
Studer A Series Active Monitor Speakers

Operating and Service Instructions

Prepared and edited by Studer Professional Audio GmbH Technical Documentation Althardstrasse 30 CH-8105 Regensdorf – Switzerland http://www.studer.ch Copyright by Studer Professional Audio GmbH Printed in Switzerland Order no. 10.27.4540 (Ed. 0400)

Subject to change

A Safety Information

A1 First Aid

In Case of Electric Shock:

Separate the person as quickly as possible from the electric power source:

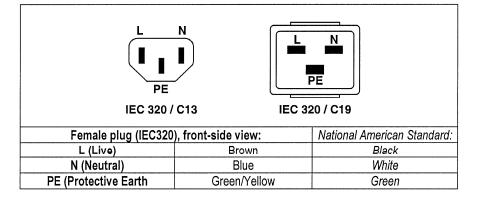
- By switching off the equipment,
- By unplugging or disconnecting the mains cable, or
- By pushing the person away from the power source, using dry insulating material (such as wood or plastic).
- After having sustained an electric shock, *always* consult a doctor.

Do not touch the person or his clothing before the power is turned off, otherwise you stand the risk of sustaining an electric shock as well!

If the Person is Unconscious:

- Check the pulse,
- Reanimate the person if respiration is poor,
- Lay the body down, turn it to one side, call for a doctor immediately.

В	General Install	ation Hints
		Please consider besides these general hints also any product-specific hints in the "Installation" chapter of this manual.
B1	Unpacking	
		Check the equipment for any transport damage. A unit that is mechanically damaged or that has been penetrated by liquids or foreign objects must not be connected to the AC power outlet or must be immediately disconnected by unplugging the power cable. Repairs must only be performed by trained personnel in accordance with the applicable regulations.
B2	Installation Site	
		 Install the unit in a place where the following conditions are met: The temperature and the relative humidity of the environment must be within the specified limits during operation of the unit. Relevant air values are the ones at the air inlets of the unit. Condensation must be avoided. If the unit is installed in a location with large variation of ambient temperature (e.g. in an OB-van), feasible measures must be taken before and after operation (for details on this subject, refer to Appendix 1). Unobstructed air flow is essential for proper operation. Air vents of the unit are a functional part of the design and must not be blocked in any way during operation (e.g. by objects placed upon them or placement of the unit on a soft support). The unit must not be heated up by external sources of heat radiation (sunlight, spot lights).
B 3	Earthing and Pov	ver Supply
		Earthing of units with mains supply (class I equipment) is performed via the protective earth (PE) conductor integrated in the mains cable. Units with battery operation (< 60 V, class III equipment) must be earthed sepa- rately. Earthing the unit is one of the measures for protection against electrical shock hazard (dangerous body currents). Hazardous voltage may not only be caused by a defective power supply insulation, but may also be intro- duced by the connected audio or control cables. If the unit is installed with one or several external connections, its earthing must be provided during operation as well as while the unit is inoperative. If the earthing could be interrupted via the power supply (e.g. by pulling the mains plug), an additional, permanent earthing must be installed using the provided earth terminal. Avoid ground loops (hum loops) by keeping the loop surface as small as possible (by consequently guiding the earth conductors in a narrow, paral- lel way), and reduce the noise current flowing through the loop by inserting an additional impedance (common-mode choke).


Class I Equipment (Mains Operation)

Should the equipment be delivered without a matching mains cable, the latter has to be prepared by a trained person using the attached female plug (IEC320/C13 or IEC320/C19) with respect to the applicable regulations in your country.

Before connecting the equipment to the AC power outlet, check that the local line voltage matches the equipment rating (voltage, frequency) within the admissible tolerance. The equipment fuses must be rated in accordance with the specifications on the equipment.

Equipment supplied with a 3-pole appliance inlet (protection conforming to class I equipment) *must* be connected to a 3-pole AC power outlet so that the equipment cabinet is connected to the protective earth.

For information on mains cable strain relief please refer to Appendix 2.

Class III Equipment (Battery Operation up to 60 V_{DC})

Equipment of this protection class must be earthed using the provided earth terminal, if one or more external signals are connected to the unit (see explanation at the beginning of this paragraph).

B4 Electromagnetic Compatibility (EMC)

The unit conforms to the protection requirements relevant to electromagnetic phenomena that are listed in the guidelines 89/336/EC and FCC, part 15.

- The electromagnetic interference generated by the unit is limited in such a way that other equipment and systems can be operated normally.
- The unit is adequately protected against electromagnetic interference so that it can operate properly.

The unit has been tested and conforms to the EMC standards of the specified electromagnetic environment, as listed in the following declaration. The limits of these standards ensure protection of the environment and corresponding noise immunity of the equipment with appropriate probability. However, a professional installation and integration within the system are imperative prerequisites for operation without EMC problems.

For this purpose, the following measures must be followed:

- Install the equipment in accordance with the operating instructions. Use the supplied accessories.
- In the system and in the vicinity where the equipment is installed, use only components (systems, equipment) that also fulfill the EMC standards for the given environment.
- Use a system grounding concept that satisfies the safety requirements (class I equipment must be connected with a protective ground conduc-

tor) and that also takes into consideration the EMC requirements. When deciding between radial, surface, or combined grounding, the advantages and disadvantages should be carefully evaluated in each case.

- Use shielded cables where shielding is specified. The connection of the shield to the corresponding connector terminal or housing should have a large surface and be corrosion-proof. Please note that a cable shield connected only single-ended can act as a transmitting or receiving antenna within the corresponding frequency range.
- Avoid ground loops or reduce their adverse effects by keeping the loop surface as small as possible, and reduce the noise current flowing through the loop by inserting an additional impedance (e.g. common-mode choke).
- Reduce electrostatic discharge (ESD) of persons by installing an appropriate floor covering (e.g. a carpet with permanent electrostatic filaments) and by keeping the relative humidity above 30%. Further measures (e.g. conducting floor) are usually unnecessary and only suitable if used together with corresponding personal equipment.
- When using equipment with touch-sensitive operator controls, please take care that the surrounding building structure allows for sufficient capacitive coupling of the operator. This coupling can be improved by an additional, conducting surface in the operator's area, connected to the equipment housing (e.g. metal foil underneath the floor covering, carpet with conductive backing).

C Maintenance

All air vents and openings for operating elements (faders, rotary knobs) must be checked on a regular basis, and cleaned in case of dust accumulation. For cleaning, a soft paint-brush or a vacuum cleaner is recommended. Cleaning the surfaces of the unit is performed with a soft, dry cloth or a

soft brush.

Persistent contamination can be treated with a cloth that is slightly humidified with a mild cleaning solution (soap-suds).

For cleaning display windows, commercially available computer/TV screen cleaners are suited. Use only a slightly damp (never wet) cloth.

Never use any solvents for cleaning the exterior of the unit! Liquids must never be sprayed or poured on directly!

For equipment-specific maintenance information please refer to the corresponding chapter in the Operating and Service Instructions manuals.

D Electrostatic Discharge during Maintenance and Repair

Caution:

Observe the precautions for handling devices sensitive to electrostatic discharge!

Many semiconductor components are sensitive to electrostatic discharge (ESD). The life-span of assemblies containing such components can be drastically reduced by improper handling during maintenance and repair work. Please observe the following rules when handling ESD sensitive components:

- ESD sensitive components should only be stored and transported in the packing material specifically provided for this purpose.
- When performing a repair by replacing complete assemblies, the removed assembly must be sent back to the supplier in the same packing

material in which the replacement assembly was shipped. If this should not be the case, any claim for a possible refund will be null and void.

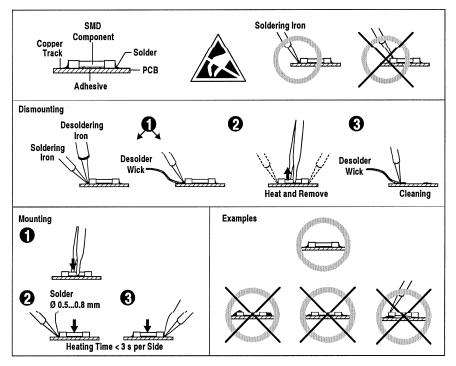
- Unpacked ESD sensitive components should only be handled in ESD protected areas (EPA, e.g. area for field service, repair or service bench) and only be touched by persons who wear a wristlet that is connected to the ground potential of the repair or service bench by a series resistor. The equipment to be repaired or serviced as well as all tools and electrically semi-conducting work, storage, and floor mats should also be connected to this ground potential.
- The terminals of ESD sensitive components must not come in uncontrolled contact with electrostatically chargeable (voltage puncture) or metallic surfaces (discharge shock hazard).
- To prevent undefined transient stress of the components and possible damage due to inadmissible voltages or compensation currents, electrical connections should only be established or separated when the equipment is switched off and after any capacitor charges have decayed.

E Repair

Removal of housing parts, shields, etc. exposes energized parts. For this reason the following precautions must be observed:

- Maintenance may only be performed by trained personnel in accordance with the applicable regulations.
- The equipment must be switched off and disconnected from the AC power outlet before any housing parts are removed.
- Even if the equipment is disconnected from the power outlet, parts with hazardous charges (e.g. capacitors, picture tubes) must not be touched until they have been properly discharged. Do not touch hot components (power semiconductors, heat sinks, etc.) before they have cooled off.
- If maintenance is performed on a unit that is opened and switched on, no un-insulated circuit components and metallic semiconductor housings must be touched, neither with your bare hands nor with un-insulated tools.

Certain components pose additional hazards:


- *Explosion hazard* from lithium batteries, electrolytic capacitors and power semiconductors (watch the component's polarity. Do not short battery terminals. Replace batteries only by the same type).
- Implosion hazard from evacuated display units.
- *Radiation hazard* from laser units (non-ionizing), picture tubes (ionizing).
- *Caustic effect* of display units (LCD) and components containing liquid electrolyte.

Such components should only be handled by trained personnel who are properly protected (e.g. safety goggles, gloves).

E1 SMD Components

Studer does not keep any commercially available SMD components in stock. For repair the corresponding devices should be purchased locally. The specifications of special components can be found in the service manual.

SMD components should only be replaced by skilled specialists using appropriate tools. No warranty claims will be accepted for circuit boards that have been damaged. Proper and improper SMD soldering joints are illustrated below.

F Disposal

Disposal of Packing Materials
 The packing materials have been selected with environmental and disposal issues in mind. All packing material can be recycled. Recycling packing saves raw materials and reduces the volume of waste. If you need to dispose of the transport packing materials, please try to use recyclable means.
 Disposal of Used Equipment
 Used equipment contains valuable raw materials as well as materials that must be disposed of professionally. Please return your used equipment via an authorized specialist dealer or via the public waste disposal system, ensuring any material that can be recycled is. Please take care that your used equipment cannot be abused. To avoid abuse, delete sensitive data from any data storage media. After having disconnected your used equipment from the mains supply, make sure that the

mains connector and the mains cable are made useless.

G Declarations of Conformity

G1 Class A Equipment - FCC Notice

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide a reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his own expense.

G2 CE Declaration of Conformity

The manufacturer, **RELEC SA**, CH-1400 Yverdon, declare under his sole responsibility that the products Studer A1, Active Studio Monitor (serial no. 190916 and up) Studer A3, Active Studio Monitor (serial no. 183701 and up) **Studer A5, Active Studio Monitor** (serial no. 181700 and up) to which this declaration relates, according to following regulations of EU directives and amendments • Low Voltage (LVD): 73/23/EEC + 93/68/EEC • Electromagnetic Compatibility (EMC): 89/336/EEC + 92/31/EEC + 93/68/EEC are in conformity with the following standards or other normative documents:

- Safety:
 - Class I equipment, EN 60065:1993 EMC:
 - EN 55103-1/-2:1996, electromagnetic environments E2 and E4.

Yverdon, March 31, 1999

Alain Roux, Director

Caution: Any changes or modifications not expressly approved by the manufacturer could void the user's authority to operate the equipment. Also refer to relevant information in this manual.

Appendix 1: Air Temperature and Humidity

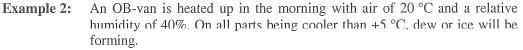
General	
	Normal operation of the unit or system is warranted under the following ambient conditions defined by <i>EN 60721-3-3, set IE32, value 3K3</i> . This standard consists of an extensive catalogue of parameters, the most important of which are: ambient temperature $+5+40$ °C, relative humidity 585% (i.e., no formation of condensation or ice); absolute humidity 125 g/m ³ ; rate of temperature change < 0.5 °C/min. These parameters are dealt with in the following paragraphs. Under these conditions the unit or system starts and works without any problem. Beyond these specifications, possible problems are described in the following paragraphs.
Ambient Temperature	
Example:	 Units and systems by Studer are generally designed for an ambient temperature range (i.e. temperature of the incoming air) of +5+40 °C. When rack mounting the units, the intended air flow and herewith adequate cooling must be provided. The following facts must be considered: The admissible ambient temperature range tor operation of the semiconductor components is 0 °C to +70 °C (commercial temperature range for operation). The air flow through the installation must provide that the outgoing air is always cooler than 70 °C. Average heat increase of the cooling air shall be 20 K, allowing for an additional maximum 10 K increase at the hot components. In order to dissipate 1 kW with this admissible average heat increase, an air flow of 2.65 m³/min is required. A rack dissipating P = 800 W requires an air flow of 0.8 * 2.65 m³/min which corresponds to 2.12 m³/min. If the cooling function of the installation must be monitored (e.g. for fan failure or illumination with spot lamps), the outgoing air temperature must be measured directly above the modules at several places within the rack. The trigger temperature of the sensors should be 65 to 70 °C.

Frost and Dew

The unsealed system parts (connector areas and semiconductor pins) allow for a minute formation of ice or frost. However, formation of dew visible with the naked eye will already lead to malfunctions. In practice, reliable operation can be expected in a temperature range above -15 °C, if the following general rule is considered for putting the cold system into operation:

If the air within the system is cooled down, the relative humidity rises. If it reaches 100%, condensation will arise, usually in the boundary layer between the air and a cooler surface, together with formation of ice or dew at sensitive areas of the system (contacts, IC pins, etc.). Once internal condensation occurs, trouble-free operation cannot be guaranteed, independent of temperature.

Before putting into operation, the system must be checked for internal formation of condensation or ice. Only with a minute formation of ice, direct evaporation (sublimation) may be expected; otherwise the system must be heated and dried while switched off.


A system without visible internal formation of ice or condensation should be heated up with its own heat dissipation, as homogeneously (and subsequently as slow) as possible; the ambient temperature should then always be lower than the one of the outgoing air.

