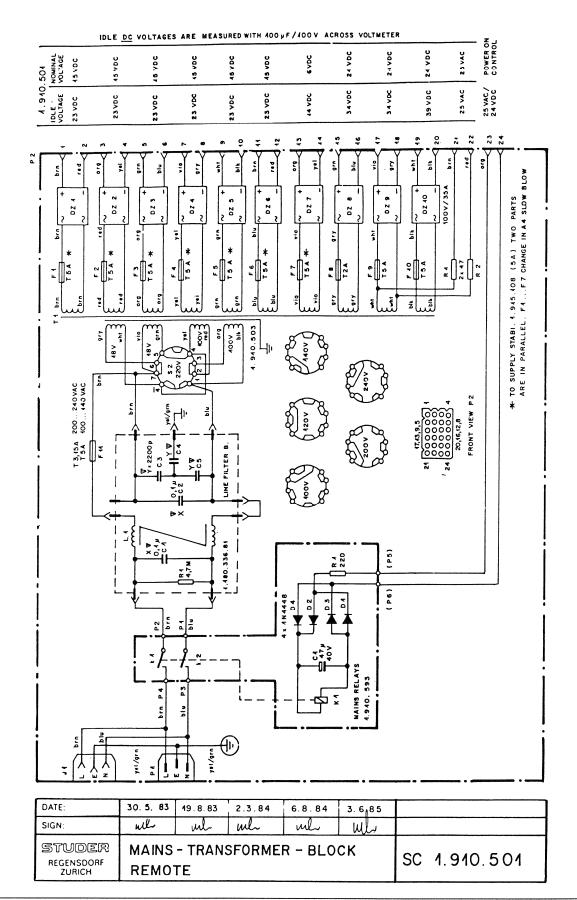
Reconnect the stranded wire on the stabilizer PCB 1.915.107

1.169.200.21

1.169.200.20

Draft IEC 268-15A

Mains-Transformer-Block


1.910.500.81/1.910.505.81

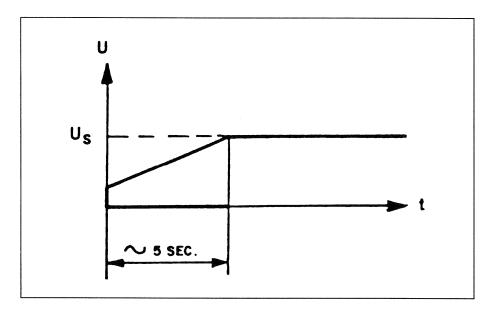
	4. 940.505/84 LE ROMINAL LTAGE VOLTAGE	0c 45 v Dc	48 40 0	IDLE DC VOLTAGES ARE MEASURED WITH 400 JF/ 400 V ACROSS VOLTMETER							
	98	23 v D C	23 VDC	48. K. P.						-	
	.500/84 NOMINAL VOLTAGE 45 VDC A5 VDC	POWER AMP.	POWER AMP. POWER AMP.	POWER AMP.	e vDC	24 VDC	24 VDC	PHANTOM 48 VDC	25 VAC		
	7. 940.500/84 1DLE NOMINAL VOLTAGE VOLTAGE 23 VDC 45 VDC 23 VDC 45 VDC	48 V D C	48 VDC	48 VDC	44 VDC	34 VDC	34 VDC	78 VDC	25 VAC		
24	DE 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	48V grn3	12A (1902) 24 27 27 27 27 27 27 27	blu Fe blu con the bring of the the br	الساء	y F8 977 ~ + 12A 02 8 + 1	15 A 17 A 18		2x 47	24	
	13,45A 200240VAC T5A 400140VAC F44 btn	× (1, 1) × (4.480.336.81 		93 974 934 ACA	200 ((1400) (2000) (2400)	17.43.9.5	24 (00000000) 24 (000000000) 20 (00000000000000000000000000000000000	FRONT VIEW P.2		

DATE: SIGN:	28.4.82	19.8.83	2.3.84 Wh	3.6.85		
STUDER REGENSDORF ZÜRICH	MAINS	- TRANS	<u> </u>	R – BLOC	K	1.910.500/81 1.910.505/81

Mains-Transformer-Block Remote

1.910.501

Stabilisator 5 ... 24 V 1.915.106/108

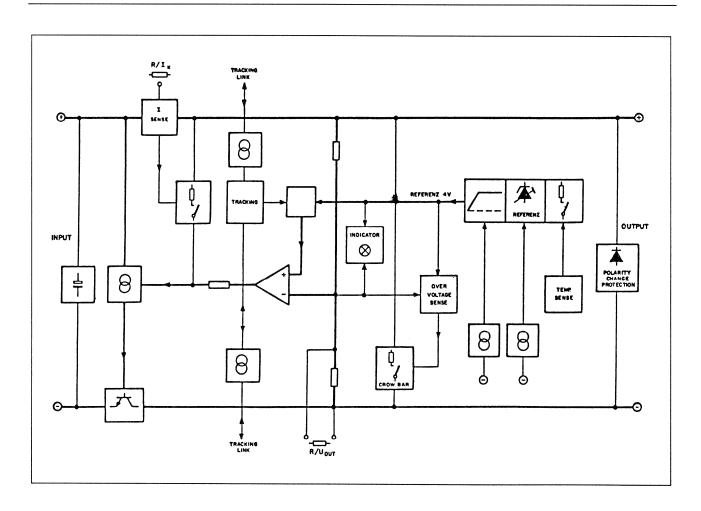

Spannungsstabilisator dessen Ausgangsspannung und Kurzschlusstrom mit Widerständen extern einstellbar ist. Mit Ausnahme der Phantom Stromversorgung werden alle in den Mischpulten der Serie 900 benötigten Betriebsspannungen mit den beiden Kartentypen 1.915.106 und 1.915.108 stabilisiert.

Leuchtdiode zur Anzeige des Betriebszustandes.

Drei von vorne zugängliche Messpunkte zur Kontrolle der Referenz- und Ausgangsspannung.


1. Schutzeinrichtungen

- "Crow Bar" schaltet ab bei zu hoher Ausgangsspannung
- Temperaturüberwachung am Regeltransistor
- Verpolungsschutz am Ausgang
- Langsames Hochfahren der Spannung beim Einschalten



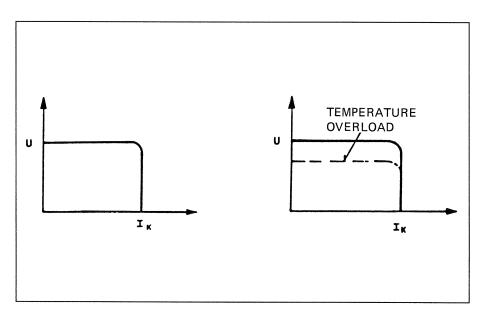
Beim Betrieb als Doppelstabilisator für die Stromversorgung von Verstärkern mit positiver und negativer Speisespannung werden zwei Stabilisatorkarten gekoppelt.

Die Ausgangsspannung des einen Stabilisators steuert die Ausgangsspannung des anderen (Tracking). Damit werden die Koppelkondensatoren der angeschlossenen Audioverstärker nicht unnötig belastet.

Blockschaltbild

7/18 EDITION: 23. Oktober 1990

2. Technische Daten


1.915.106

1.915.108

Ausgangsspannung extern programmierbar	U = 5÷24V	U = 5÷24V
Minimale Eingangs- spannung (ohne Rippel)	U _{min} =U+1,5V	U _{min} =U+1,5V
Maximale Eingangs- spannung	U _{max} =36V	U _{max} =36V
Kurzschlusstrom extern programmierbar	I _k ≈ 0,54,5A	I _k ≈ 0,58,0A
Max. Verlustleistung am Kühlblech	P ≈ 18 W	P ≈ 30 W

Kurzschlussverhalten

Bei Überlast regelt der Temperatursensor die Ausgangsspannung zurück.

Überspannungsschutz spricht an bei ca. 15% Überspannung am Ausgang

Max. Ausgangsstrom	@U _{15V} :5A @U _{6V} :8A	@U _{15V} :5A @U _{6V} :8A
Überlagerte Brumm- spannung	U _{Br} ≤ 100 <i>μ</i> V	U _{Br} ≤ 100μV
Leerlaufstrom	I _o (@U _{in} 30V)=30mA	I _o (@U _{in} 30V)=30mA

3. Mechanische Daten

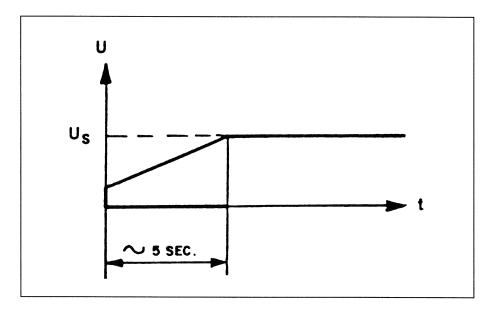
1.915.106

1.915.108

Abmessungen	Europakarte 100mm x 160mm	Europakarte 100mm x 160mm
Breite	33mm, 7 E	66mm, 14 E
Steckersystem	DIN 41 612 TYP B	DIN 41 612 TYP B
Gewicht	ca. 360 gr	ca. 560 gr