If it is absolutely necessary to operate the cold system immediately within warm ambient air, this air must be dehydrated. In such a case, the absolute humidity must be so low that the relative humidity, related to the coldest system surface, always remains below 100%.

Ensure that the enclosed air is as dry as possible when powering off (i.e. before switching off in winter, aerate the room with cold, dry air, and remove humid objects as clothes from the room).

These relationships are visible from the following climatogram. For a controlled procedure, thermometer and hygrometer as well as a thermometer within the system will be required.

Example 1: An OB-van having an internal temperature of 20 °C and relative humidity of 40% is switched off in the evening. If temperature falls below +5 °C, dew or ice will be forming.

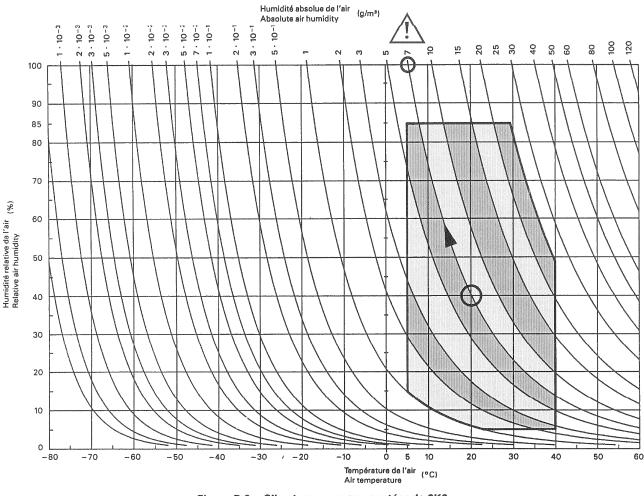
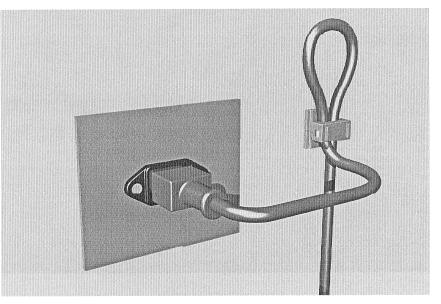


Figure B.3 – Climatogramme pour catégorie 3K3 Climatogram for class 3K3


Date printed: 17.08.04

721-3-3 © CEI:1994

IX

Appendix 2: Mains Connector Strain Relief

For anchoring connectors without a mechanical lock (e.g. IEC mains connectors), we recommend the following arrangement:

Procedure: The cable clamp shipped with your unit is auto-adhesive. For mounting please follow the rules below:

- The surface to be adhered to must be clean, dry, and free from grease, oil, or other contaminants. Recommended application temperature range is 20...40 °C.
- Remove the plastic protective backing from the rear side of the clamp and apply it firmly to the surface at the desired position. Allow as much time as possible for curing. The bond continues to develop for as long as 24 hours.
- For improved stability, the clamp should be fixed with a screw. For this purpose, a self-tapping screw and an M4 bolt and nut are included.
- Place the cable into the clamp as shown in the illustration above and firmly press down the internal top cover until the cable is fixed.

Appendix 3: Software License

Use of the software is subject to the Studer Professional Audio Software License Agreement set forth below. Using the software indicates your acceptance of this license agreement. If you do not accept these license terms, you are not authorized to use this software.

Under the condition and within the scope of the following Terms and Conditions, Studer Professional Audio GmbH (hereinafter "Studer") grants the right to use programs developed by Studer as well as those of third parties which have been installed by Studer on or within its products. References to the license programs shall be references to the newest release of a license program installed at the Customer's site.

Programs Covered by the Agreement

License Programs of Studer	The following Terms and Conditions grant the right to use all programs of Studer that are part of the System and/or its options at the time of its deliv- ery to the Customer, as well as the installation software on the original data disk and the accompanying documentation ("License Material"). In this Agreement the word "Programs" shall have the meaning of programs and data written in machine code. Using the software indicates your acceptance of this license agreement. If you do not accept these license terms, you are not authorized to use this software.
Programs of Third Parties	 Programs of third parties are all programs which constitute part of the System and/or its options at the time of delivery to the Customer but have not been developed by Studer. The following conditions are applicable to programs of third parties: The right to use third parties' programs is governed by the License Agreement attached hereto (if applicable), which is an integral part of this Agreement. The Customer shall sign any and all License Agreements for all further programs of third parties installed on the system. The Customer shall be deemed to have received all License Agreements upon delivery of the system and/or its options. Studer shall accept no responsibility or liability for, and gives no warranties (express or implied) as to the programs of third parties. The Customer waives any and all claims versus Studer for any consequential damages, which might occur due to defects of these programs.
Right of Use	
Principle	Studer grants the Customer the non-exclusive right to use the License Ma- terial in one copy on the system and/or its options as laid down by the Sales Agreement concluded between the parties and all Terms and Condi- tions which shall be deemed to form and be read and construed as part of the Sales Agreement. This right is assignable according to the "Assignabil- ity" paragraph hereinafter.
Customized Configurations	The Customer is not entitled to alter or develop further the License Mate- rial except within the expressly permitted configuration possibilities given by the software installed on the system or elsewhere. All altered programs, including but not limited to the products altered within the permitted con- figuration possibilities, are covered by this License Agreement.

Reverse Engineering	Reverse engineering is only permitted with the express consent of Studer. The consent of Studer can be obtained but is not limited to the case in which the interface-software can not be provided by Studer. In any case Studer has to be informed immediately upon complete or partial reverse engineering.
Copying the License Material	The Customer is entitled to make one copy of all or parts of the License Material as is necessary for the use according to this Agreement, namely for backup purposes. The Customer shall apply the copyright of Studer found on the License Material onto all copies made by him. Records shall be kept by the Customer regarding the amount of copies made and their place of keeping. The responsibility for the original program and all copies made lies with the Customer. Studer is entitled to check these records on first request. Copies not needed anymore have to be destroyed immedi- ately.
Disclosure of License Material	The License Material is a business secret of Studer. The Customer shall not hand out or in any way give access to parts or the complete License Mate- rial to third parties nor to publish any part of the License Material without prior written consent of Studer. The Customer shall protect the License Material and any copies made according to the paragraph above by appro- priate defense measures against unauthorized access. This obligation of non-disclosure is a perpetual obligation. Third parties are entitled to have access to the License Material if they use the License Material at the Customer's site in compliance with this Agree- ment. Under no circumstance are third parties entitled to have access to the in- stallation software on the original data media. The Customer shall safe- guard the original data media accordingly.
Assignability	The rights granted to the Customer according to this License Agreement shall only be assignable to a third party together with the transfer of the system and/or its options and after the prior written consent of Studer.
Rights to License Material	

With the exception of the right of use granted by this License Agreement all proprietary rights to the License Material, especially the ownership and the intellectual property rights (such as but not limited to patents and copyright) remain with Studer even if alterations, customized changes or amendments have been made to the License Material. Studer's proprietary rights are acknowledged by the Customer. The Cus-

tomer shall undertake no infringements and make no claims of any patent, registered design, copyright, trade mark or trade name, or other intellectual property right.

Warranty, Disclaimer, and Liability

For all issues not covered herewithin, please refer to the "General Terms and Conditions of Sale and Delivery" that are part of the sales contract.

CONTENTS

	1 Welcome!		
	1.1	Basics	E1/1
	1.2	Safety and Connections	F1/3
	1.2.	•	
	1.2.	1	
	1.2.		
2	Ge	neral	E2/1
	2.1	Scope of Delivery	E2/1
	2.2	Options	E2/1
	2.3	Block Diagrams	E2/2
	2.4	Technical Specifications	E2/3
3	Ор	peration	E3/1
	-	Connectors, Controls	
	3.1	Connectors, Controls	E.3/1
4	Ser	rvice Instructions	E4/1
	4.1	~ .	
	4.1	General	E4/1
	4.1 4.2	General Spare Parts	
	4.2	Spare Parts	E4/1
		Spare Parts A1 Service	E4/1
	4.2 4.3 4.3.	Spare Parts A1 Service .1 A1: Settings on the PCB	E4/1
	4.2 4.3 4.3. 4	Spare Parts A1 Service .1 A1: Settings on the PCB	
	4.2 4.3 4.3. 4 4	Spare Parts A1 Service .1 A1: Settings on the PCB .3.1.1 A1: Required Test Tools	
	4.2 4.3 4.3. 4 4 4 4	Spare Parts. A1 Service . .1 A1: Settings on the PCB . .3.1.1 A1: Required Test Tools . .3.1.2 A1: Initial Settings.	E4/1 E4/2 E4/3 E4/3 E4/3 E4/3 E4/3
	4.2 4.3 4.3. 4 4 4 4 4 4	Spare Parts. A1 Service	E4/1 E4/2 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/4
	4.2 4.3 4.3. 4 4 4 4 4 4 4 4	Spare Parts. A1 Service	E4/1 E4/2 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/4 E4/5
	4.2 4.3 4.3. 4 4 4 4 4 4 4 4 4	Spare Parts	E4/1 E4/2 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/4 E4/4
	4.2 4.3 4.3. 4 4 4 4 4 4 4 4 4 4	Spare Parts. A1 Service .1 A1: Settings on the PCB .3.1.1 A1: Required Test Tools .3.1.2 A1: Initial Settings .3.1.3 A1: Powering Up .3.1.4 A1: Supply Voltages .3.1.5 A1: Input Gain Check and EQ Preadjustments .3.1.6 A1: Input Common Mode Rejection Ratio (CMMR) .3.1.7 A1: Quiescent Current Setting .3.1.8 A1: Woofer Amplifier Output	E4/1 E4/2 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/4 E4/5 E4/5 E4/5 E4/6
	4.2 4.3 4.3. 4 4 4 4 4 4 4 4 4 4 4	Spare Parts. A1 Service .1 A1: Settings on the PCB .3.1.1 A1: Required Test Tools .3.1.2 A1: Initial Settings .3.1.3 A1: Powering Up .3.1.4 A1: Supply Voltages .3.1.5 A1: Input Gain Check and EQ Preadjustments .3.1.6 A1: Input Common Mode Rejection Ratio (CMMR) .3.1.7 A1: Quiescent Current Setting .3.1.8 A1: Woofer Amplifier Output .3.1.9 A1: Tweeter Amplifier Output	E4/1 E4/2 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/4 E4/5 E4/5 E4/5 E4/6 E4/7
	4.2 4.3 4.3. 4 4 4 4 4 4 4 4 4 4 4 4	Spare Parts. A1 Service	E4/1 E4/2 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/4 E4/5 E4/5 E4/5 E4/6 E4/7 E4/8
	4.2 4.3 4.3. 4 4 4 4 4 4 4 4 4 4 4 4.3.	Spare Parts. A1 Service	E4/1 E4/2 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/4 E4/5 E4/5 E4/5 E4/6 E4/7 E4/8 E4/9
	4.2 4.3 4.3. 4 4 4 4 4 4 4 4 4 4 4.3. 4	Spare Parts. A1 Service .1 A1: Settings on the PCB .3.1.1 A1: Required Test Tools .3.1.2 A1: Initial Settings .3.1.3 A1: Powering Up .3.1.4 A1: Supply Voltages .3.1.5 A1: Input Gain Check and EQ Preadjustments .3.1.6 A1: Input Common Mode Rejection Ratio (CMMR) .3.1.7 A1: Quiescent Current Setting .3.1.8 A1: Woofer Amplifier Output .3.1.9 A1: Tweeter Amplifier Output .3.1.0 A1: Limiter Threshold .2 A1: Checks on the assembled Unit .3.2.1 A1: Required Test Tools	E4/1 E4/2 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/4 E4/5 E4/5 E4/5 E4/5 E4/6 E4/7 E4/8 E4/9 E4/9
	4.2 4.3 4.3. 4 4 4 4 4 4 4 4 4.3. 4 4.3.	Spare Parts. A1 Service .1 A1: Settings on the PCB .3.1.1 A1: Required Test Tools .3.1.2 A1: Initial Settings .3.1.3 A1: Powering Up .3.1.4 A1: Supply Voltages .3.1.5 A1: Input Gain Check and EQ Preadjustments .3.1.6 A1: Input Common Mode Rejection Ratio (CMMR) .3.1.7 A1: Quiescent Current Setting .3.1.8 A1: Woofer Amplifier Output .3.1.9 A1: Tweeter Amplifier Output .3.1.10 A1: Limiter Threshold .2 A1: Checks on the assembled Unit .3.2.1 A1: Required Test Tools .3.2.2 A1: Initial Settings.	E4/1 E4/2 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/4 E4/5 E4/5 E4/5 E4/6 E4/7 E4/8 E4/9 E4/9 E4/9
	4.2 4.3 4.3. 4 4 4 4 4 4 4 4.3. 4 4 4.3.	Spare Parts. A1 Service .1 A1: Settings on the PCB .3.1.1 A1: Required Test Tools .3.1.2 A1: Initial Settings .3.1.3 A1: Powering Up .3.1.4 A1: Supply Voltages .3.1.5 A1: Input Gain Check and EQ Preadjustments .3.1.6 A1: Input Common Mode Rejection Ratio (CMMR) .3.1.7 A1: Quiescent Current Setting .3.1.8 A1: Woofer Amplifier Output .3.1.9 A1: Tweeter Amplifier Output .3.1.10 A1: Limiter Threshold .2 A1: Checks on the assembled Unit .3.2.1 A1: Required Test Tools .3.2.3 A1: Insulation Check	E4/1 E4/2 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/4 E4/5 E4/5 E4/5 E4/6 E4/7 E4/8 E4/9 E4/9 E4/9 E4/9
	4.2 4.3 4.3. 4 4 4 4 4 4 4 4.3. 4 4 4.3.	Spare Parts	E4/1 E4/2 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/4 E4/5 E4/5 E4/5 E4/6 E4/7 E4/8 E4/9 E4/9 E4/9 E4/9 E4/10
	4.2 4.3 4.3. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Spare Parts. A1 Service .1 A1: Settings on the PCB .3.1.1 A1: Required Test Tools .3.1.2 A1: Initial Settings .3.1.3 A1: Powering Up .3.1.4 A1: Supply Voltages .3.1.5 A1: Input Gain Check and EQ Preadjustments. .3.1.6 A1: Input Common Mode Rejection Ratio (CMMR) .3.1.7 A1: Quiescent Current Setting .3.1.8 A1: Woofer Amplifier Output .3.1.9 A1: Tweeter Amplifier Output .3.1.10 A1: Limiter Threshold .2 A1: Checks on the assembled Unit .3.2.1 A1: Required Test Tools .3.2.2 A1: Initial Settings .3.2.3 A1: Insulation Check .3.2.4 A1: Measurement Setup in the Anechoic Room .3.2.5 A1: SPL and EQ Fine-Adjustment	E4/1 E4/2 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/4 E4/5 E4/5 E4/5 E4/5 E4/6 E4/7 E4/8 E4/9 E4/9 E4/9 E4/9 E4/9 E4/10 E4/11
	4.2 4.3 4.3. 4 4 4 4 4 4 4 4 4 4.3. 4 4 4 4 4 4	Spare Parts	E4/1 E4/2 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/3 E4/4 E4/5 E4/5 E4/5 E4/5 E4/6 E4/7 E4/9 E4/9 E4/9 E4/10 E4/11 E4/11

4.4 A3 Se	rvice	E4/13
4.4.1 A	A3: Settings on the PCB	
4.4.1.1	A3: Required Test Tools	
4.4.1.2	A3: Initial Settings	
4.4.1.3	A3: Powering Up	
4.4.1.4	A3: Supply Voltages	
4.4.1.5	A3: Input Gain Check and EQ Preadjustments	
4.4.1.6	A3: Input Common Mode Rejection Ratio (CMMR)	
4.4.1.7	A3: Quiescent Current Setting	
4.4.1.8	A3: Woofer Amplifier Output	
4.4.1.9	A3: Tweeter Amplifier Output	
4.4.1.10	· ·	
4.4.1.11	A3: Overheat Protection Check	
4.4.2 A	A3: Checks on the assembled Unit	
4.4.2.1	A3: Required Test Tools	
4.4.2.2	A3: Initial Settings	
4.4.2.3	A3: Insulation Check	
4.4.2.4	A3: Measurement Setup in the Anechoic Room	
4.4.2.5	A3: SPL and EQ Fine-Adjustment	
4.4.2.6	A3: Distortion Check	
4.4.2.7	A3: Polarity Check	
4.4.2.8	A3: Overall Phase Check	
I.5 A5 Se	rvice	
	5: Settings on the PCB	
4.5.1.1	A5: Required Test Tools	
4.5.1.2	A5: Initial Settings	
4.5.1.3	A5: Powering Up	
4.5.1.4	A5: Supply Voltages	
4.5.1.5	A5: Input Gain Check and EQ Preadjustments	
4.5.1.6	A5: Input Common Mode Rejection Ratio (CMMR)	
4.5.1.7	A5: Quiescent Current Setting	
4.5.1.8	A5: Woofer Amplifier Output	
4.5.1.9	A5: Mid-range Amplifier Output	
4.5.1.10	A5: Tweeter Amplifier Output	
4.5.1.11	A5: Limiter Threshold	
4.5.1.12	A5: Overheat Protection Check	
4.5.2 A	5: Checks on the assembled Unit	
4.5.2.1	A5: Required Test Tools	
4.5.2.2	A5: Initial Settings	
4.5.2.3	A5: Insulation Check	
4.5.2.4	A5: Measurement Setup in the Anechoic Room	
4.5.2.5	A5: SPL and EQ Fine-Adjustment	
4.5.2.6	A5: Distortion Check	
4.5.2.7	A5: Polarity Check	
4.5.2.8	A5: Overall Phase Check	
l.6 Apper	ndix: Frequency Response Measurements	E4/3
	General	
4.6.2 S	tanding Waves, Reflections, and Smoothing	
	ILS Technology for Frequency Response Measurements	
	Juasi-Anechoic Measurements and Low-Frequency Limitations	
-	ILS Advantages	
Diagram	S	E4

1 WELCOME!

We are happy to welcome you in the circle of the users of Studer's A series active speakers, and we felicitate you on your selection. Thanks to Studer's experience collected during more than 40 years of business in the professional audio products field, you may expect that the performance of your new unit will fulfill your highest demands.

1.1 Basics

With the A series, Studer has created a family of active speaker systems. With exterior dimensions kept at a minimum, but nevertheless with high sound pressure levels, these speakers are suited for many different applications. For audition rooms and continuity cubicles, for the editing studio and control rooms, for use in mobile applications or OB vans, the A series offers ideal problem-oriented solutions.

The Studer A series active speakers can be adjusted to any individual requirement by means of various controls. Differences in operating levels or differences due to speaker placement can be compensated thanks to the variable input sensitivity and the bass roll-off controls. For horizontal placement, the A5's mid-range/tweeter unit can be rotated by $\pm 90^{\circ}$ after loosening four screws.

To meet professional standards, the A series is equipped with an XLRcompatible connector and electronically balanced line input (A1) or transformer-balanced line input (A3 and A5).

The most important characteristics of the A series active speakers can be summarized as follows:

- Active 2- or 3-way speakers for high sound pressure levels in near-field applications or medium- and large-sized monitoring rooms.
- Suited for all commonly used operating levels, input sensitivity continuously adjustable.
- Low distortion rating; the magnetic flux is stabilized by damping the coil reaction.
- Exceptional damping of the individual systems by negative output impedance of the power amplifiers.
- Matched signal propagation delay between the individual transducers through separate electronic delay lines.
- Group delay compensated band-pass filters.

A speaker diaphragm should accurately follow the electrical excitation. In the Studer A series active speakers, this is achieved with negative output impedance in all power amplifiers, which efficiently attenuates undesired echo oscillations of the diaphragm. Each of the frequency ranges features its own power amplifier with negative output impedance. This forces the diaphragm to exactly follow the input signal, and undesired responses (diaphragm and enclosure echoes) are suppressed. Percussive signals in particular (e.g. applause) are reproduced very accurately.

This principle is also an essential prerequisite for other improvements:

- Utilization of optimum crossover network techniques
- Other distortion reduction measures.

Negative output impedance:

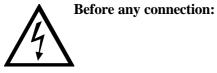
Helmholtz resonator	A cavity with an external opening is referred to as Helmoltz resonator. If a driven diaphragm is added to this system, the well-known "bass reflex" enclosure is obtained, having the advantage of significantly more energy gain in the bass reflex resonance area. The transmission range can thus be expanded toward the low end without overloading the speaker. In combination with the negative output impedance, it is possible to consider this arrangement strictly as a Helmholtz resonator again, being easily compensated for the bass reflex drawbacks by electronic means. Such a combination achieves clean bass reproduction down to frequencies amazingly low for the given enclosure size.
Group-delay-compensated filters	The evaluation of a speaker cannot simply be based on one single point of the room, but the entire radiation behavior must be considered. The division of the frequency spectrum, unfortunately made necessary by various reasons such as Doppler effect, partial oscillations of the dia- phragms, etc., creates additional problems. If the individual speaker systems are arranged vertically, the horizontal ra- diation characteristic depends almost exclusively on the quality of the chas- sis. In the vertical direction, however, a bundled aggregate signal is ob- tained. If the partial signals are not in phase with each other – either due to different acoustic propagation times or phase rotation in the crossover – the radiation lobe changes its direction in the transition zones. If the ear is not accurately positioned, dips or even peaks in the frequency response can strongly influence the sound impression and the localization of the sound source.
Delay compensation	The distance from the point of origin of the sound to the speaker surface varies because the individual speaker systems have different mounting depth. With wide-band signals, this normally leads to dispersion (i.e. the individual frequency components arrive at the listening position at different times). In the Studer A series active speakers, these differences in the transit time of the audio signals are compensated by analog delay circuits maintaining the necessary delay up to frequencies above the audio range. Time delay compensation, negative output impedance of the power amplifiers, and a sophisticated crossover design offering steep filter characteristics <i>and</i> phase linearity, all together leads to the excellent impulse behavior of the A series and to their greatly improved reproduction of transient music signals.
Ideally suited for surround sound	A unique feature of the A-Series studio monitors is that different speaker types can be mixed for setting up a surround system. The simple reason for this is the group-delay compensation. Usually, combining different speaker types with uncompensated group-delay can cause quite unpleasant phase-domain effects, resulting in sound sources being placed in wrong positions. Parts of a signal panned to the right side could then be localized behind the listener or in other undesired positions. The different A-Series studio monitors feature identical phase response over the whole frequency spectrum and therefore give an accurate sound source positioning.

1.2 Safety and Connections

1.2.1 Utilization for the Purpose Intended

The Studer A series active speakers are designed for professional use. It is presumed that the units are operated only by trained personnel; servicing must be performed by qualified experts.

The electrical connections may be connected only to the appropriate voltages and signals specified in this manual. Please consult the Safety and EMC sections at the very beginning of this manual.


1.2.2 Unpacking and Inspection

Your new unit is shipped in a special packing which protects it against mechanical shock during transit. Care should be exercised when unpacking so that its surfaces do not get marred.

Verify that the content of the packing agrees with the items listed on the enclosed shipping list. Check the condition of the equipment for signs of shipping damage. If there should be any complaints please immediately notify the forwarding agent and your nearest Studer distributor.

Please retain the packing material because it offers the best protection in case your unit ever needs to be transported.

1.2.3 Installation

Check the line voltage selector setting before connecting the unit to the mains. The voltage selector is located inside the fuse holder next to the power inlet. The unit can be operated on mains voltages of 115 or 230 V_{AC} , 50 to 60 Hz. Also check for correct value of the primary fuse:

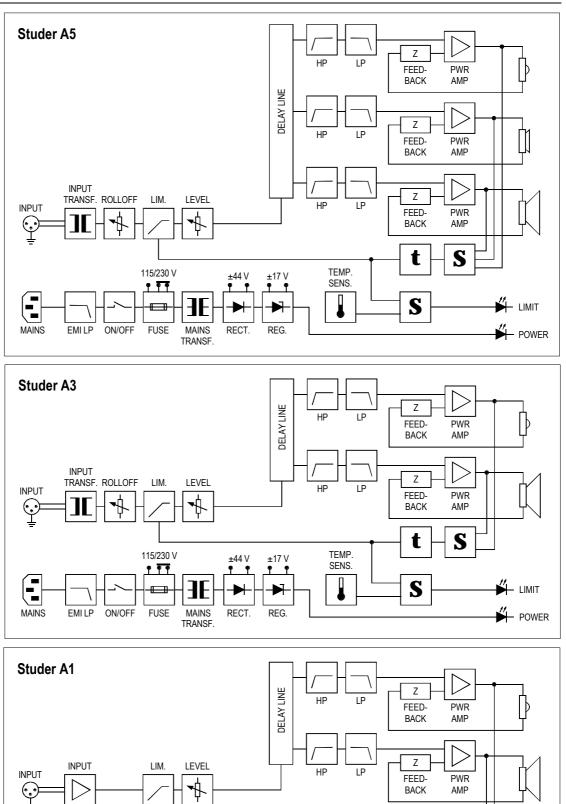
A1		230 V: T 1.6 A L 250 V (5 × 20 mm)
		115 V: T 3.15 A L 250 V (5 × 20 mm)
	USA and Canada:	115 V: 3.2 A slow blow UL/CSA (5 × 20 mm)
A3 230 V: T 0.8 A L 250 V (5 × 20 m		230 V: T 0.8 A L 250 V (5 × 20 mm)
		115 V: T 1.6 A L 250 V (5 × 20 mm)
	USA and Canada:	115 V: 1.6 A slow blow UL/CSA (5 × 20 mm)
A5		230 V: T 0.5 A L 250 V (5 × 20 mm)
		115 V: T 1.0 A L 250 V (5 × 20 mm)
	USA and Canada:	115 V: 1.0 A slow blow UL/CSA (5 × 20 mm)

Mains cable:

Depending on your country, the A Series Active Monitor Speakers come with an IEC mains cable or a female IEC 320/C13 mains cable socket. This socket has to be connected to an appropriate mains cable by a trained technician with respect to your local regulations. Refer to the "Installation" section at the beginning of this manual.

	Danger!	Repair work may only be performed by a trained service technician. The primary fuse must be replaced by a spare fuse of exactly the same type. The unit must not be opened by the user because of the risk of a severe electric shock hazard!
	Humidity:	Do not use the units near any source of moisture or in excessively humid environments.
	Ventilation:	In order to guarantee adequate air circulation, the unit's rear side must not be mounted closer than 6 cm from a wall.
	Magnetic radiation:	Do not mount the A5 and A3 units closer than 40 cm from a video or com- puter monitor. Thanks to low magnetic dispersion drivers and additional screening, the A1 units can be operated also next to video or computer monitors, or measuring instruments.
Ŵ	Mounting facilities:	Four tapped M6 inserts are located on the bottom of the A5 and A3 units. They can be used for mounting it on a base plate, a wall-mount kit or a stand (refer to section 2.2, Options). <i>The A5 cannot be mounted with a ceiling mounting kit. When mounted on</i> <i>a stand or wall-mount, please make sure that the tilting angle in either di-</i> <i>rection does not exceed 30°!</i> The A1 is shipped with a threaded mounting bracket for easy installation on a microphone stand.
	Location:	The A series has been aligned for free placement, i.e. not close to walls or in edges. Ideal mounting distances are 12 m from walls and at least 60 cm from the floor. If operation of the A5 or A3 units near room boundaries is required, the resulting bass boost can be compensated with the ROLL OFF control. On the A1 unit the ROLL OFF control is not available, because this type and size of loudspeaker usually is not operated near room boundaries.

Order No.


2 GENERAL

2.1 Scope of Delivery

The Studer A series active speakers are shipped with an operating manual (order no. 10.27.4551), and either an IEC 320/C13 socket or an IEC mains cable, depending on your country.

Wall-mount kit (for A5 and A3) (OmniMount) with adjustable tilt. <i>Caution: The maximum tilting angle of the A5 must not exc</i>	20.020.230.04 seed 30°!
Floor stand (for A5 and A3) Moveable floor stand complete with 4 castors, rugged all Adjustable column height. Maximum carrying capacity 40 kg.	20.020.230.21 uminium design.
Floor stand (for A5 and A3) Foldable tripod floor stand. Adjustable column height (1.25 Maximum carrying capacity 50 kg.	10.705.214.60 2.3 m).
Woofer protection grille (for A1) Set for one A1 speaker, containing a protection grille, more and instruction sheet.	15.258.211.00 unting hardware,
Operating Instructions (additional manual)	10.27.4551
Operating and Service Instructions	10.27.4540

2.3 Block Diagrams

115/230 V

• • •

FUSE

MAINS

TRANSF.

±38 V

RECT.

• •

±17 V

• •

►

REG.