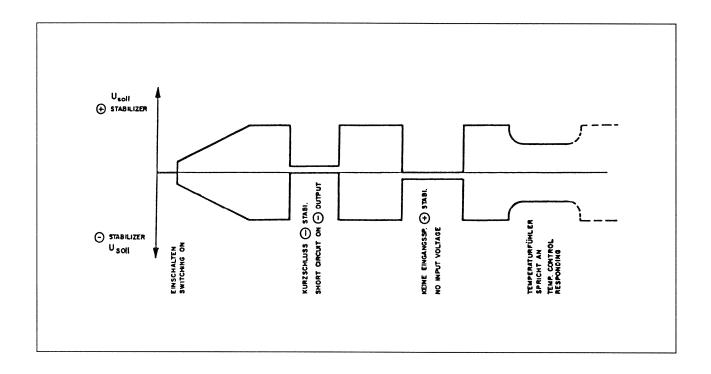
7/20

Stabilisator 5 ... 24 V 1.915.106/108

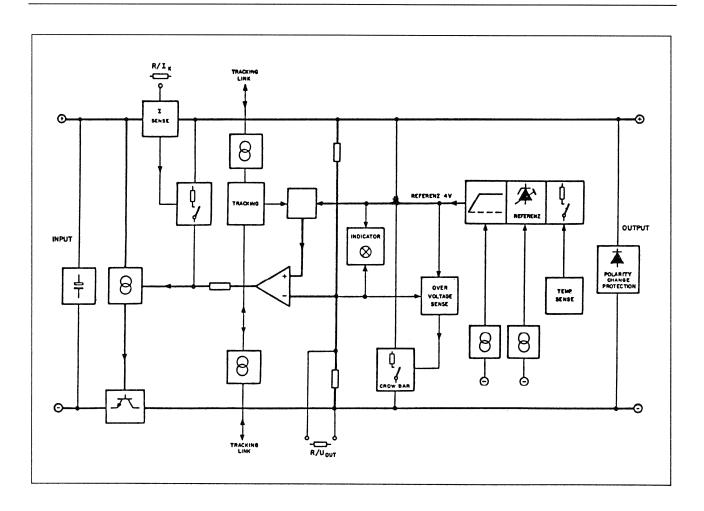

The output voltage and the short-circuit current of this voltage stabilizer are externally adjustable with resistors. Except for the phantom supply, all operating voltages of the Series 900 mixers are stabilized with the two types of circuit board numbered as 1.915.106 and 1.915.108.

Pilot LED for indicating the operating status.

Three test points for checking the reference voltage and the output voltage are accessible from the front.


1. Protective features

- "Crow Bar" disconnects if overvoltages are detected
- Temperature monitoring at regulating transistor
- Polarity confusion protection at output
- Slow voltage run-up when unit is switched on



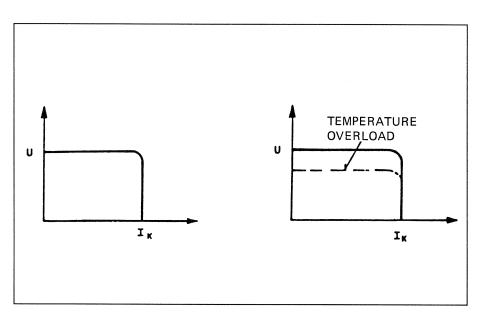
Dual stabilizer operation for supplying amplifiers with negative and positive supply voltages is possible by coupling two stabilizer boards.

The output voltage of the first stabilizer controls the output voltage of the other (tracking). In this manner the coupling capacitors of the audio amplifiers are not unnecessarily loaded.

Block Diagram

7/22 EDITION: 23. Oktober 1990

2. Specifications


1.915.106

1.915.108

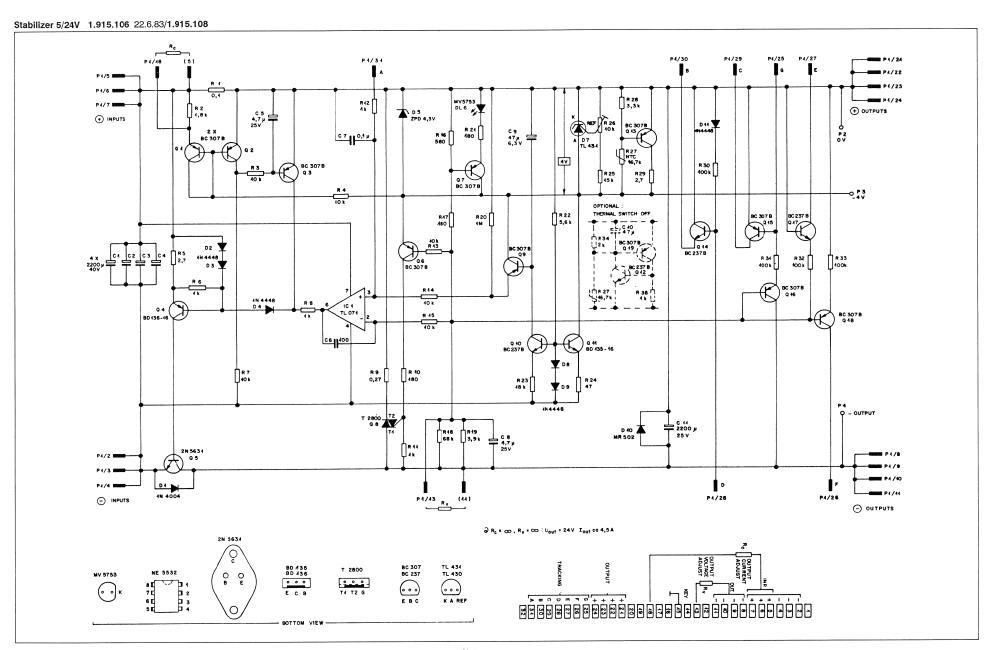
Output voltage externally programmable	U = 5÷24V	U = 5÷24V
Minimum input voltage without ripple	U _{min} = U+1,5V	U _{min} = U+1,5V
Maximum input voltage	U _{max} = 36V	U _{max} = 36V
Short-circuit current externally progr.	I _k ≈0,54,5A	I _k ≈0,58,0A
Max. power dissipation at heat sink	P ≈ 18W	P ≈ 30W

Short circuit response:

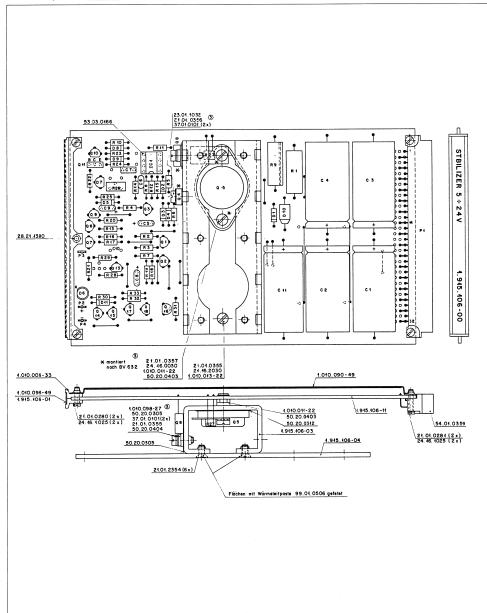
In the event of an overload the output voltage is regulated down by the temperature sensor.

Over-voltage sense responds at approx. 15% excess output voltage

Maximum output current	@U _{15V} : 5A @U _{6V} : 8A	@U _{15V} : 5A @U _{6V} : 8A
Superimposed ripple voltage	U _{Br} ≤ 100 <i>μ</i> V	U _{Br} ≤ 100μV
Idle current	I _o (@U _{in} 30V)=30mA	I _o (@U _{in} 30V)=30mA


3. Mechanical Data

1.915.106


1.915.108

Dimensions	"Europe" PCB 100mm x 160 mm	"Europe" PCB 100mm x 160 mm
Width	33mm, 7 U	66mm, 14 U
Connector system	DIN 41 612 type B	DIN 41 612 type B
Weight	ca. 360 gr	ca. 560 gr

7/24

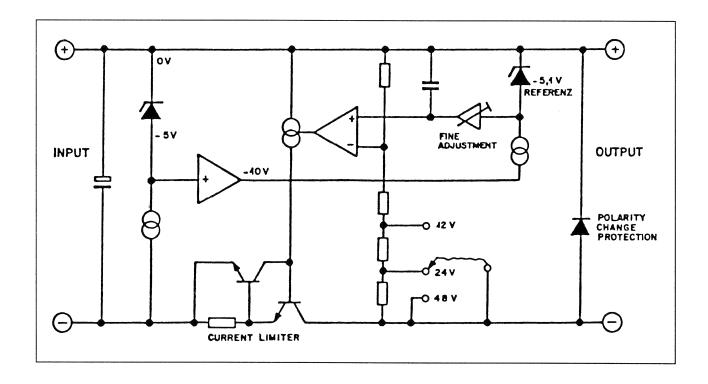
Stabilizer 5/24V 1.915.106

POS NO			VALUE		ICATIONS/EC		MFR	ENC	D) POS	NO [PART NO		VALUE				DUIVALENT		MFF
	59.25.5					. EL		1	a	1	50.03.05				General	purpose	0,14/40	240V	0.4
	59.25.5					EL					50 . 03 . 05							-	
	59.25.6					EL	I	١ï	Q	3	50.03.05	15 4	BC 307B	PNP					
	59.26.6					EL					50 . 03 . 05								4.53
C 5			4,7 p. F			SAL		ΙГ			50.03.03				min 10 1	1/min 60	1 200 W		M
C 6	59.34.4		100 pF			CER	1	ΙГ	a	6	50.03.05	15 1	8C 309B	PNP					
C 7	59.06.0					PE		ΙГ			50.03.05							-	
	53.26.5					SAL	.]	ΙГ			50.33,01				. 8 A	SC 1	16 D		R/0
C 9	53.26.0	470	49 p.F	6,3V		SAL		١Г	a	9	50.13.05	15	BC307B	PNP				-	
C 10									a	10	50.03.04	36	BC 237 B	NPN	Genera	purpos	gra/ver	03401	- 000
C11	53. 25. 4	222	2200 p. F	25V		EL		ΙГ	Q	11	50.03.04	95	BD135·K	NPN	. P m.	n 2W	•		14.5
								Г	a										T
								Г	0	13	50.03.05	15	BC 307B	PNP				-	
1								Г	a	14	50.03.04	36	BC 237B	NPN				\exists	T
D 1	50.04.0	105	1N4004	14				ır	a	15	50.03.05	15	BC 307B	PNP				-	Т
0 2	50.04.0	125	1N 4448					١r	0	16	50.03.05	15	BC 307 B	PNP				-	T
0 3	50.04.0	125	1N4448					ır	6	17	50.03.04	36	BC 237B	NPN				-	Т
0 4	50.04.0	125	1N4448					١r			50. 03. 05							-	1
0 5	50.04.1	120	ZPD 4,3V	5%				厂	+										\top
016	50.04.3	111	MV 5753	LED		CH4-284 B	MSKM	۱r	\top										\top
09	50.10.0	106	TL 430	4 A 430			TT/F	1	\top			\neg							7
	50.04.0						1	1	R	1	57.56.54	08	. 0,12	4W					_
09	50.04.0	125	1N4+48				1	ır		2	57 . 14 . 41		1.8 k	2%					\top
	50.04.0			3A /30V				l		3	57.41.11		10 k						\top
011	50.04.0	2125	1N4448					۱h		4	57. 11.41		10 k						_
							-	ır		5	57. 11.42		2,7.2	-					+
10 1	50.09.0	103	TL 071	LF 351	SINGLE	FET OPA	TIIN	۱t		6	57. 14.41		1 k						\top
							1,,,,	ı			57. 11.41		10 k						\top
									R		57.11.41		1 k						
								١٢	R	9	57.56.52		0.27 12	4W					\top
DA DA	TE NA	ME						IIN	iDi .	DA									
			EL - Electr	rolytic		Mousanto		(5				H - Holar	ola					
			SAL - Solia	d Aluminia	M CM-	Chicogo Him	alur	G	5				R - RCA						
						Texas Instru		10	2	~	. 44	\neg	s - Sieme	-45					
22.6.	83 14			AHIC					D 2	26	83 .14		T - Telefu						
22.7.6			*			Fairchild			22				GE-Gene		ec tric				
STUD			ZER 5	- 244					_										
31 UL	JEM JOIN	0121	2 EN 3	7 24 V	7.715.	106.00 PAGE	1 OF 3		ST	UE	ER Stobil	1201	5 ÷ 24	v	la la	.945	.106.0	PAG	E