POWER

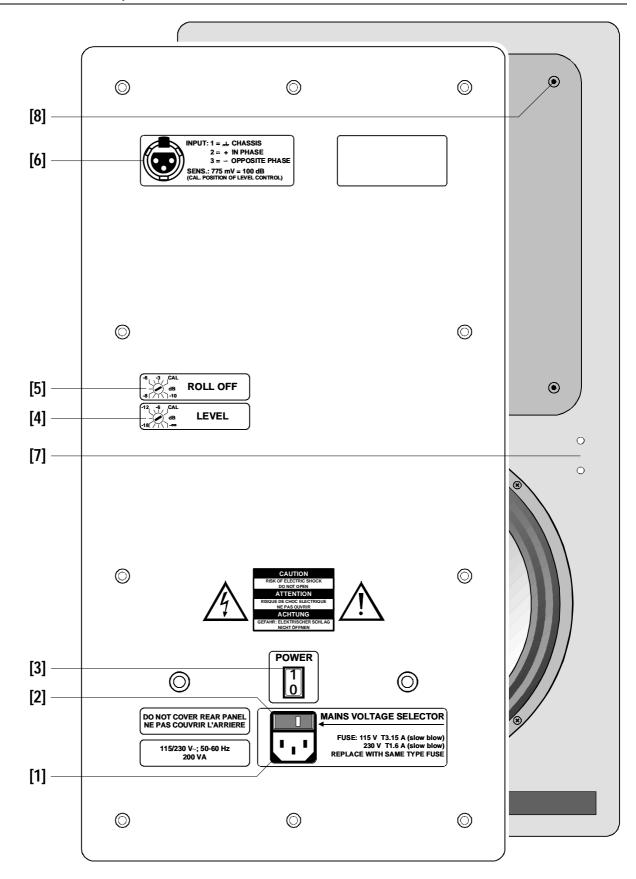
t

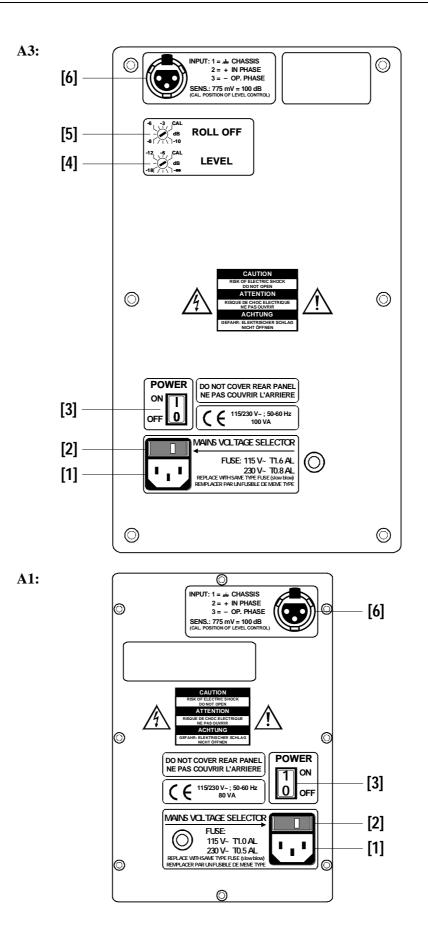
S

MAINS

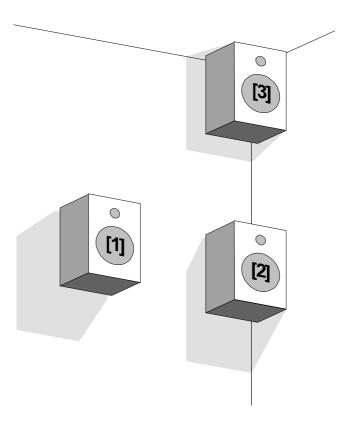
EMI LP

ON/OFF

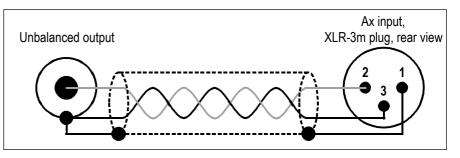

2.4 Technical Specifications (preliminary, subject to change without notice)


	A5	A3	A1
Input	transformer-balanced		electronically balanced
Input impedance	balanced, 5 kΩ	balanced, 5 kΩ	balanced, 12 kΩ
Input sensitivity for 100 dB SPL @ 1 m		0.775 V	
Signal-to-noise ratio	–100 dBA		
Max. input voltage	24	Vpp	20 Vpp
Continuous max. SPL, 1 m	110 dB	108 dB	101 dB
Program max. SPL, 1 m (short term RMS)	118 dB	114 dB	106 dB
Frequency response, -6 dB	3823000 Hz	4323000 Hz	5822000 Hz
Frequency response	±1.5 dB (50 Hz20 kHz)	±2 dB (48 Hz20 kHz)	±2.5 dB (65 Hz18 kHz)
Distortion THD @ 90 dB SPL/1 m	< 1% (50 Hz20 kHz)	< 1.2% (48 Hz20 kHz)	< 1% (75 Hz15 kHz)
Dispersion (P.N. 416 kHz at –6 dB)	90° x 90° (H x V)	90° x 90° (H x V)	100° x 100° (H x V)
System	3-way	2-way	2-way
Crossover frequency	450 Hz, 3 kHz	2.2 kHz	3.5 kHz
Woofer ext./diaphragm	arnothing 250 mm / $arnothing$ 205 mm	arnothing 215 mm / $arnothing$ 170 mm	arnothing 142 mm / $arnothing$ 102 mm
Midrange ext./diaphragm	arnothing 142 mm / $arnothing$ 102 mm	-	-
Tweeter ext./diaphragm	Ø 100 mm / Ø 25 mm	Ø 100 mm / Ø 25 mm	Ø 70 mm / Ø 20 mm
Input connector	1 x XLR 3f		
Dimensions W x H x D [mm]	320 x 590 x 380	250 x 400 x 305	162 x 242 x 170
Net weight	29 kg	12.8 kg	5 kg
Mains	115/230 V (50/60 Hz)		
Power inlet	IEC 320/C14		
Power consumption	18200 VA	10100 VA	770 VA
Relative humidity (average / max.)	< 75% / < 90%		
Ambient temperature	540° C		
Safety standard	Protection class I according to EN 60065: 1992, IEC 65: 1985.		
EMC standard	EN 55103-1/-2; 1996, electromagnetic environments E2 and E4.		

3 OPERATION


3.1 Connectors, controls

[1] IEC mains connector Appliance inlet IEC 320/C14 for connection to a 3-pole AC power outlet with protective ground. Supply voltage (selectable): 115 or 230 V_{AC} ; frequency 50...60 Hz. For connecting to the mains, please consult the Safety section at the very beginning of this manual. Make sure that the voltage selector setting matches your local line voltage! [2] Mains fuse, voltage selector The voltage selector is contained within the fuse holder; its setting can be changed only while the power is switched off. To change the setting, first pull out the black fuse holder cover, then pull out the grey fuse holder. Insert it into the fuse holder cover again after having rotated it by 180 degrees. Check for correct setting before plugging in the fuse holder cover: The set voltage value is indicated in the small window in the fuse holder cover. The primary fuse must be replaced by a spare fuse of exactly the same type and value! [3] POWER Power on/off switch. [4] LEVEL Potentiometer for matching the input sensitivity to your standard line level. Note: For the A1, this control is located on the front panel. [5] ROLL OFF (A3 and A5 only) Continuously adjustable bass cut filter, allows attenuation of the low frequencies in order to compensate for boundary reflections when the unit is mounted close to one (approx. -3 dB setting, fig. [1]), to two (approx. -6 dB setting, fig. [2]), or to three room boundaries (approx. -10 dB setting, fig. [3]).


[6] INPUT

Transformer-balanced (A5 and A3) or electronically balanced (A1) audio input on female 3-pin XLR connector.

Pin assignment:

Pin	Signal
1	Ground
2	Input +
3	Input –
-	Chassis

- **Polarity:** A positive voltage on pin 2 causes a positive diaphragm deflection (i.e., the woofer's diaphragm moves towards the listener).
 - **Note:** The A series speakers can also be driven by unbalanced sources (Hi-Fi). In that case, use a cable according to the diagram below.

[7] Pilot LEDs All A Series speakers feature a green Power On LED.

The A1 speaker is overload-protected by a limiter function *without* LED indicator.

On the A3 and A5 speakers, the red Alarm LED on the front panel indicates as follows:

Status	Red Alarm LED status	Audio output
Normal operation conditions	dark	No limiting or muting
Chassis overload	flickering	Output is attenuated to a safe level
(limiter active)	liickening	until input signal is reduced.
Overheat detection	continuously on	Output is muted
(above approx. 6575° C)		until amplifier is cooled down.

[8] Midrange/tweeter unit (A5 only) If the A5 cannot be set up vertically (which in fact is the recommended position), its midrange/tweeter assembly can be rotated by ±90 degrees. To do so, switch the speaker off and unplug the mains connection; loosen the 4 mounting screws (Allen screwdriver no. 4) of the midrange/tweeter assembly. Because it fits quite tightly, you can use one of the four recesses located at the circumference of the midrange speaker to pull out the assembly carefully.

Reinsert it after having turned it by the required angle, and re-tighten the four screws in order to get a sealed joint again.

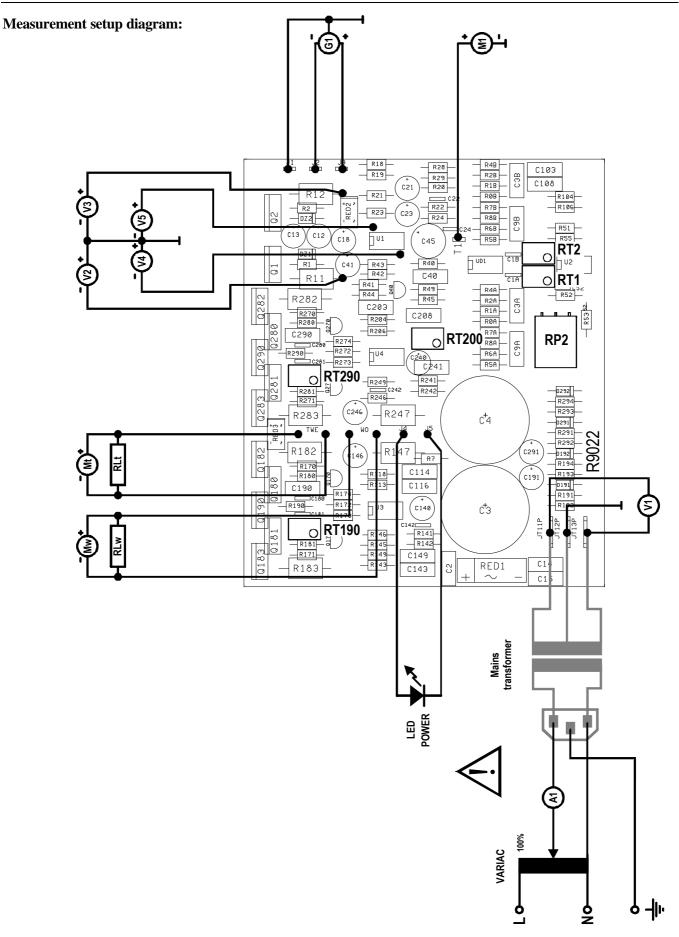
4 SERVICE INSTRUCTIONS

4.1 General

Important! Repair work may only be performed by a trained service technician. The primary fuse must be replaced by a spare fuse of exactly the same type and rating. The unit must not be opened by the user – risk of a severe electrical shock hazard!

- During servicing, *never* short any two terminals.
- The settings of an assembled and aligned unit may slightly differ from the ones of the aligned PCB.
- If acoustical measurements are performed with an MLS system, insatisfactory results will be obtained unless obstacles are at a distance larger than the current wavelength. *For more information on frequency response measurements, please refer to the Appendix, section 4.6*.
- In case of incorrect manipulation and/or adjustment, the manufacturer cannot be made liable for failure or insatisfactory results.

4.2 Spare Parts


		Order no.	
Item	A1	A3	A5
Primary fuse (230 V)	51.01.0114	51.01.0116	51.01.0119
(5 × 20 mm)	(T 0.5 A L 250 V)	(T 0.8 A L 250 V)	(T 1.6 A L 250 V)
Primary fuse (115 V)	51.01.0117	51.01.0119	51.01.0122
(5 × 20 mm)	(T 1.0 A L 250 V)	(T 1.6 A L 250 V)	(T 3.15 A L 250 V)
Primary fuse (USA/Canada)	51.01.1017	51.01.1020	51.01.1026
(5 × 20 mm)	(1.0 A slow blow UL/CSA)	(1.6 A slow blow UL/CSA)	(3.2 A slow blow UL/CSA)
Woofer unit	15.258.210.00	15.258.110.00	15.258.010.00
Mid-range unit			15.258.020.00
Tweeter unit	15.258.240.00	15.258.140.00	15.258.040.00
* Complete backpanel/heat-sink assembly,	* 15.258.230.00	* 15.258.130.00	* 15.258.030.00
including power supply and amplifiers			
Backpanel only, silk screened	15.258.220.00	15.258.120.00	15.258.050.00
Mains transformer	15.258.221.00	15.258.121.00	15.258.121.00
			(2 pcs. used)
* Power amplifier, preadjusted	* 15.258.222.00	* 15.258.122.00	* 15.258.052.00
Mounting bracket	15.258.223.00		
Enclosure body, empty	15.258.229.00	15.258.129.00	15.258.059.00
Woofer protection grille, mounting kit	15.258.211.00		

* Important note:

When ordering a complete backpanel/amplifier assembly or a power amplifier unit, it is mandatory to declare the speaker type and serial number (as indicated on the speaker's backpanel). Only if these conditions are met, the manufacturer can ensure that the desired spare part is shipped with correct pre-alignments.

4.3 A1 Service

4.3.1 A1: Settings on the PCB

4.3.1.1 A1: Required Test Tools

- T1 Variable mains transformer (variac)
- A1 True-RMS AC ammeter
- V1 True-RMS AC voltmeter
- V2...V5 Digital DC voltmeter
 - G1 Sine-wave generator with balanced output (min. 20 Hz...20 kHz, < 0.02% THD)
- M1, Mw, Mt Voltmeter, THD meter, phase meter
 - **RLw, RLt** Dummy load resistors, 10Ω , approx. 10 W
 - **Note:** G1, M1, Mw, Mt can be replaced by a universal audio test system (Audio-Precision System One or equivalent)

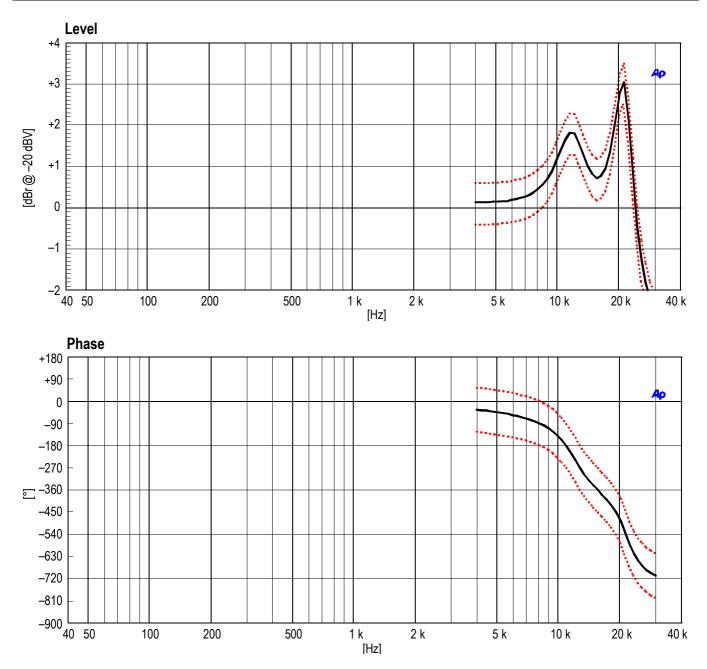
4.3.1.2 A1: Initial Settings

- **Note:** Replacement backpanel assemblies or amplifier units come factory-preadjusted. Adjustment of the quiescent current is therefore not necessary after replacement, checking is recommended nevertheless.
 - Unplug the speaker cables from the PCB, *do not* connect any load to the amplifier outputs. *Make sure that none of the cable ends contacts the PCB;*
 - Set the level potentiometer to CAL position (fully counterclockwise);
 - Set trimmer potentiometers RT190 and RT290 (quiescent current) to min. position (fully counterclockwise);
 - Variac set to min. $(0 V_{AC})$;
 - Power switch to ON position.

4.3.1.3 A1: Powering Up

- Visually check the PCB and the solder joints and repair, if necessary;
- Check the mains voltage
- Check or insert the primary fuse
- Connect the generator according to the diagram;
- Slowly increase the variac output while checking the primary current
- The green Power LED illuminates;
- Increase the variac output until V1 is 56 V_{AC} .

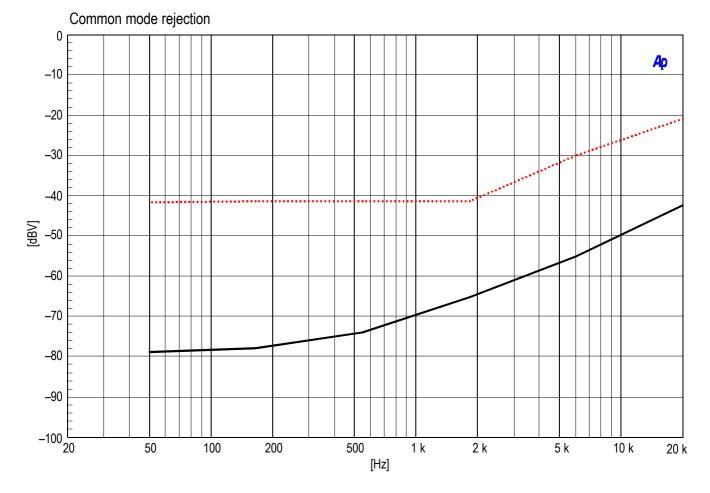
4.3.1.4 A1: Supply Voltages


	Steps		Steps Generator		Measurement			
No.	Description	ld	Value	Test pos.	Туре	Value	Limits	
1	Supply check	G1	0 V	V2	VDC	-38 V _{DC}	±3 V	
2	Supply check	G1	0 V	V3	VDC	+38 V _{DC}	±3 V	
3	IC supply check	G1	0 V	V4	VDC	-17.4 V _{DC}	±0.6 V	
4	IC supply check	G1	0 V	V5	V _{DC}	+17.4 V _{DC}	±0.6 V	

<u> </u>	,
230 V _{AC}	115 V _{AC}
T 0.5 A L 250 V	T 1.0 A L 250 V
< 40 mA _{AC}	< 80 mA _{AC}

4.3.1.5 A1: Input Gain Check and EQ Preadjustments

These preadjustments must be performed only if RT1 and RT2 are completely out of range; these settings will be fine-adjusted on the assembled unit, also refer to section 4.3.2.5.


	Steps		Generator		Measurement			
No.	Description	ld	Value	Test pos.	Туре	Value	Limits	
1	Input gain check	G1	-33 dBV/200 Hz/sine wave	M1	Level	–20.0 dBV	±0.3 dB	
2	RT1 adjust	G1	-33 dBV/12.2 kHz/sine wave	M1	Level	–18.2 dBV	±0.5 dB	
3	RT2 adjust	G1	-33 dBV/21 kHz/sine wave	M1	Level	–17.0 dBV	±0.5 dB	
4	Repeat steps 2 and 3 until all values are within the given limits							

4.3.1.6 A1: Input Common Mode Rejection Ratio (CMRR)

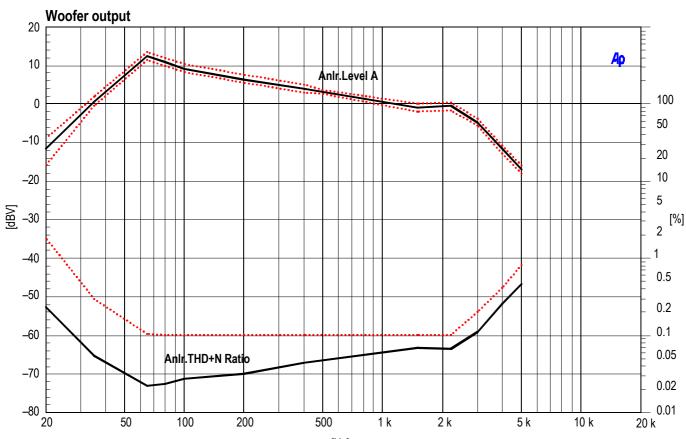
• Connect the generator in common mode to the input – i.e. "hot" generator output to both input terminals no. 2 (+) *and* 3 (–), "cold" generator output to input terminal no. 1 (GND).

Steps		Steps Generator			Measurement			
No.	Description	ld	Value	Test pos.	Туре	Value	Limits	
1	CMRR 50 Hz	G1	0 dBV/50 Hz/sine wave	M1	Level	< -42 dBV		
2	CMRR 1 kHz	G1	0 dBV/1 kHz/sine wave	M1	Level	< -42 dBV		
3	CMRR 10 kHz	G1	0 dBV/10 kHz/sine wave	M1	Level	< –26 dBV		

4.3.1.7 A1: Quiescent Current Setting

Procedure:

- 1. Measure the primary current: $A1_1 = 30...40 \text{ mA}_{AC}$ (for 230 V), or 60...80 mA_{AC} (for 115 V), and note the measured value;
- 2. Adjust RT290 (turn carefully clockwise) for a reading of: $A1_2 = A1_1 + 3 \text{ mA}_{AC}$ (for 230 V), or $A1_1 + 6 \text{ mA}_{AC}$ (for 115 V), and note the measured value;
- 3. Adjust RT190 (turn carefully clockwise) for a reading of: $A1_3 = A1_2 + 3 \text{ mA}_{AC}$ (for 230 V), or $A1_2 + 6 \text{ mA}_{AC}$ (for 115 V), and note the measured value;
- 4. Connect both dummy load resistors (10 Ω /10 W each) and check the primary current again:

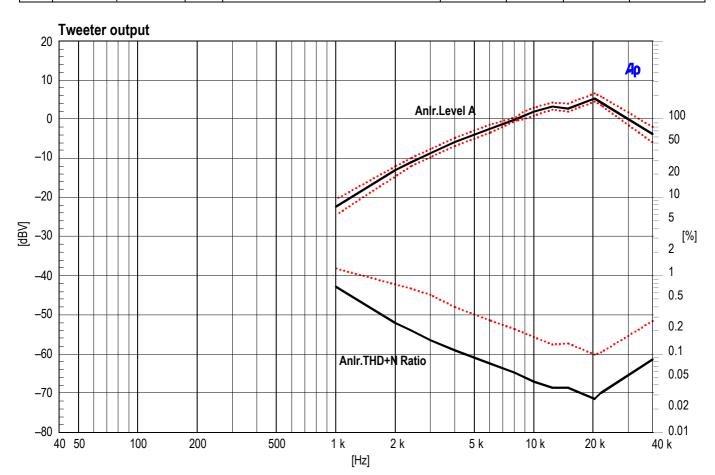

 $A1_4 = A1_3 \pm 0.5 \text{ mA}_{AC}$ (for 230 V), or $A1_3 \pm 1 \text{ mA}_{AC}$ (for 115 V).

4.3.1.8 A1: Woofer Amplifier Output

•

Steps		Steps Generator		Measurement			
No.	Description	ld	Value	Test pos.	Туре	Value	Limits
1	Woofer output level	G1	-20 dBV/500 Hz/sine wave	Mw	Level	+3.5 dBV	±0.25 dB
2	Woofer output THD	G1	-20 dBV/500 Hz/sine wave	Mw	THD + N	< 0.1 %	< 0.1 %

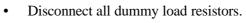
Connect only the RLw dummy load (10 Ω)

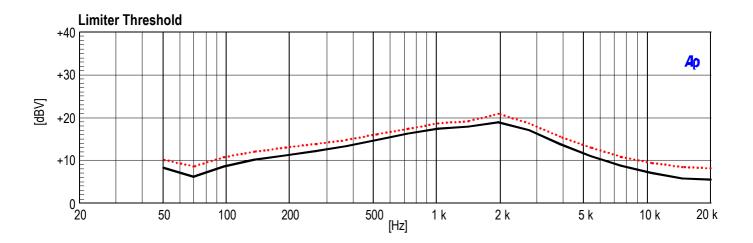


[Hz]

4.3.1.9 A1: Tweeter Amplifier Output

•


Steps		Steps Generator		Measurement			
No.	Description	ld	Value	Test pos.	Туре	Value	Limits
1	Tweeter output level	G1	-20 dBV/8.1 kHz/sine wave	Mt	Level	0 dBV	±0.25 dB
2	Tweeter output THD	G1	-20 dBV/8.1 kHz/sine wave	Mt	THD + N	< 0.1 %	< 0.1 %



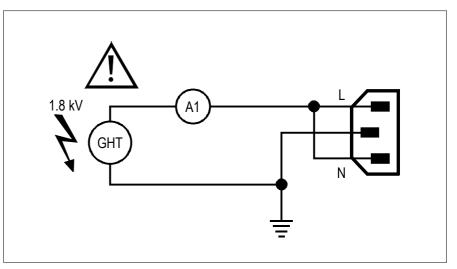
Connect only the RLt dummy load (10 Ω)

4.3.1.10 A1: Limiter Threshold

Steps			Generator		Measurement			
No.	Description	ld	Value	Test pos.	Туре	Value	Limits	
1	HF limiter	G1	+10 dBV/10 kHz/sine wave	M1 *	Level	+8.5 dBV	±2 dBV	
2	LF limiter	G1	+10 dBV/100 Hz/sine wave	M1 *	Level	+7.3 dBV	±2 dBV	

4.3.2 A1: Checks on the Assembled Unit

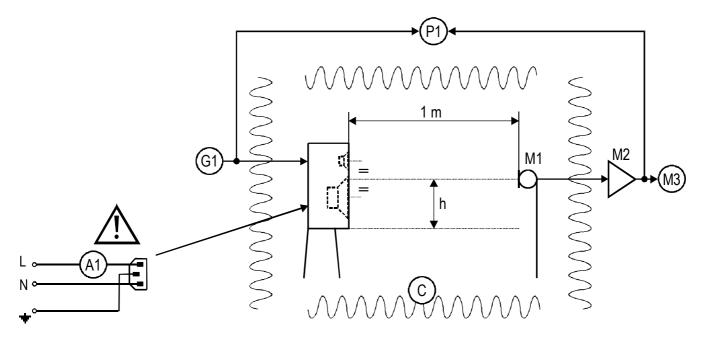
4.3.2.1 A1: Required Test Tools


- C Anechoic room;
- A1 True-RMS AC ammeter;
- GHT High-voltage generator 1.8 kV, 50 Hz, max. 10 mA;
 - G1 Sweep sine-wave generator with balanced output (AudioPrecision System One or equivalent);
 - M1 Measurement microphone Brüel & Kjær BK4133 + preamp BK2639 or equivalent;
 - M2 Measurement amplifier Brüel & Kjær BK2610 or equivalent
 - M3 Level/THD/phase analyzer (AudioPrecision System One or equivalent);
 - **P1** Phase meter with adjustable propagation delay compensation on reference input.

4.3.2.2 A1: Initial Settings

- Set the level potentiometer to CAL position (fully counterclockwise);
- Set power switch to ON.

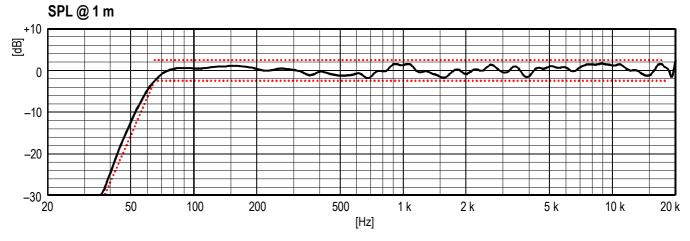
4.3.2.3 A1: Insulation Check


• Connect the HV generator to the mains input connector according to the diagram below:

- Apply 1.8 kV for 5 seconds;
- The leakage current must not exceed 5 mA.

4.3.2.4 A1: Measurement Setup in the Anechoic Room

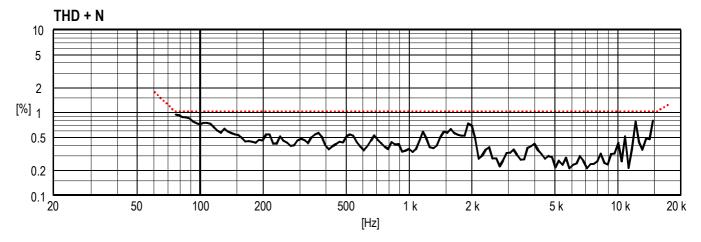
- Setup the loudspeaker;
- Setup the measurement microphone:
 - Distance to the baffle 1 m,
 - Equidistant from the two vertical edges,
 - Equidistant from the centers of woofer and tweeter units (i.e., h = 16 cm), and
 - Perpendicular to the baffle;
- Connect your unit to the mains, set power switch to ON, check the current consumption ($< 50 \text{ mA}_{AC}$ for 230 V);
- Connect generator G1 with correct signal polarity.