INO	POS NO		PART NO	VALUE	SPECIFIC	ATIONS/EQUIVALENT	MFF
	R 10	67,	11.4121	180 s			
٦	R 11	57	11.4102	1 k			
	R 12	57.	11,4102	1 k			
	R 13	57.	11.4103	10 k			
	R 14	<i>67</i> ,	11.4103	10 K			
П	R 15	57.	11.4103	10 k			
	R 16	57.	11,4561	560 Q	2%		
	R 17	57.	11.4181	180 52	2./0		
	R 18	57.	11.4683	68 k	2%		
	R 19	57.	11.4392	3,9k	2%		
П	R 20	57.	11.4105	.1M			
	R 21	57.	11.4181	180 12			
П	R 22	67.	11.4562	5,6k			
П	R 23	57.	11. 4183	18 k			
П	R 24	57.	11.4470	47.52			
П	R 25	57.	11.4153	15 k			
Г	R 26	58 .	01.7103	10 k	LIN 10%	CERHET	
Г	R 27	57.	95.0208	16,74	2 100°C NTC	2322 640 98005	PH
Г	R 28	57.	11.4332	3,3 %			\top
Г	R 29		11. 4279	2,7.0			\top
	R 30	57.	11. 410 4	100 K			1
	R 31	57,	11. 410+	100 k			
Г	R 32	57.	11.4104	100 K			
Г	R 33	57.	11. 4109	100k			
H		1					
\vdash	Mag	Fico	tion List				
0	c 6		pF - 100		HF - Probl	ems	_
ř					.,		
	ļ .	1					1
Г		†		-			_
HNO	. DA	TE	I NAME	1	•		-
0	T-			PH - PH	lips		
3				1	*		
2				1			
-	22.6.	83	·V	1			
ŏ	22.7.		Hris.	1			
ř		DER	Stabilize	5 ÷2		1. 915 . 106 , 00 PAG	

7/26 EDITION: 23. Oktober 1990

Phantom / 24 V Stabilisator


1.915.107

Stabilisatorkarte mit zwei getrennten, isoliert aufgebauten Spannungsstabilisatoren für die Phantom- und 24 V Stromversorgung. Zwei Leuchtdioden zeigen den Betriebszustand an. Zwei Messpunktpaare sind mit Messklemmen von vorne zugänglich.

1. Phantomversorgung

Die Ausgangsspannung von 12V, 24V oder 48V ist mit einer Brücke einstellbar (Beachten Sie, dass eine Änderung der Phantomspannung auch eine Anpassung der Eingangsspannung und eine Änderung der Phantomeinspeisewiderstände im Mikrokanal bedingt).

Blockschaltbild

2. **Technische Daten**

Ausgangsspannung einstellbar U=12V, 24V, 48V

Minimale Eingangs-

Umin=13V

spannung für 12V

Max. Eingangsspannung

Umax=100V

Kurzschlusstrom

lk=350mA

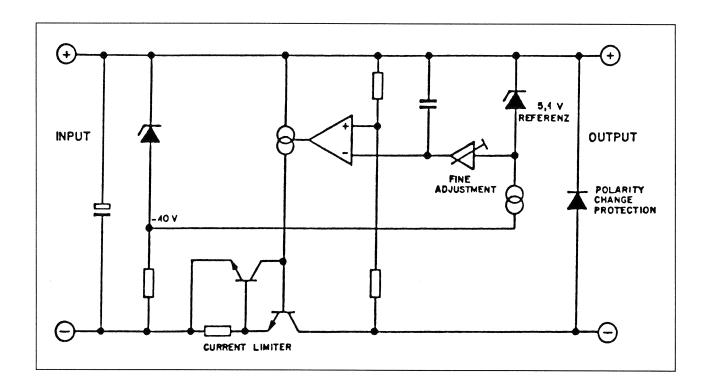
Laststrom

Imax=300mA

Kurzschlussverhalten mit automatisch, spannungsabhängigem "Fold Back"

Überlagerte Brummspannung

U_{Br}≤100μV


Leerlaufstrom

 $I_{0@}80V U_{in}=25mA$

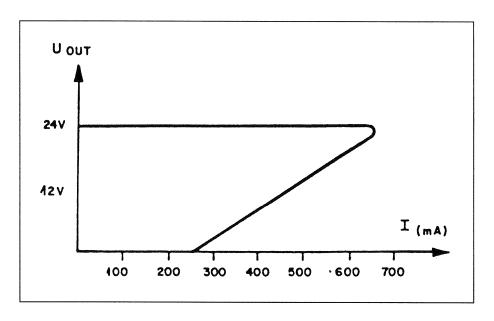
3. 24V Stabilisator

Die Ausgangsspannung ist fest eingestellt auf 24V DC.

Blockschaltbild

4. Technische Daten

Ausgangsspannung U=24V


Minimale Eingangs- U min=25V **spannung (ohne Rippel)**

Maximale Eingangs- U max=36V spannung

Kurzschlusstrom I_k~660mA

Laststrom Imax=600mA

Kurzschlussverhalten mit automatischem "Fold Back"

Überlagerte Brummspannung U_{Br}≤100μV

Leerlaufstrom

 $I_{0@}Uin30V=20mA$

5. Mechanische Daten

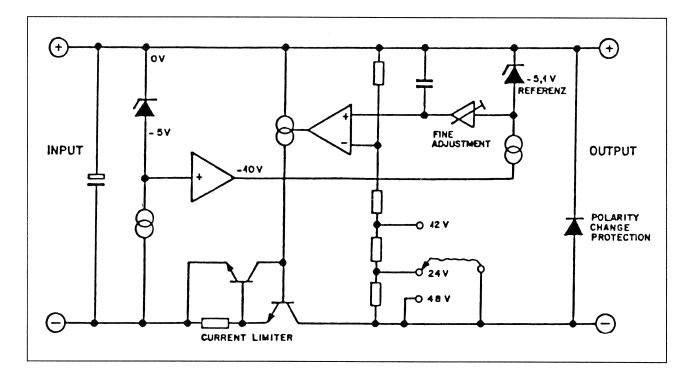
Abmessungen "EUROPE" PCB 100mm x 160mm

Steckersystem DIN 416 12 Typ B

Breite 33mm 7m

Gewicht ca. 320 gr

7/30 EDITION: 23. Oktober 1990


Phantom / 24 V Stabilizer

1.915.107

Stabilizer board with two separate and isolated voltage stabilizers for the phantom supply and the 24V supply. The two pilot LEDs indicate the operating status. Two pairs of test points are accessible from the front with rest clips.

1. Phantom Supply

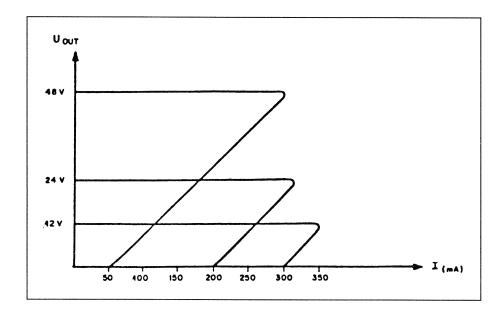
The 12V, 24V or 48V output voltage can be adjusted with a bridge. (Please note that any change of the phantom voltage requires a corresponding adjustment of the input voltage and the replacement of the phantom supply resistors is the microphone channel).

2. Specifications

Output voltage, U=12V, 24V, 48V

variable

Minimum input voltage Umin=13V


for 12V

Max. input voltage Umax=100V

Short-circuit current lk=350mA

Load current Imax=300mA

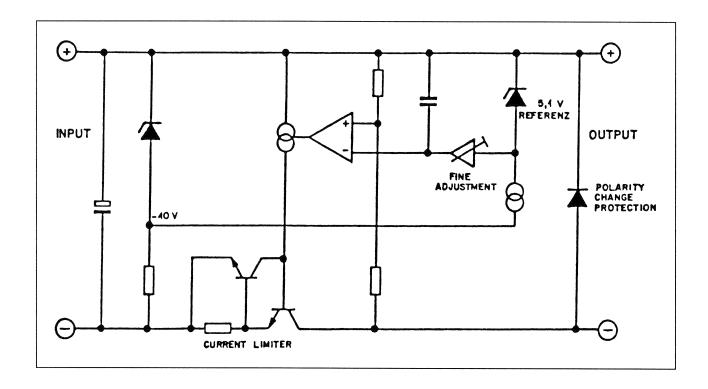
Short-circuit response with automatic, voltage-dependent fold-back

Superimposed ripple

voltage

 $U_{Br} \le 100 \mu V$

No-load current


 $I_{0@}80V U_{in}=25mA$

7/32

3. 24V Stabilizer

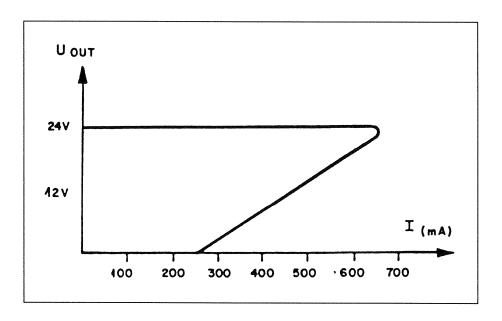
The output voltage is permanently set to 24 VDC.