Note: For more information on frequency response measurements, please refer to section 4.6.

STUDER

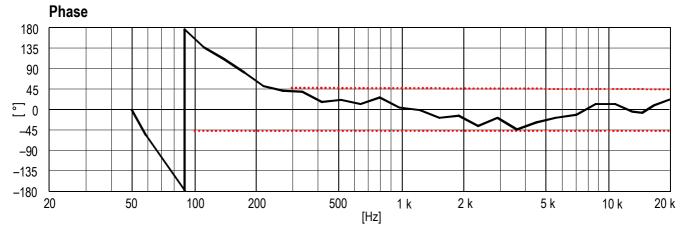
4.3.2.5 A1: SPL and EQ Fine-Adjustment

- Set balanced generator to 245 mVRMS (i.e. -12.2 dBV or -10 dBu);
- Plot frequency response sweep @ 1 m: tolerance according to the graph below;
- EQ fine-adjustment possibilities:
 - 1. Overall tweeter level (4...20 kHz) with trimmer potentiometer RT200
 - 2. Tweeter level @ 12.2 kHz with trimmer potentiometer RT1
 - 3. Tweeter level @ 20 kHz with trimmer potentiometer RT2.


Note: Basic setting of RT1 and RT2: refer to section 4.3.1.5.

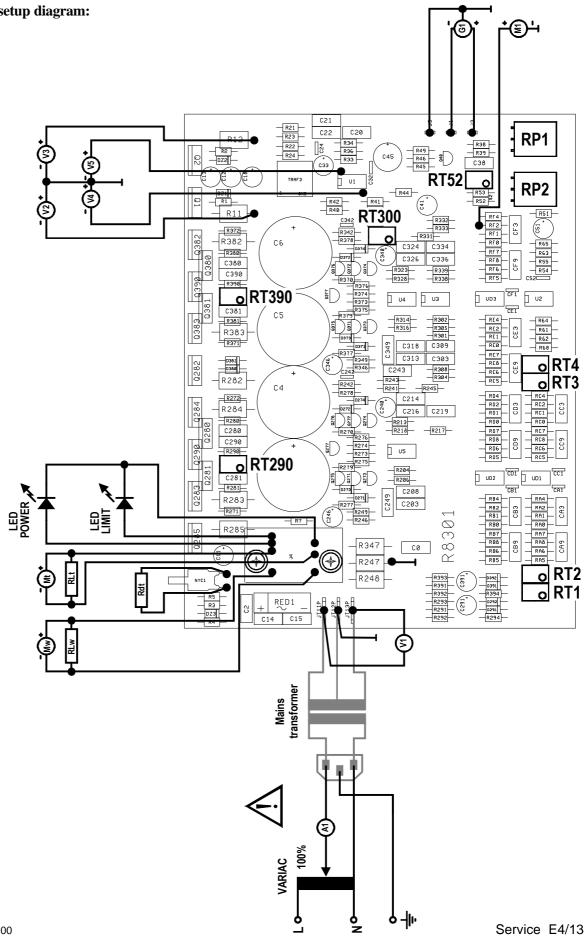
•

- Set balanced generator to 245 mVRMS (i.e. -12.2 dBV or -10 dBu);
 - Plot a 20 Hz...20 kHz THD sweep @ 1 m: <1% (75 Hz...15 kHz).


4.3.2.7 A1: Polarity Check

• Place the measurement microphone at a distance of 10 cm from the baffle and exactly in the center of the woofer.

Steps			Generator		Meas	urement		
No. Description		ld	Value	Test pos. Type Value		Limits		
1	System polarity	G1	–14 dBV (245 mV _{RMS})/120 Hz/sine wave	P1*	Phase	0°	±20°	
	*Note: Without compensation, the microphone Brüel & Kjær BK4133+2639 is inverting							


4.3.2.8 A1: Overall Phase Check

- Place the measurement microphone again on-axis, according to 4.3.2.4, distance 0.806 m;
- Set the phasemeter propagation delay time to 2.91 ms (corresponding to a distance of 1 m);
- Set balanced generator to 245 mVRMS (i.e. -12.2 dBV or -10 dBu);
- Plot a phase sweep 20 Hz...20 kHz according to the graph below;
- If the result is above the tolerance, increase the microphone distance, or if the result is below the tolerance, decrease the microphone distance, and repeat the phase sweep.

4.4 **A3 Service**

Measurement setup diagram:

4.4.1 A3: Settings on the PCB

4.4.1.1 A3: Required Test Tools

- **T1** Variable mains transformer (variac)
- A1 True-RMS AC ammeter
 - V1 True-RMS AC voltmeter
- V2...V5 Digital DC voltmeter
- G1 Sine-wave generator with balanced output (min. 20 Hz...20 kHz, < 0.02% THD)
- M1, Mw, Mt Voltmeter, THD meter, phase meter
 - **RLw, RLt** Dummy load resistors, 10Ω , approx. 10 W
 - **Rdt** Fixed resistor, 22 k Ω , for overheat protection check
 - **Note:** G1, M1, Mw, Mt can be replaced by a universal audio test system (Audio-Precision System One or equivalent)

4.4.1.2 A3: Initial Settings

Note: Replacement backpanel assemblies or amplifier units come factory-preadjusted. Adjustment of the quiescent current is therefore not necessary after replacement, checking is recommended nevertheless.

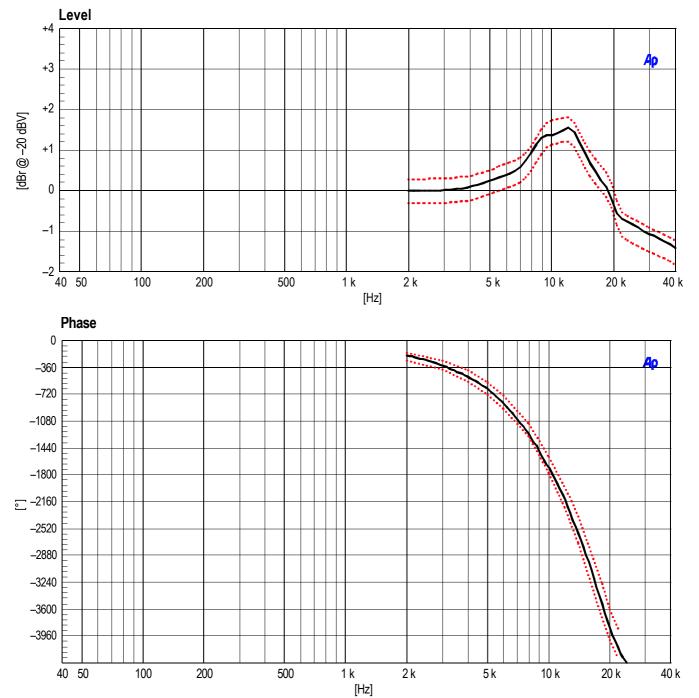
- Unplug the speaker cables from the PCB, *do not* connect any load to the amplifier outputs. *Make sure that none of the cable ends contacts the PCB;*
- Set the level potentiometer to CAL position (fully counterclockwise);
- Set the roll-off potentiometer to CAL position (fully counterclockwise);
- Set trimmer potentiometers RT290 and RT390 (quiescent current) to min. position (fully counterclockwise);
- Variac set to min. (0 V_{AC});
- Power switch to ON position.

4.4.1.3 A3: Powering Up

- Visually check the PCB and the solder joints and repair, if necessary;
- Check the mains voltage
- Check or insert the primary fuse
 Connect the generator according to the generator ac
 - Connect the generator according to the diagram;
- Slowly increase the variac output while checking the primary current
- The green Power LED illuminates;
- Increase the variac output until V1 is 64 V_{AC} .

4.4.1.4 A3: Supply Voltages

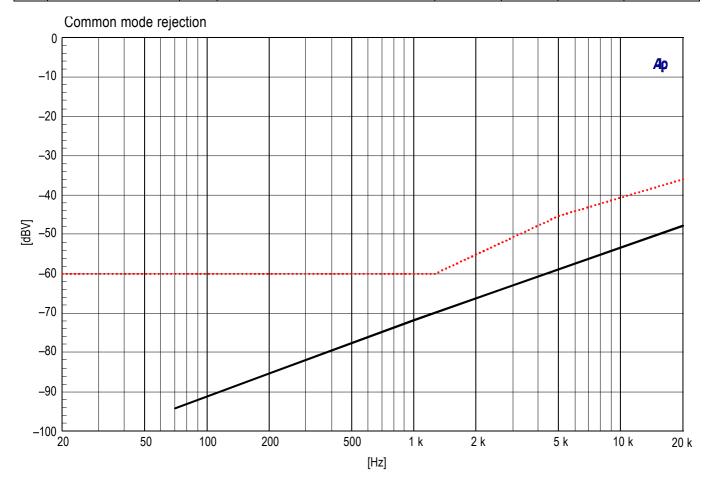
	Steps	Generator		Measurement			
No.	Description	ld	Value	Test pos.	Туре	Value	Limits
1	Supply check	G1	0 V	V2	VDC	-44 V _{DC}	±3 V
2	Supply check	G1	0 V	V3	VDC	+44 V _{DC}	±3 V
3	IC supply check	G1	0 V	V4	V _{DC}	-17.4 V _{DC}	±0.6 V
4	IC supply check	G1	0 V	V5	VDC	+17.4 V _{DC}	±0.6 V


oints and repair, if	necessary;
230 V _{AC}	115 V _{AC}
T 0.8 A L 250 V	T 1.6 A L 250 V
< 50 mA _{AC}	< 100 mA _{AC}

STUDER

4.4.1.5 A3: Input Gain Check and EQ Preadjustments

These preadjustments must be performed only if RT1 through RT4 are completely out of range; these settings will be fine-adjusted on the assembled unit, also refer to section 4.4.2.5.


	Steps	Generator		Measurement			
No.	Description	ld	Value	Test pos.	Туре	Value	Limits
1	RT52 input gain adjust	G1	-29.6 dBV/60 Hz/sine wave	M1	Level	–20.0 dBV	±0.5 dB
2	Roll-off check	G1	-29.6 dBV/60 Hz/sine wave	M1	Level	–29.0 dBV	±0.5 dB
3	RT1 adjust	G1	-29.6 dBV/6.0 kHz/sine wave	M1	Level	–19.6 dBV	±0.5 dB
4	RT2 adjust	G1	-29.6 dBV/9.0 kHz/sine wave	M1	Level	–18.7 dBV	±0.5 dB
5	RT3 adjust	G1	-29.6 dBV/12.5 kHz/sine wave	M1	Level	–18.5 dBV	±0.5 dB
6	RT4 adjust	G1	-29.6 dBV/20.0 kHz/sine wave	M1	Level	–20.3 dBV	±0.5 dB
7	7 Repeat steps 3 through 6 until all values are within the given limits						

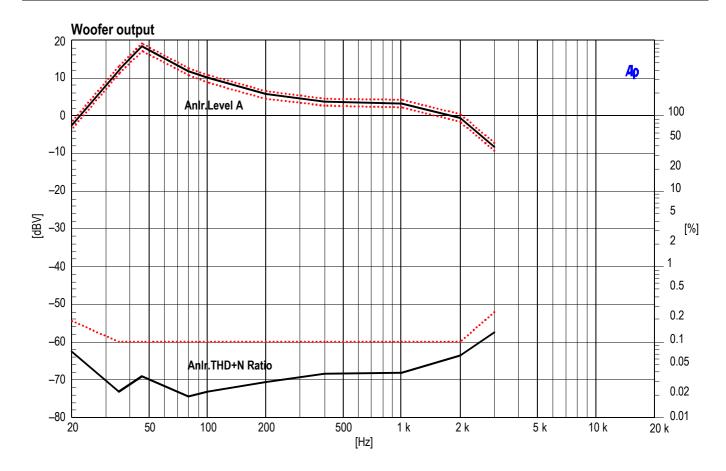
4.4.1.6 A3: Input Common Mode Rejection Ratio (CMRR)

• Connect the generator in common mode to the input – i.e. "hot" generator output to both input terminals no. 2 (+) *and* 3 (–), "cold" generator output to input terminal no. 1 (GND).

Steps			Generator		Measurement			
No.	Description	ld	Value	Test pos.	Туре	Value	Limits	
1	CMRR 50 Hz	G1	0 dBV/50 Hz/sine wave	M1	Level	<60 dBV		
2	CMRR 1 kHz	G1	0 dBV/1 kHz/sine wave	M1	Level	< -60 dBV		
3	CMRR 10 kHz	G1	0 dBV/10 kHz/sine wave	M1	Level	< -40 dBV		

4.4.1.7 A3: Quiescent Current Setting

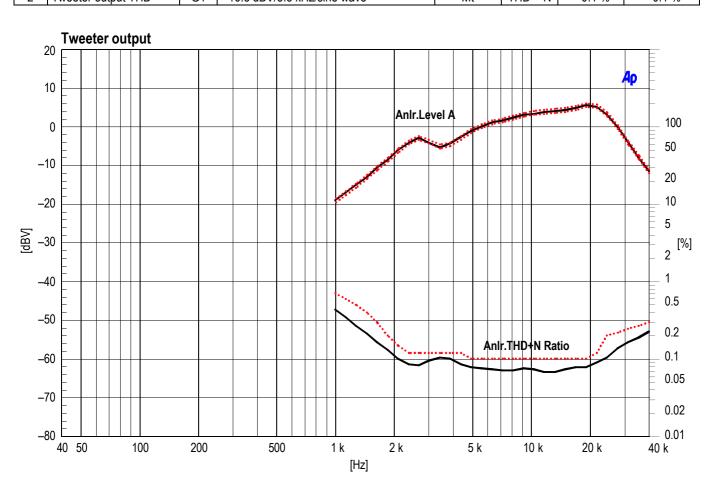
Procedure:


- 1. Measure the primary current: $A1_1 = 40...50 \text{ mA}_{AC}$ (for 230 V), or 80...100 mA_{AC} (for 115 V), and note the measured value;
- 2. Adjust RT390 (turn carefully clockwise) for a reading of: $A1_2 = A1_1 + 3 \text{ mA}_{AC}$ (for 230 V), or $A1_2 = A1_1 + 6 \text{ mA}_{AC}$ (for 115 V), and note the measured value;
- 3. Adjust RT290 (turn carefully clockwise) for a reading of: $A1_3 = A1_2 + 6 \text{ mA}_{AC}$ (for 230 V), or $A1_3 = A1_2 + 12 \text{ mA}_{AC}$ (for 115 V), and note the measured value;
- 4. Connect both dummy load resistors (10 $\Omega/10$ W each) and check the primary current again:

 $A1_4 = A1_3 \pm 0.5 \text{ mA}_{AC}$ (for 230 V), or $A1_4 = A1_3 \pm 1 \text{ mA}_{AC}$ (for 115 V).