Block Diagram

4. Specifications

Output voltage U=24V

Minimum input voltage U min=25V


(without ripple)

Maximum input voltage U max=36V

Short-circuit current I_k~660mA

Load current Imax=600mA

Short-circuit response with automatic fold-back

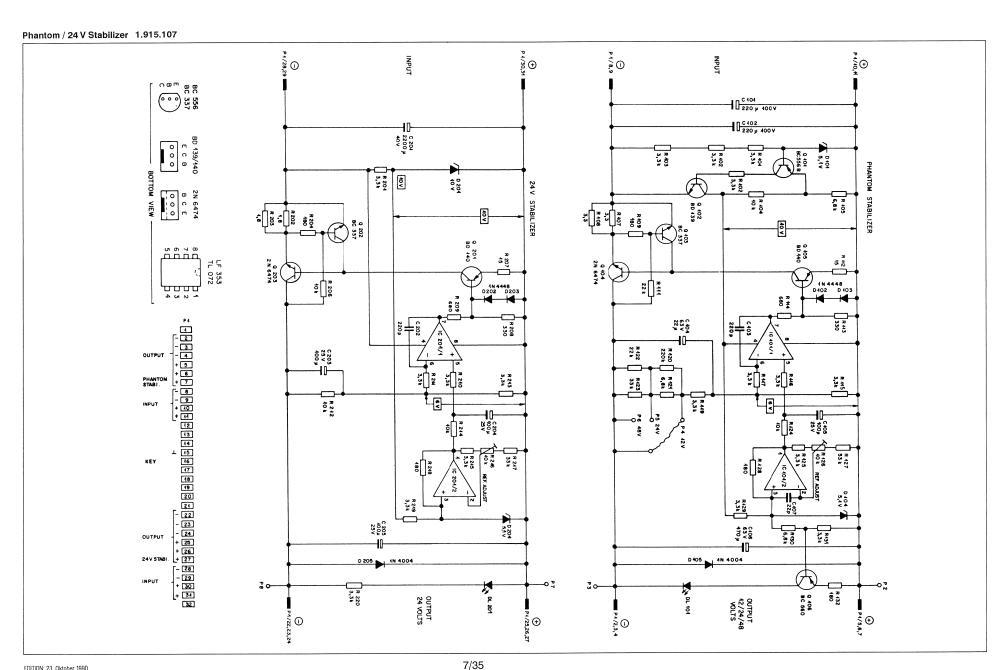
Superimposed ripple voltage

 $U_{Br} \le 100 \mu V$

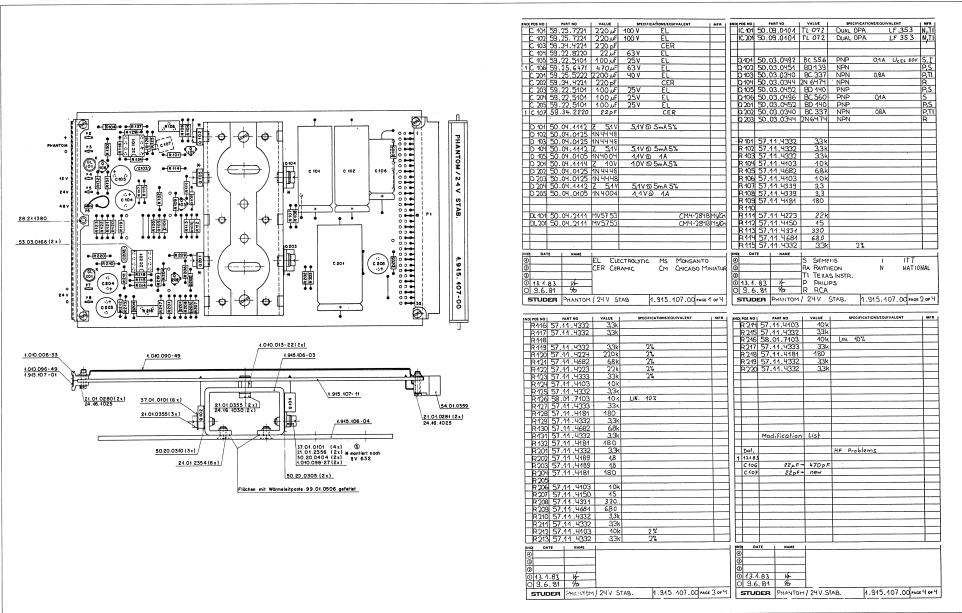
No-load current

 $I_{0@}Uin30V=20mA$

5. Mechanical Data

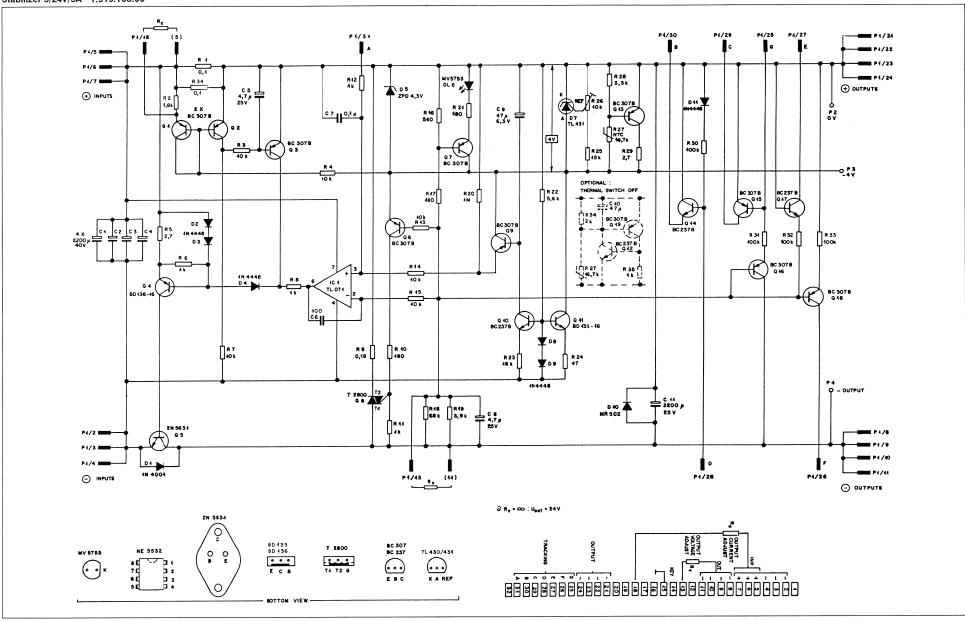

Dimensions "EUROPE" PCB 100mm x 160mm

Connector system DIN 416 12 type B

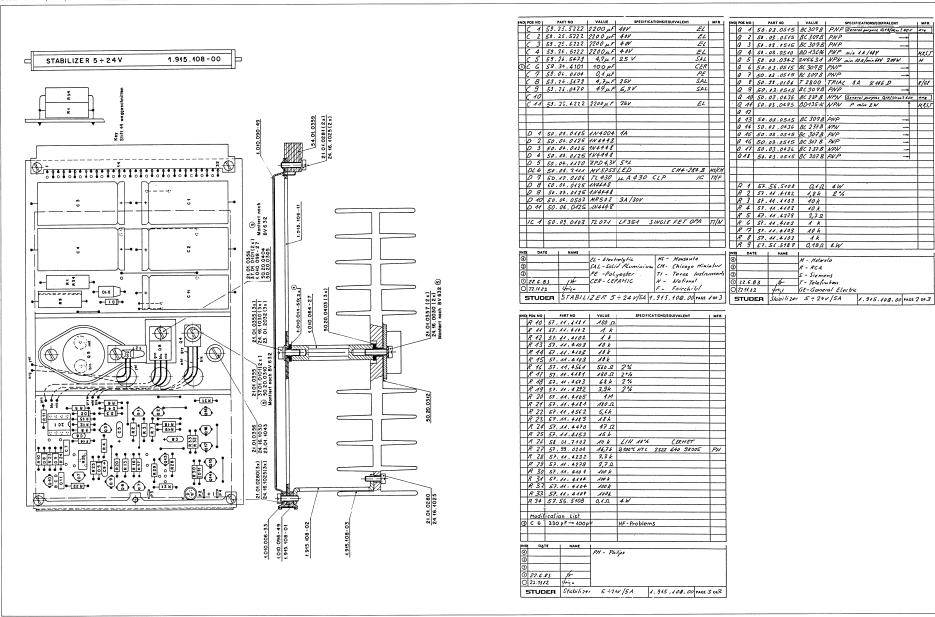

Width 33mm 7m

Weight ca. 320 gr

7/34 EDITION: 23. Oktober 1990



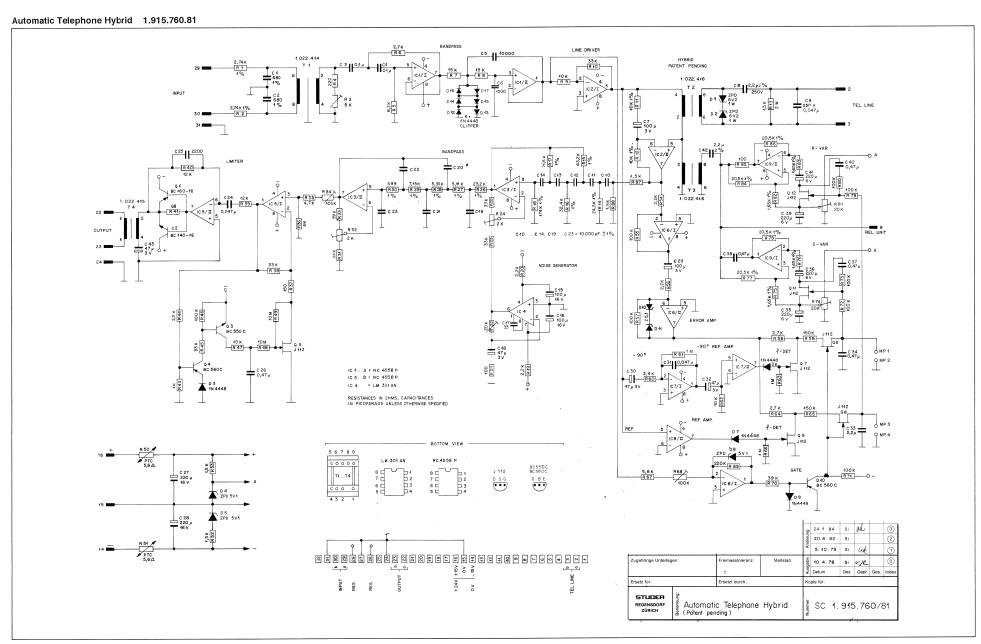
Phantom / 24 V Stabilizer 1.915.107



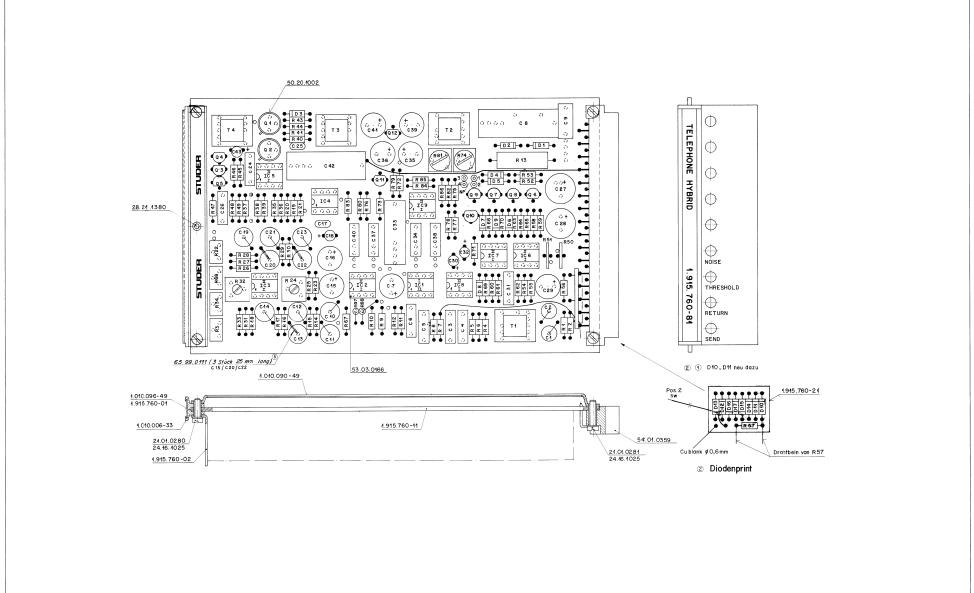
7/36

Stabilizer 5/24V/5A 1.915.108.00

Stabilizer 5/24V/5A 1.915.108



4.8.5.1


R/GE

4,8,5,7

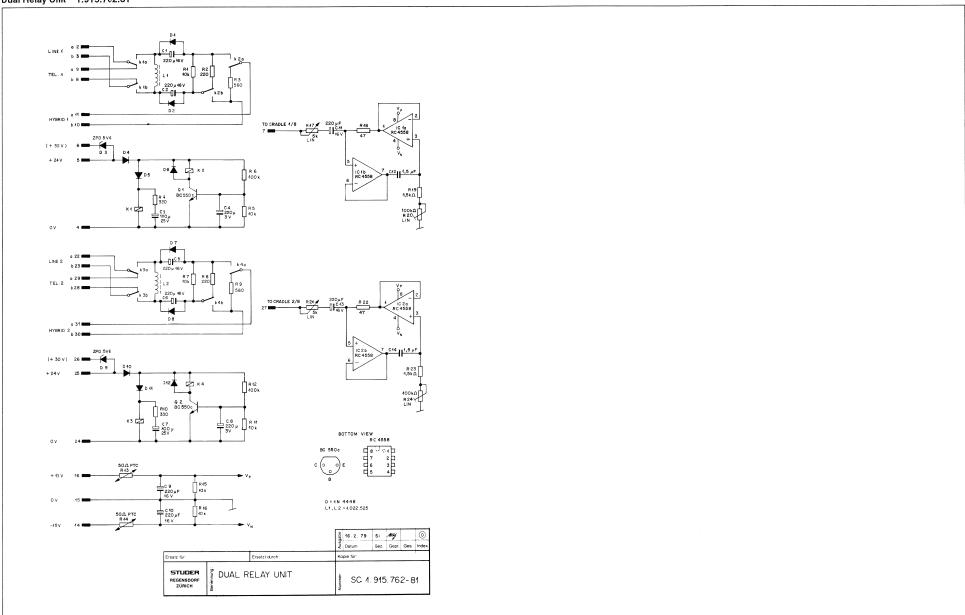
7/38 EDITION: 23. Oktober 1990

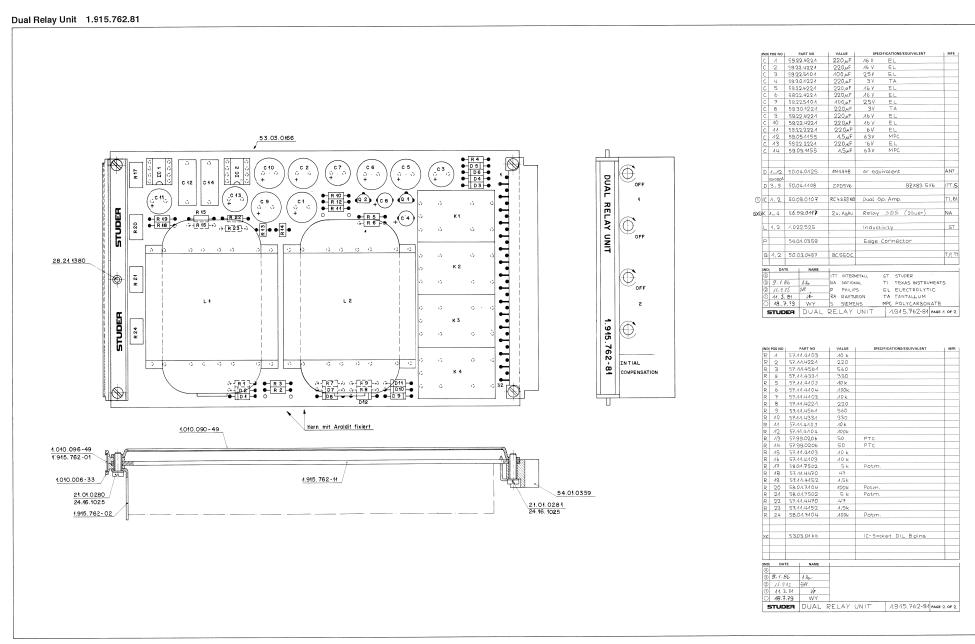
Automatic Telephone Hybrid 1.915.760.81

7/40 EDITION: 23. Oktober 1990

Automatic Telephone Hybrid 1.915.760.81

EQUIVALEN	NT MFR
5	
:	
:	
f	
Ŧ.	ST
	4,
•	
ī	
! •	
•	
5	
5	
,	
8	
F	
•	
:	
:	ST
	Va
10.9.80 %	VI- 18- (8
	16/
6.11.78 f	Min
DATE	NAME
5 760-81	PAG
L	


POS NO	PART NO	VALUE	SPECIFICATION	NS EQUIVALI	ENT MFR
9 10 11 12 13 4 15 16 17 18 18 18 12 12 12 12 12 12 12 12 12 12 12 12 12	67.M.4452 67.M.4452 67.M.4452 67.M.4323 67.39.4002 67.39.4002 67.57.39.2452 67.39.4827 67.39.4827 67.39.4827 67.39.4827 67.4827 67.4823 67.4823 67.4823 67.30.5827 67.4823 67.30.5827 67.30.50.50.70.70.70.70.70.70.70.70.70.70.70.70.70	3	114 114 124 126 126 126 127 128 120 124 14 14 14 14 14 14 14 14 14 14 14 14 14		776,5P 776,5P 776,5P
R 50 R 51 R 52	57. 39.0208 57. 99.0208 57. 11.4.152	5,6.2 5,6.2 1,5k	PTC 2327 662 PTC		PH PH
7R 7	67. AA.4A52 PHILIPS FRW PECTROL	1,5k		\$\begin{array}{c} 20,8,62 \\ 0 & 41,3,81 \\ 0 & 41,5,79 \\ 0 & 6,41,72 \\ 0 & 14,3,78 \end{array}	for (81)
	IDED			IND DATE	PAGE
510	JDER 72	LEPHONE H	IYBRID /	1.915.76 0- €	31 3 of 4