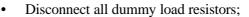
4.4.1.8 A3: Woofer Amplifier Output

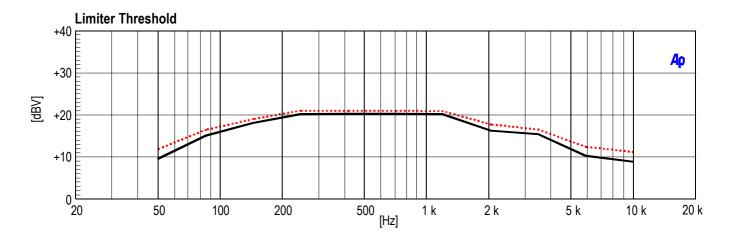
	Steps		Generator		Meas	urement	
No.	Description	ld	Value	Test pos.	Туре	Value	Limits
1	Woofer output level	G1	-13.6 dBV/500 Hz/sine wave	Mw	Level	+3.5 dBV	±0.25 dB
2	Woofer output THD	G1	-13.6 dBV/500 Hz/sine wave	Mw	THD + N	< 0.1 %	< 0.1 %



4.4.1.9 A3: Tweeter Amplifier Output

٠


	Steps		Generator		Meas	urement	
No.	Description	ld	Value	Test pos.	Туре	Value	Limits
1	Tweeter output level	G1	-16.8 dBV/5.5 kHz/sine wave	Mt	Level	0 dBV	±0.25 dB
2	Tweeter output THD	G1	–16.8 dBV/5.5 kHz/sine wave	Mt	THD + N	< 0.1 %	< 0.1 %



Connect only the RLt dummy load (10 Ω)

4.4.1.10 A3: Limiter Threshold

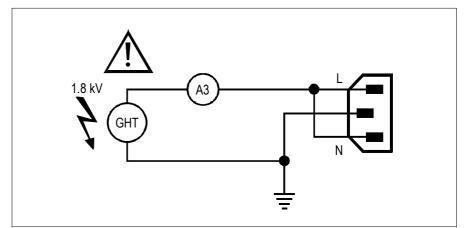
	Steps		Generator		Meas	surement		
No.	Description	ld	Value	Test pos.	Туре	Value	Limits	
1	HF limiter	G1	+15 dBV/10 kHz/sine wave	M1 *	Level	+15 dBV	±2 dBV	
2	LF limiter	G1	+15 dBV/100 Hz/sine wave	M1 *	Level	+9.2 dBV	±2 dBV	
	* Red Alarm LED must be on, and the Mw and Mt output levels must be reduced.							

4.4.1.11 A3: Overheat Protection Check

- Connect Rdt (22 k Ω) according to the diagram in section 4.4;
- The red Alarm LED must come on;
- The Mw and Mt signals must be muted.

4.4.2 A3: Checks on the Assembled Unit

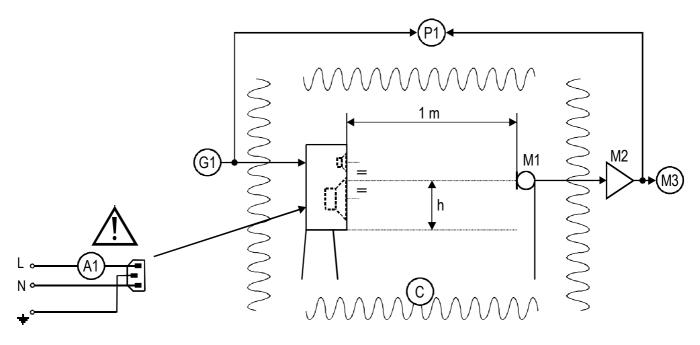
4.4.2.1 A3: Required Test Tools


- C Anechoic room;
- A1 True-RMS AC ammeter;
- GHT High-voltage generator 1.8 kV, 50 Hz, max. 10 mA;
 - G1 Sweep sine-wave generator with balanced output (AudioPrecision System One or equivalent);
- M1 Measurement microphone Brüel & Kjær BK4133 + preamp BK2639 or equivalent;
- M2 Measurement amplifier Brüel & Kjær BK2610 or equivalent
- M3 Level/THD/phase analyzer (AudioPrecision System One or equivalent);
- **P1** Phase meter with adjustable propagation delay compensation on reference input.

4.4.2.2 A3: Initial Settings

- Set the level potentiometer to CAL position (fully counterclockwise);
- Set the roll-off potentiometer to CAL position (fully counterclockwise);
- Set power switch to ON.

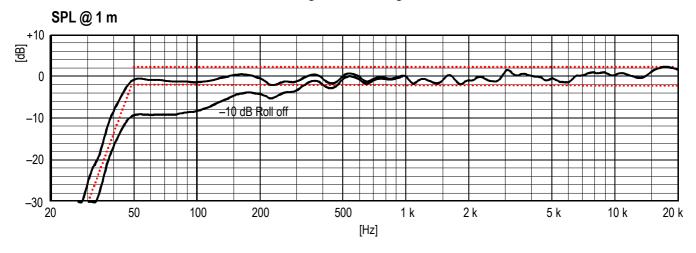
4.4.2.3 A3: Insulation Check


• Connect the HV generator to the mains input connector according to the diagram below:

- Apply 1.8 kV for 5 seconds;
- The leakage current must not exceed 5 mA.

4.4.2.4 A3: Measurement Setup in the Anechoic Room

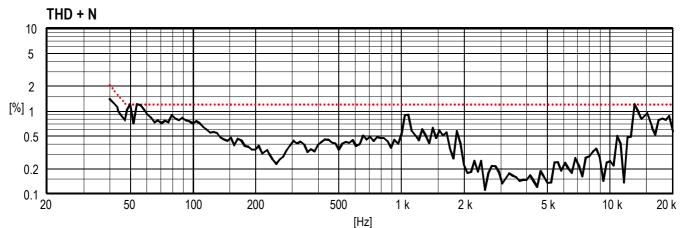
- Setup the loudspeaker;
- Setup the measurement microphone:
 - Distance to the baffle 1 m,
 - Equidistant from the two vertical edges,
 - Equidistant from the centers of woofer and tweeter units (i.e., h = 23 cm), and
 - Perpendicular to the baffle;
- Connect your unit to the mains, set power switch to ON, check the current consumption ($< 60 \text{ mA}_{AC}$ for 230 V);
- Connect generator G1 with correct signal polarity.



Note: For more information on frequency response measurements, please refer to section 4.6.

4.4.2.5 A3: SPL and EQ Fine-Adjustment

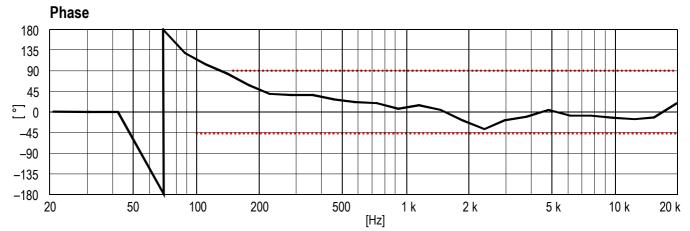
- Set balanced generator to 255 mVRMS (i.e. -11.8 dBV or -9.7 dBu);
- Plot frequency response sweep @ 1 m: tolerance according to the graph below;
- EQ fine-adjustment possibilities:
 - 1. Overall tweeter level (2.2...20 kHz) with trimmer potentiometer RT300
 - 2. Tweeter level @ 6.0 kHz with trimmer potentiometer RT1
 - 3. Tweeter level @ 9.0 kHz with trimmer potentiometer RT2
 - 4. Tweeter level @ 12.5 kHz with trimmer potentiometer RT3
 - 5. Tweeter level @ 20.0 kHz with trimmer potentiometer RT4.


Note: Basic setting of RT1 through RT4: refer to section 4.4.1.5.

4.4.2.6 A3: Distortion Check

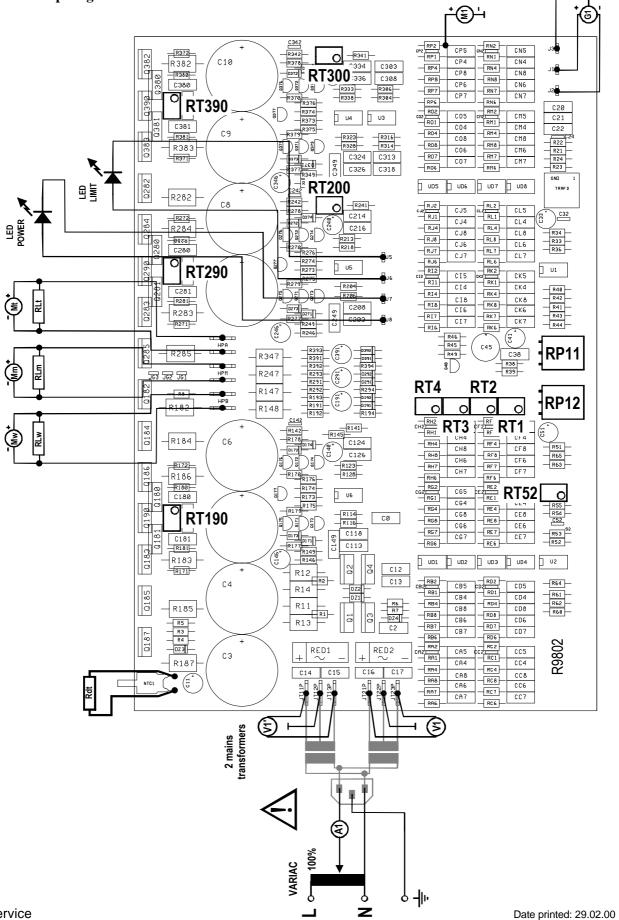
• Set balanced generator to 255 mVRMS (i.e. -11.8 dBV or -9.7 dBu);

• Plot a 20 Hz...20 kHz THD sweep @ 1 m: < 1.2% (48 Hz...20 kHz).


4.4.2.7 A3: Polarity Check

• Place the measurement microphone at a distance of 10 cm from the baffle and exactly in the center of the woofer.

Steps		Generator		Measurement			
No.	Description	ld	Value	Test pos. Type Value			Limits
1	System polarity	–14 dBV (255 mV _{RMS})/120 Hz/sine wave	P1*	Phase	0°	±20°	
	*Note: Without compensation, the microphone Brüel & Kjær BK4133+2639 is inverting						


4.4.2.8 A3: Overall Phase Check

- Place the measurement microphone again on-axis, according to 4.4.2.4, distance 0.806 m;
- Set the phasemeter propagation delay time to 2.91 ms (corresponding to a distance of 1 m);
- Set balanced generator to 255 mVRMS (i.e. -11.8 dBV or -9.7 dBu);
- Plot a phase sweep 20 Hz...20 kHz according to the graph below;
- If the result is above the tolerance, increase the microphone distance, or if the result is below the tolerance, decrease the microphone distance, and repeat the phase sweep.

4.5 A5 Service

Measurement setup diagram:

STUDER

4.5.1 A5: Settings on the PCB

4.5.1.1 A5: Required Test Tools

T1	Variable mains transformer (variac)
A1	True-RMS AC ammeter
V1, V1'	True-RMS AC voltmeter
V2V5	Digital DC voltmeter
G1	Sine-wave generator with balanced output (min. 20 Hz20 kHz, < 0.02%
	THD)
M1, Mw, Mt	Voltmeter, THD meter, phase meter
RLw, RLm, RLt	Dummy load resistors, 10Ω , approx. $10 W$
Rdt	Fixed resistor, 22 k Ω , for overheat protection check
Note:	G1, M1, Mw, Mt can be replaced by a universal audio test system (Audio-
	Precision System One or equivalent)

4.5.1.2 A5: Initial Settings

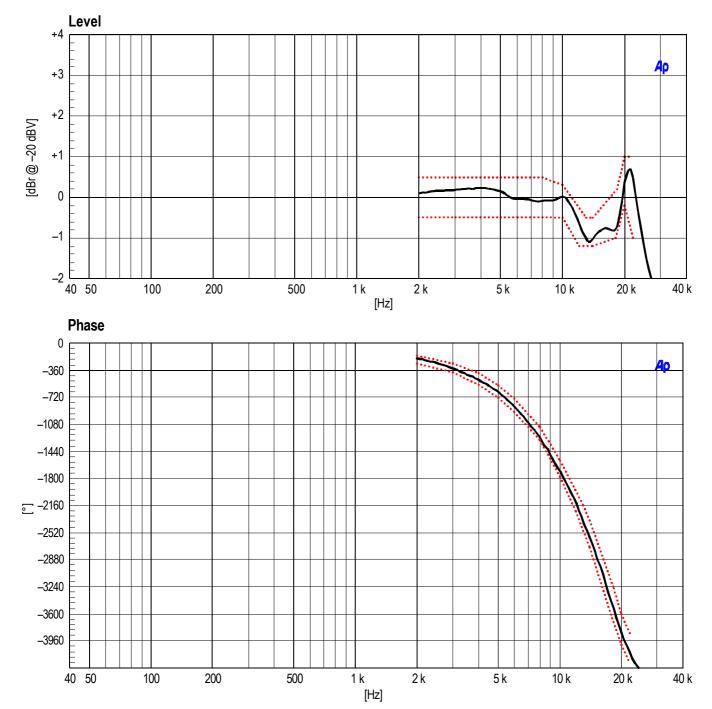
- **Note:** Replacement backpanel assemblies or amplifier units come factory-preadjusted. Adjustment of the quiescent current is therefore not necessary after replacement, checking is recommended nevertheless.
 - Unplug the speaker cables from the PCB, *do not* connect any load to the amplifier outputs. *Make sure that none of the cable ends contacts the PCB;*
 - Set the level potentiometer to CAL position (fully counterclockwise);
 - Set the roll-off potentiometer to CAL position (fully counterclockwise);
 - Set trimmer potentiometers RT190, RT290, and RT390 (quiescent current) to min. position (fully counterclockwise);
 - Variac set to min. $(0 V_{AC})$;
 - Power switch to ON position.