	POS NO	PART N	10	VALUE	SPECIFICA	TIONS	EQUIVAL	ENT MFR
@266 @ @66 @©	IC 1 IC 2 IC 3 IC 4 IC 5 IC 6 IC 7 IC 8	50, 04, 4 50, 04, 4 50, 04, 2 50, 04, 2 50, 04, 04, 2 50, 04, 04, 2 50, 04, 1 50, 04, 1 50, 04, 1 50, 04, 2 50, 04, 2 50, 04, 2 50, 04, 2 50, 09, 2 50, 09, 09, 0 50, 09, 09, 0	2511 1125 1125 1125 1125 1121 1121 1127 1107 1107 1107	U: 6,2 V U: 6,2 V U: 6,2 V U: 6,5 V U: 5,4 V U:	2 PD 6 V2 2 PD 6 V2 2 PD 5 VA 2 PD 5 VA 5 V 2 PD 5 VA 2 PD 5 VA 2 PD 5 VA 3 V 2 PD 5 VA 3 V 2 PD 5 VA 3 V 2 PD 6 VA 3 V 2 PD 6 VA 3 V 2 PD 6 VA 3 V 3 V 4 V 5 V 5 V 5 V 7 PD 5 VA 5 V 7 PD 5 VA 5 V 7 PD 5 VA 5 V 7 PD 5 VA 5 V 7 PD 5 VA 7 PD 5 VA 8 V 7 PD 5 VA 8 V 7 PD 5 VA 8 V 8 V 8 V 8 V 8 V 8 V 8 V 8 V 8 V 8 V	1W 0.4W 0.4W 0.4W 0.4W 0.4W		T1, R KS
	QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ	50.03.0 50.03.0 50.03.0 50.03.0 50.03.0 50.03.0 50.03.0 50.03.0 50.03.0 50.03.0	13 16 14 17 14 16 350 350 350 350 0350 04 16 0350	8C 160-16 8C 140-16 8C 550-C 8C 560-C 7 112 7 112 7 112 7 112 7 112 7 117 8C 560-C 7 117 8C 560-C				S, F S, F T, 17. T, 17. SL/W W "" ""
⊗		57, 39, 2 57, 39, 3 68, 01, 9 57, 11, 4 57, 11, 4 57, 11, 4 51, 11, 4 XAS INSTR	502 221 822 272 153	2,74 k 2,74 k 5 k 220 8,2 k 2,7 k 1,5 k FAIRCHILD	1°6 1°1. LIN 2°6 2°/2 2°6		2.8.82	7R, S
	NS - NA SIL - SIL	L B FUNKEN	TR- M. SP -	TRW		0 4	.9.80 .5.79 	NAME
		JDER	TELEI	PHONE	HYBRID		5,760-	PAGE

POS NO	PART NO	VALUE	SPECIFICATIONS	EQUIVALENT MFR
R R S 56890AL878AR R 6830AL7232158A188A8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	57. M. 4.104 57. M. 4.154 57. M. 4.155 57. M. 4.105 57. M. 4.104 57. M. 4.105 57. 39. 1651	2,2k 100k 9,2k 100k 1,2k 1,2k 1,00k	LIN 10% LIN 10% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1	78,5P 771,5P 78,5P 51 51 51 51
50 5	RW PECTROL TUPER		S G G Q Q	11.3.81 Vr 10.9.80 Hr 11.5.79 Hr 6.11.78 Vr 14.3.78 Vr 14.3.78 Vr

EDITION: 23. Oktober 1990 7/41

Dual Relay Unit 1.915.762.81

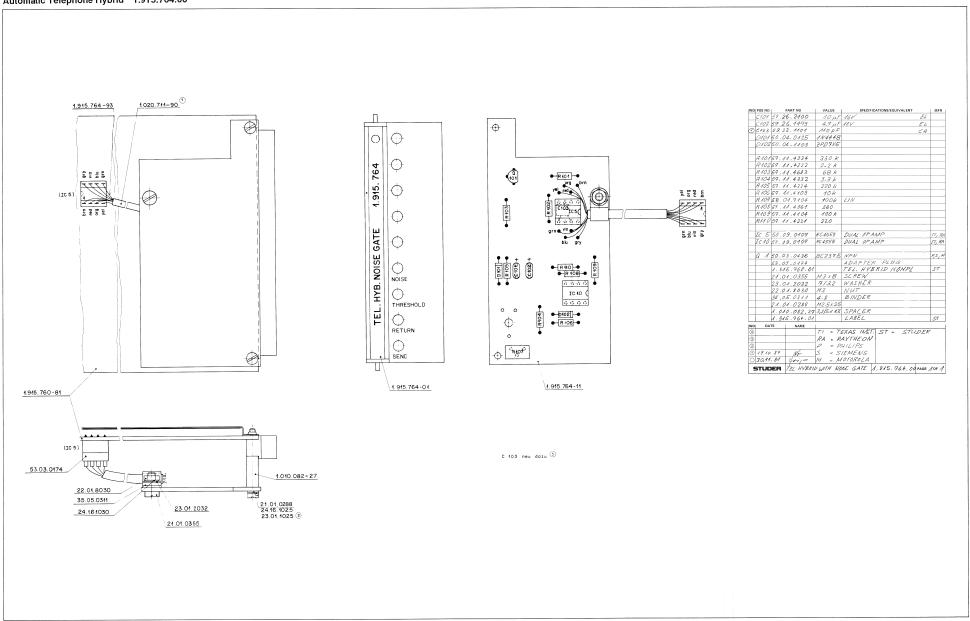
7/44 EDITION: 23. Oktober 1990

Automatic Telephone Hybrid 1.915.764.00 1.022.414 HYBRID PATENT PENDING 1.022.416 TEL. LINE BANDPASS 4 T3 6 1.022.415 T 4 20,5 K 1% R78 OUTPUT C40... C14, C19...C23 = 10000 pF = 1% NOISE GENERATOR 10 K 100 K 700 S 60 100 K 220 R100 R107 R108 R109 R109 ERROR AMP. NOISE GATE 2,7 K R 58 10 K 10 M 0 5 3 5 4 12 P-DET 0.4 BC 560C RESISTANCES IN OHMS, CAPACITANCES IN PICOFARADS UNLESS OTHERWISE SPECIFIED IC8/I BC 550 C BC 560 C RC 45 58 P 00000 Q 40 BC 560 C

Zugehörige Unterlagen:

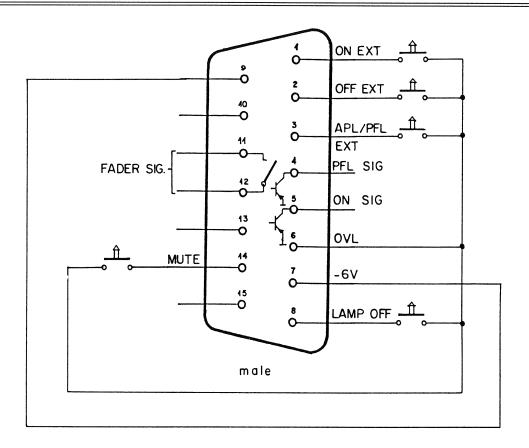
Ersatz+für:

STUDER REGENSDORF ZÜRICH


Automatic Telephone Hybrid (Patent pending) g 11.7.83 Si We

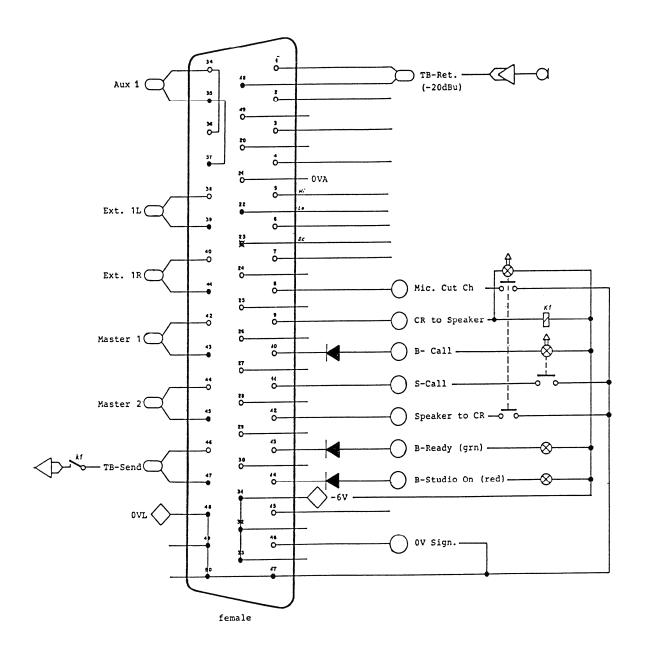
SC 1, 915.764

IC 4 . . . 3 = RC 4558 P IC 5 . . . 40 = RC 4558 P


IC 4 = LM 304AN

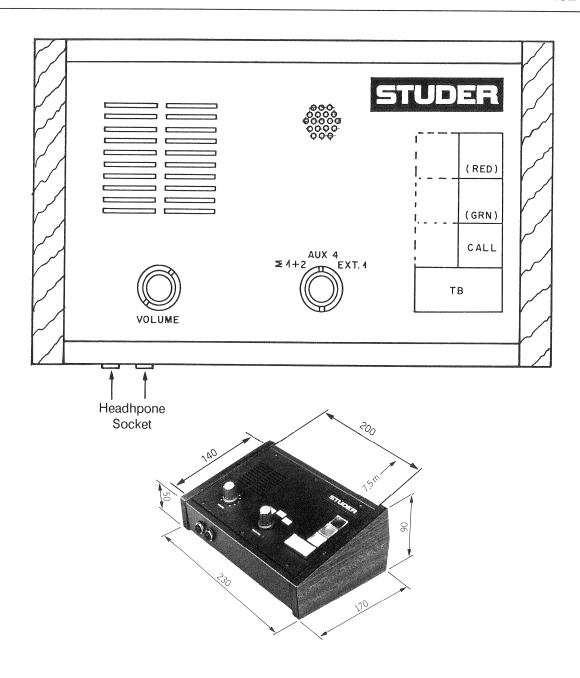
Automatic Telephone Hybrid 1.915.764.00

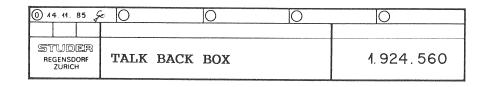
7/46 EDITION: 23. Oktober 1990


8 Connectors

JUMPERS 511,512,513 (STANDARD)

2.3.87 WB	D-TYP-CONNECTOR 45 PI	N.
STUDER	MIXING CONSOLE 970 15 pin D-TYPE INPUT UNIT	1.970.

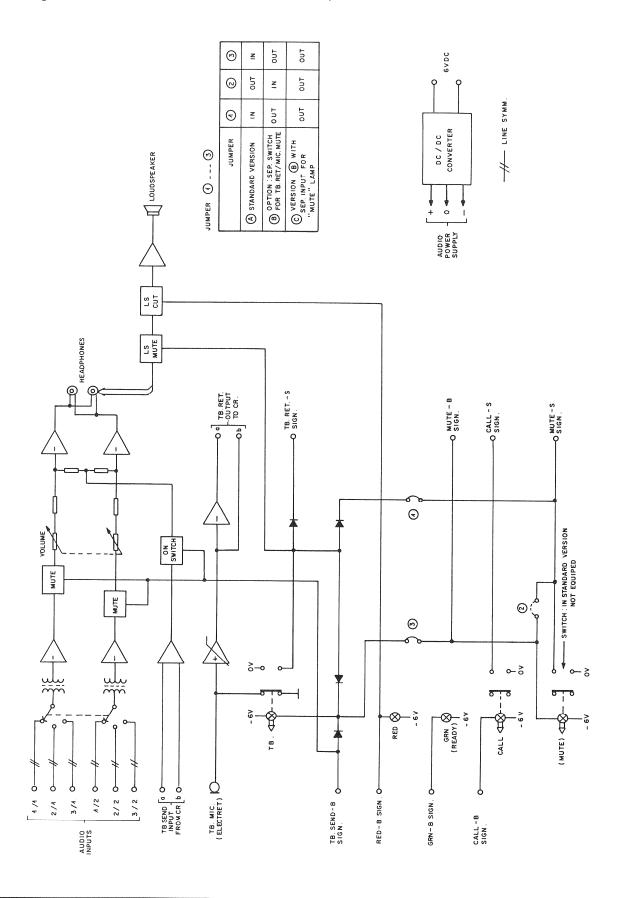



	D-TYP-CONNECTOR 50 PIN.
STUDER	TB-Box

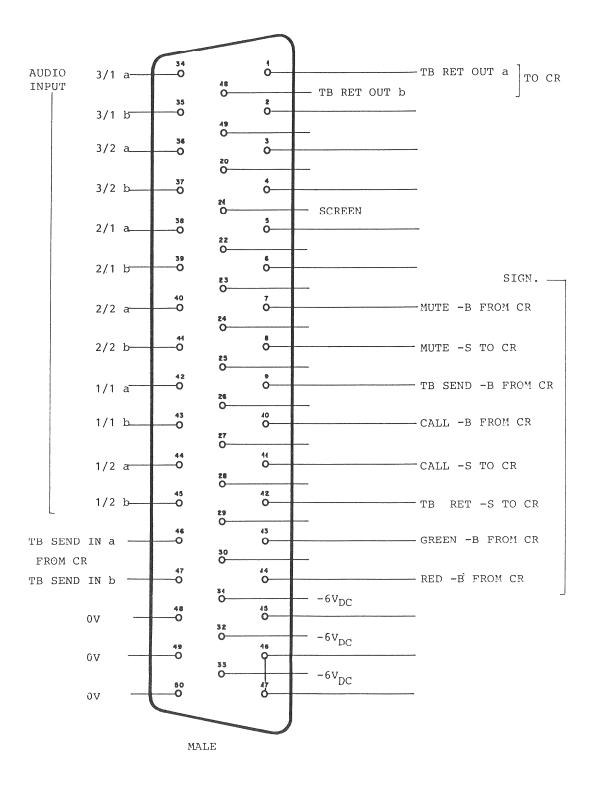
10 Accessories

1. Talk Back Box

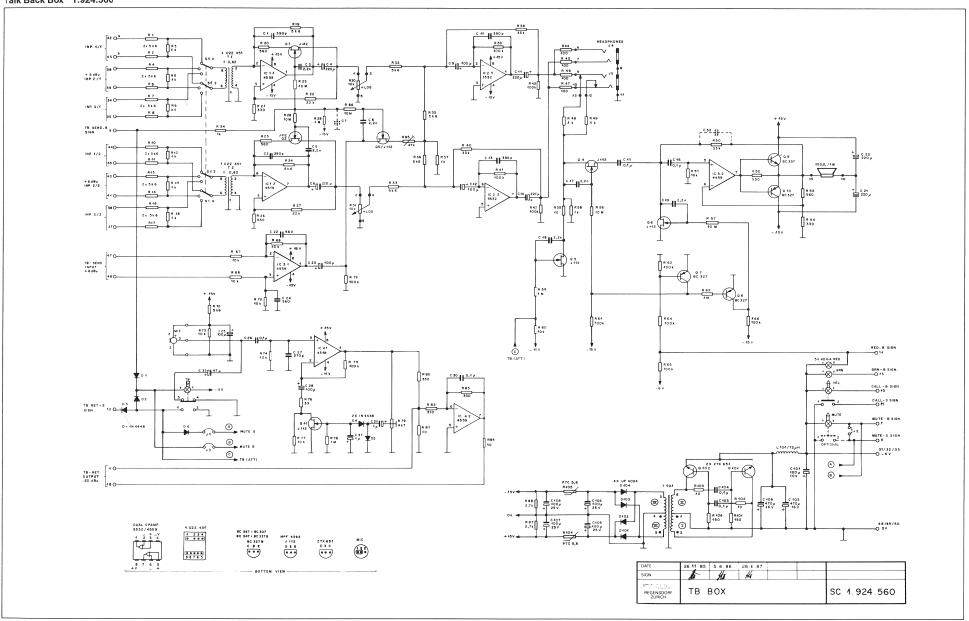
1.924.560



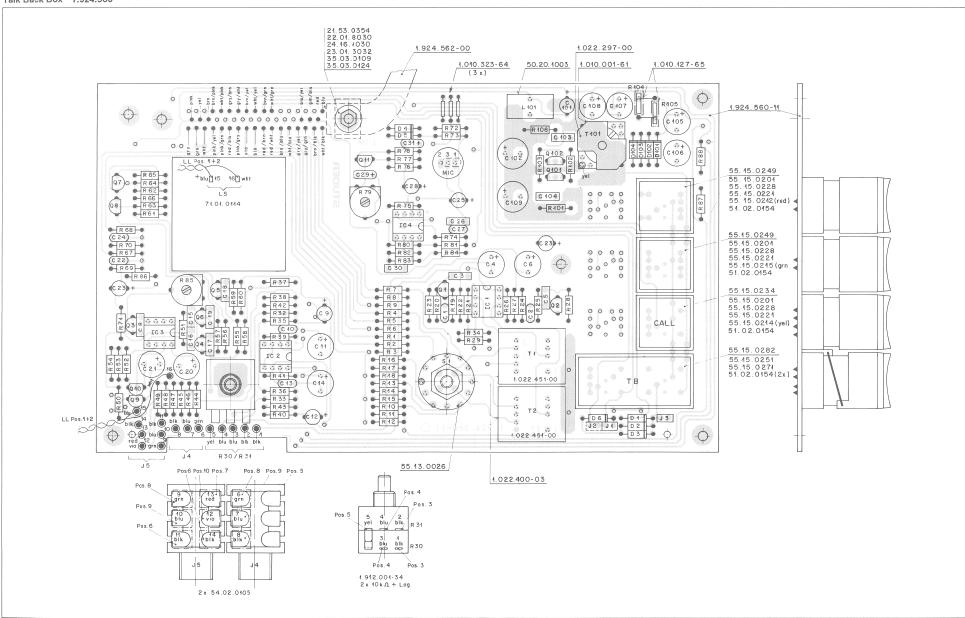
EDITION: 19. Oktober 1990 10/1


Block Diagram Talk Back Box

1.924.560/1


Talk Back Box D-Typ-Connector 50 PIN.

1.924.560



15.11.85	D-TYP-CONNECTOR	50 PIN.	
STUDER	TALK BACK BOX		1.924.560

Talk Back Box 1.924.560

Talk Back Box 1.924.560

10/6 EDITION: 19. Oktober 1990

	PART NO	VALUE	1 SPECIFICAT	NONS/EQUIVALENT	1 MFR	ND	POS NO	PAF	RT NO	VALUE	
S MO	59, 34. 5391	390p	CIR				91	50.03	0350	J112	N F
2	59.34.5394	390 p	CER				<i>a</i> 2	50.03	0350	7 112	N F
3	59.06. 0222	2,20	PE				03	50.03.	0350	J 112	N FE
4	59. 22. 3221	220 M	IOY EL				04	50. 03	0350	3 112	N FL
5	59.0% OZZ	2.2 n	PE				Q5		0350	7.112	N F
6	59. 22. 3224	220µ	10Y EL				46		0350	7112	NF
2		1					07	50. 43		BC 327	PNP.
В	59.06. 0222	2,20					08	50. 43.		BC 327	PNP
9	59.22.3101	1000	AOV EL				09	50, 43.		BC 337	NPN
10	59.34.5391	390p	CER			L	Q AD	50. 43.		BC 327	PNP
11	54. 22. 3224	220 M	101 EL			L	au	50.03.	0350	J1/12	N F
12	59. 22. 3101	1004	101 EL			_					
13	59.34.5391	390 p	CER	THE RESERVE AND THE PROPERTY OF THE PROPERTY O		L	0101	50.43.		Z1X 651	NPN
14	59.22.3221	22014	NOV EL	***************************************		L	0102	50.43.	0523	ZTX 651	NPN
15	59.06.010#	0.1 11	PE			L					
16	59.06 0104	0.14	PE								
17	-59.06.0222	2,20	PE								
18	59.06. 0222	2,20	PE								
19	59.06.0222	2.20	PE								
20	59. 22. 4224	120 M	16Y EL								
21	59. 22. 4224	220 M	16V EL			Г					
22	59 34. 5561	560p	CER			Г					
23	59.22.3101	1004	AOY EL								
4	59.34.5561	560p	CER								
-	59. 22. 3101	1004	JOY EL			-					
	59.06.0104		PE								
6	59.34 4271	2700	CER								
27		170p									
28	59.22.3101	1004	10V EL								
29	59.26.9106	1,4	PE SAL			-					
30	59.06.0104	0.11) re			IND	d DA	TE 1	NAME	1	
DAT	E NAME	+				(1)		-	HANNE	Mol :	Hotor
		-				0				Fe : F	
		-				0	-			1/-	
		-				0	h	02	14	-	
12.1		-				_	13111		15	-	
13.11.						1					
	ER 78 80			1924.560	PAGE / OF 8	1 :	STUD	ER I	TB E	(CX	

IND	POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
	C31	59 26. 9106	1 14	40V SAL	_
	C32				
	C33	59.22.3470	474	JOY EL	<u> </u>
	C34				
_					
_					
_					
	C101	59. 22. 3101	1004	10Y EL	_
3	C102	59.22. 4471	4704	16V EL	_
_	C 103	59.06.0104	0,1,4		
-	C104	59.06. 0104	0,14		
_	C105	59.22. 5101	1004	251 EL	
	C106	59.22. 5401	1004	25V EL	
	C107	59.22.5101	100µ	151 EL	<u> </u>
	C108	59.22.5101	1004	25V EL	ļ
0	C109	59.22.4471	470 µ	16Y EL	-
	216	50.04. 0125	111448	2).	Ph
_	DAOJ_ 404	50.04. 0138	UF 4004	Si 400Y AA 1A @ 1Y 50ns	61
_					2
_	361	50.09. 0107	RC 4559	Op. Amp Dual	Ra
	362	50.09.0105	NE 5532	Op. Anip. Dusl	Sig.
	363	50.09.0107	RC 4559	Op. Amp Dual	
_	JC#	50.09.0107	RC 4559	Op. Amp Dust	Ra
	1.00	12 02 00 15	72.4	21	
PINE	1 DA	62.03.0015	72 MH	21	
	7		-	1-5	

PONE	DATE	NAME	1		
0			Ph = Philips	lenavende	
3			GI . General III.	/ a	
0			Ph = Philips GI = General Inst Ra = Raytheon Sig = Signetics		
0	12.1.87	Ho	7.3		
0	13.11.85	Ki			
S	TUDER	78 8	04	1.924 560	PAGE 2 OF 8

NO POS NO		VALUE	SPECIFICATIONS/EQUIVALENT	MFF
Q1	50,03.0350	J112	N FET MPF 4392	Hof
02	50.03.0350	7 112	N FET MPF \$392	Mot
03	50.03. 0350	7 112	N FET MPF 1392	Hot
04	50. 03. 0350	3112	N FET MPF \$392	Hot
95	50.03.0350	7112	N FET MPF 4392	MOT
26	50.03. 0350	7112	N FET MPF 4392	Hot
07	50. 43. 0351	BC 327	PNP.	Not
08	50. 43. 0354	BC 327	PNP	Mot
09	50, 43. 0340	BC 337	NPN	HOT
010	50. 43. 0351	BC 327	PNP	Mot
au	50.03. 0350	7//2	N FET MPF 4392	HOT
0101	50. 43. 0523	21X 651	MPN	Ŧe
0102	50.43.0523	ZTX 651	NPN	Fe
1				
+-		-		
	ATE NAME	1		
<u> </u>			40101012	
3	1	Fe : 7	erranti	

NO POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFF
21	57.41.4562	5,6 k		
R2	57. 44. 4562	5.6K		
23	57. 41. 4102	1k		
RV	57. 11. 4562	5,6k		
R5	57. 11. 4562	5,6k		
R6	57. 11. 1102	1k		
RF	57. 11. 4562	5.6k		
RB	57. 41. 0562	5,6k		
Rg	57. 41. 4102	1k		
R 10	57. 11. 4562	5.6k		
R14	57. 41. 4562	5,6k		
212	57.11.4102	1k		
R 13	57. 11. 4562	5,6k		
R.14	57. 11. 4562	5,6K		
17.15	57.11. 4102	1k		
2.16	57. 41. 4562	5,6 K		
217	57. 11. 4562	5,6 k		
R 18	57.11.4102	1k		
R19	57.11.4562	5,6K		
R20	57.11.4561	560		
R21	57.11. 4331	330		
R22	57. 41. 4223	22 k		
R23	57. M. 5106	10 H		
R24	57. 11. 4562	5,6k		
R25	57 11. 9561	560		
R26	57.41.4331	330		
RZZ	57.44. 4223	22k		
RZB	57. 11.5106	10 M		
R29	57 11. 4105	IM		

1920560

PAGE 3 OF 8

-					
BND	DATE	NAME	l		
(a)					
3					
2					
0	12.187	fli.			
0	13 11.85	di			
	STUDER	TB 80	04	1974.560	PAGE # OF 8

10/7 EDITION: 23. Oktober 1990

TALK BACK BOX

1.924.560

INO	POS NO		VALUE		SPECIFICATIONS/EQUIVALENT	
П	R30	1.912.001.34	10E	0109	Pol. pieler	5+
	R31	"	10L	1609		
	R32	57.11. 4562	5,6K			
	R33	57.11. 1562	5,6k	J		
	R34	57. 11. 8102	1k			
	R35	57. 11. 4562	5,6 K			
	R36	57.11. 1562	5,6 K			
	R37	57.11 4102	18			
	R38	57 11. 4333	33 k			
П	R39	57. 11. 4104	100k	1		
П	RNO	57 M. 4333	33 k	1		
П	R#1	57. 11. \$104	ADOK			
1	R42	57. 11. 4104	100 K	T		
П	243	57.11.4104	100k	T		
П	RIV	57 11. 4101	100	1		
H	R 45	57.11.4101	100	†		
\vdash	R46	57.11.4101	100			
\Box	847	57. M. 4101	100	1		
-	RUB	57.11.4102	1K	 		
		57.11.4102	115	1		
-	R50	57. 11. 4333	33k	1		
\vdash	R51	57.11.4103	10k	 		
H	R52	57 11. 4331	330	 		
\dashv	253	57. M. 4561	560	 		
-	R51	57. 11. 4331	330	1		
-	R55	57. 11. 4100	10	1		
-	R56	57 M. 5106	1011	 		
-	R57	57. 11. 5.106	104	 		
-	R58	57. 11. 4102	11	 		
	R59	57. 11. 4105	1H	 		
لسبا			1 ""			
(a)	DAT	E NAME	St: S	tudes		
0			ا ۵٬۰۵۰	vere.		
0						
-	12 1	P7 Ha	\dashv			
의	12.11		-			
의	13.11	ER 78 8			1974 560	PAGE 5 OF

PONE	POS NO		PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MER
\square	R101		11. 4151	150		
Π.	R102	57.	11. 4100	10		
	R103	57.	M. 4100	10		
1	R 104	57.	99.0209	5,6	PTC	Ph
7	R 105	57.	99.0209	5,6	PIC	Ph
	K 106	57.	N 4151	150		
\Box						
\Box						
T						
T						
T						
T	51	55.1	3.0026	4×34	Rolary switch	ELHA
1	S 2/182	55.	15.0282			EAO
Т	53	55.	15. 0234		Optional	EAO
Т	54	55.	15. 0234			540
Т						
T	XB	55.	15. 0249			EAO
Т						
T	81.5	51.0	12.0154	51/ 40 mA	T1 31 Pin	
T						
T						
T						
1	TI	1.02	2. 451.00	1:0.62		51
T	T2	1.02	2.451.00	1:0,62		5+
1	T101	1.02	2.297.00		Converler Trafo	5+
T						
1						
\top						
ND	DAT	E	NAME		Control of the Contro	
0				Ph: Phi	lips	
<u>o</u> t				St Stu		
0	-			EAD		
	12 1	27	fis	ELHA		
풁	13 11	75	fts			
\preceq	KJ //	, _	94	L	T 200 -1	

NDI POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MI
R60	57. 11. 4103	10k		
R61	57 11 4104	100t		
R62	57. 11. 4104	100K		
R63	57 11. 4105	14		
ROV	57 11. 4104	100K	The state of the s	
R65	57 11. 4104	100 k		
R66	57. 11. 4104	100k		
R67	57. 11. 4103	10k		
R68	57. 11. 4/03	10k		
R69	57. 11. 4103	10k		
R70	57. 11. 4103	10k		
171	57. 11. 4104	100k		
172	57. M. 4562	5,6k		
R73	57.11 4103	10k		
874	57. 11. 4103	10k		
R75	57. 11. 4104	100k		
R76	57. 11. 4330	33		
R77	57. 11. 4103	10k		
278	57.11.4105	1M		
R79	58.02.5472	4.7L	Pot.	
R80	57. 11. 4331	330		
R81	57. 11. 4100	10		
R82	57 11. 4331	330		
RB3	57. 11 4331	330		
RBV	57.11. 1 100	10		
R85	58.02.5473	474	Pol	
R86	57.11.4106	10H		
R87	57. 11. 4272	2,7K		$\neg \uparrow \neg$
R88	57. 11. 4272	2,7K		
ND DAT	E NAME	1		
0				
3				
2				
	1.87 Star	_		
0 13.11		_		

STUDER

T8 80x

NDI POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
MIC	89.01.0343		Electret	
4.5	71.01.0114		1501 \$.80 mm	
				\pm
J(s)1.2	54.01.0020	4 Pin		
7(5) 3	54,01.0020	2 Pin		-
	54.02.0105		Stereo Tack Socket	1_
75	54.02. UJO5		Stereo Jack Socket	工
+-+		-		-
				_
+-+		+		+
-		-		-
+		+		+-
+-+				
+-+		-		+-
				1
+-+		+		+
لــــــــــــــــــــــــــــــــــــــ				
DAT	E NAME			

PAGE 7 OF 8

1914 560

1924 560

PAGE θ OF θ

10/8 EDITION: 23. Oktober 1990

1.924. 560

PAGE 6 OF 8

① 11 1 87 ○ 13 11.85

STUDER

TB 80X

STUDER

T8 30x