4.5.1.3 A5: Powering Up

- Visually check the PCB and the solder joints and repair, if necessary;
- Check the mains voltage
- Check or insert the primary fuse
- Connect the generator according to the diagram;
- Slowly increase the variac output while checking the primary current

j <u>oints and repair, if</u>	necessary;
230 VAC	115 V _{AC}
T 1.6 A L 250 V	T 3.15 A L 250 V
< 80 mA _{AC}	< 160 mA _{AC}

- The green Power LED illuminates;
- Increase the variac output until V1 and V1' are $64 V_{AC}$.

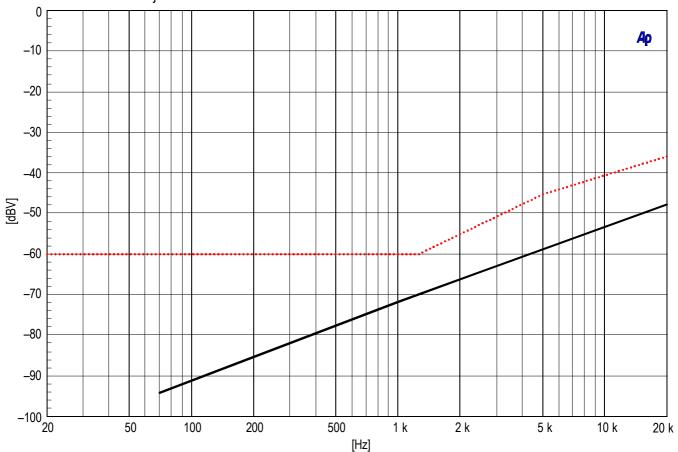

4.5.1.4 A5: Supply Voltages

Steps			Generator		Measurement			
No.	Description	ld	Value	Test pos.	Туре	Value	Limits	
1	Supply check	G1	0 V	V2	V _{DC}	-44 V _{DC}	±3 V	
2	Supply check	G1	0 V	V3	VDC	+44 V _{DC}	±3 V	
3	IC supply check	G1	0 V	V4	VDC	-17.4 V _{DC}	±0.6 V	
4	IC supply check	G1	0 V	V5	V_{DC}	+17.4 V _{DC}	±0.6 V	

4.5.1.5 A5: Input Gain Check and EQ Preadjustments

These preadjustments must be performed only if RT1 through RT4 are completely out of range; these settings will be fine-adjusted on the assembled unit, also refer to section 4.5.2.5.

Steps			Generator	Measurement			
No.	Description	ld	Value	Test pos.	Туре	Value	Limits
1	RT52 input gain adjust	G1	-26.6 dBV/60 Hz/sine wave	M1	Level	–20.0 dBV	±0.5 dB
2	Roll-off check	G1	-26.6 dBV/60 Hz/sine wave	M1	Level	–29.0 dBV	±0.5 dB
3	RT1 adjust	G1	-26.6 dBV/6.8 kHz/sine wave	M1	Level	–19.6 dBV	±0.5 dB
4	RT2 adjust	G1	-26.6 dBV/8.7 kHz/sine wave	M1	Level	–20.0 dBV	±0.5 dB
5	RT3 adjust	G1	-26.6 dBV/14.7 kHz/sine wave	M1	Level	–21.0 dBV	±0.5 dB
6	RT4 adjust	G1	-26.6 dBV/22.0 kHz/sine wave	M1	Level	–19.8 dBV	±0.5 dB
7	Repeat steps 3 through 6 until all values are within the given limits						



STUDER

4.5.1.6 A5: Input Common Mode Rejection Ratio (CMRR)

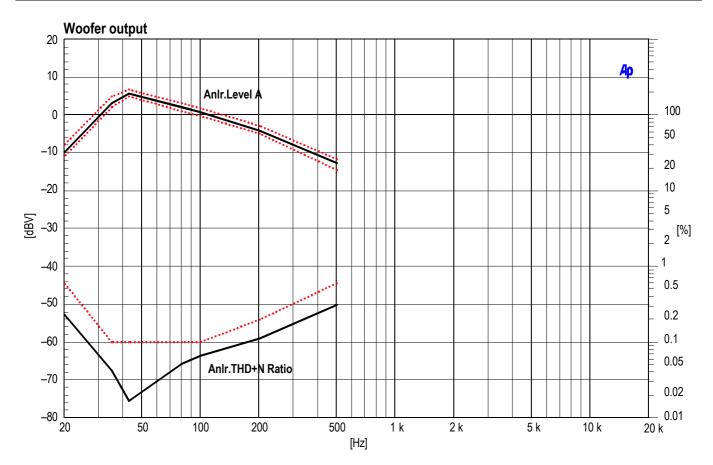
• Connect the generator in common mode to the input – i.e. "hot" generator output to both input terminals no. 2 (+) *and* 3 (–), "cold" generator output to input terminal no. 1 (GND).

Steps			Generator		Measurement			
No.	Description	ld	Value	Test pos.	Туре	Value	Limits	
1	CMRR 50 Hz	G1	0 dBV/50 Hz/sine wave	M1	Level	<60 dBV		
2	CMRR 1 kHz	G1	0 dBV/1 kHz/sine wave	M1	Level	< -60 dBV		
3	CMRR 10 kHz	G1	0 dBV/10 kHz/sine wave	M1	Level	< -40 dBV		

Common mode rejection

4.5.1.7 A5: Quiescent Current Setting

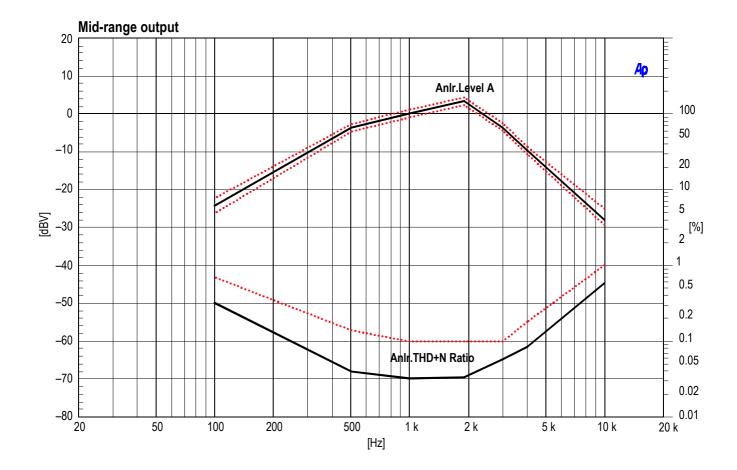
Procedure:


- 1. Measure the primary current: $A1_1 = 70...80 \text{ mA}_{AC}$ (for 230 V), or 140...160 mA_{AC} (for 115 V), and note the measured value;
- 2. Adjust RT390 (turn carefully clockwise) for a reading of: $A1_2 = A1_1 + 4 \text{ mA}_{AC}$ (for 230 V), or $A1_2 = A1_1 + 8 \text{ mA}_{AC}$ (for 115 V), and note the measured value;
- 3. Adjust RT290 (turn carefully clockwise) for a reading of: $A1_3 = A1_2 + 8 \text{ mA}_{AC}$ (for 230 V), or $A1_3 = A1_2 + 16 \text{ mA}_{AC}$ (for 115 V), and note the measured value;
- 4. Adjust RT190 (turn carefully clockwise) for a reading of: $A1_4 = A1_3 + 12 \text{ mA}_{AC}$ (for 230 V), or $A1_4 = A1_3 + 24 \text{ mA}_{AC}$ (for 115 V), and note the measured value;
- 5. Connect all 3 dummy load resistors (10 Ω /10 W each) and check the primary current again:

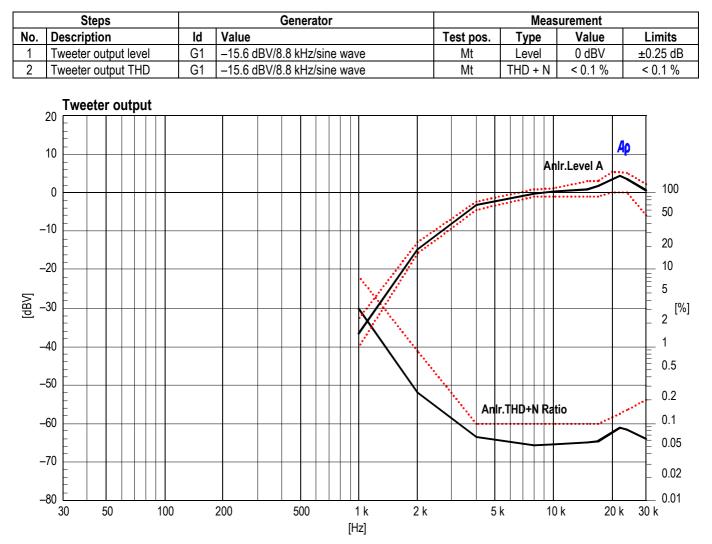
 $A1_5 = A1_4 \pm 0.5 \text{ mA}_{AC}$ (for 230 V), or $A1_5 = A1_4 \pm 1 \text{ mA}_{AC}$ (for 115 V)

4.5.1.8 A5: Woofer Amplifier Output

• Connect only the RLw dummy load (10Ω)

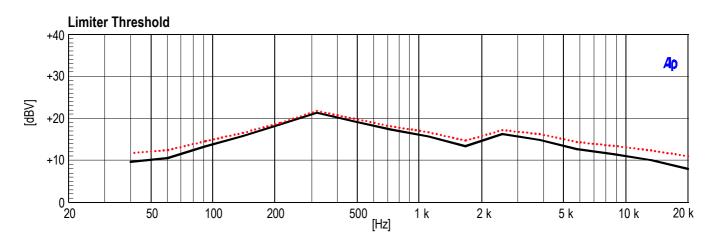

	Steps		Generator	Measurement			
No.	Description	ld	Value	Test pos.	Туре	Value	Limits
1	Woofer output level	G1	-20.6 dBV/100 Hz/sine wave	Mw	Level	+3.5 dBV	±0.25 dB
2	Woofer output THD	G1	-20.6 dBV/100 Hz/sine wave	Mw	THD + N	< 0.1 %	< 0.1 %

4.5.1.9 A5: Mid-range Amplifier Output


	Steps		Generator		urement	nt	
No.	Description	ld	Value	Test pos.	Туре	Value	Limits
1	Mid-range output level	G1	-17 dBV/1 kHz/sine wave	Mm	Level	0 dBV	±0.25 dB
2	Mid-range output THD	G1	-17 dBV/1 kHz/sine wave	Mm	THD + N	< 0.1 %	< 0.1 %

4.5.1.10 A5: Tweeter Amplifier Output

٠


Connect only the RLt dummy load (10 Ω)

4.5.1.11 A5: Limiter Threshold

•

	Steps		Generator	Generator Measure			rement	
No.	Description	ld	Value	Test pos.	Туре	Value	Limits	
1	HF limiter	G1	+15 dBV/10 kHz/sine wave	M1 *	Level	+12 dBV	±1 dBV	
2	MF limiter	G1	+15 dBV/1 kHz/sine wave	M1 *	Level	+16 dBV	±1 dBV	
3	LF limiter	G1	+15 dBV/100 Hz/sine wave	M1 *	Level	+14 dBV	±1 dBV	
	* Red Alarm LED must be on, and the Mw, Mm, and Mt output levels must be reduced.							

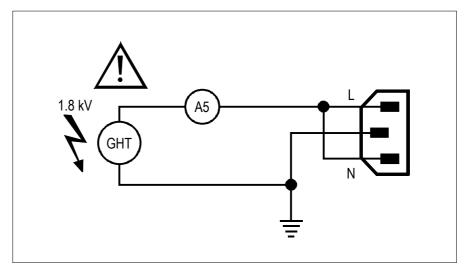
Disconnect all dummy load resistors;

4.5.1.12 A5: Overheat Protection Check

- Connect Rdt (22 k Ω) according to the diagram in section 4.5;
- The red Alarm LED must come on;
- The Mw, Mm, and Mt signals must be muted.

4.5.2 A5: Checks on the Assembled Unit

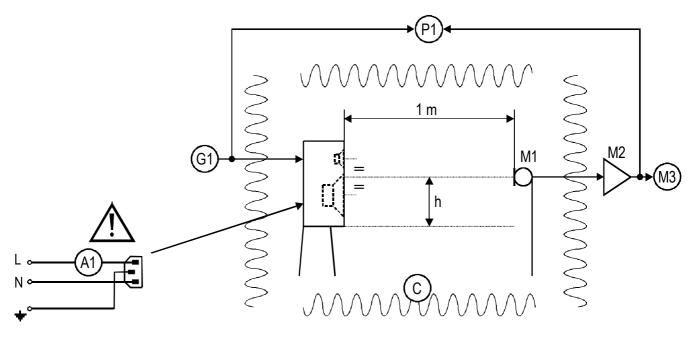
4.5.2.1 A5: Required Test Tools


- C Anechoic room;
- A1 True-RMS AC ammeter;
- GHT High-voltage generator 1.8 kV, 50 Hz, max. 10 mA;
 - G1 Sweep sine-wave generator with balanced output (AudioPrecision System One or equivalent);
- M1 Measurement microphone Brüel & Kjær BK4133 + preamp BK2639 or equivalent;
- M2 Measurement amplifier Brüel & Kjær BK2610 or equivalent
- M3 Level/THD/phase analyzer (AudioPrecision System One or equivalent);
- **P1** Phase meter with adjustable propagation delay compensation on reference input.

4.5.2.2 A5: Initial Settings

- Set the level potentiometer to CAL position (fully counterclockwise);
- Set the roll-off potentiometer to CAL position (fully counterclockwise);
- Set power switch to ON.

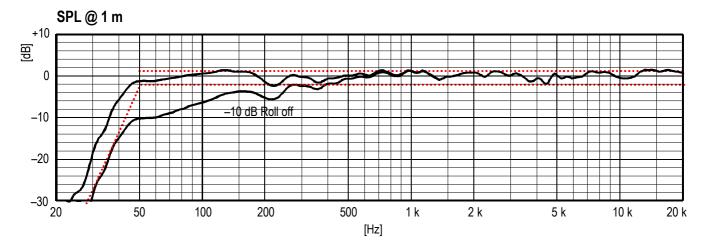
4.5.2.3 A5: Insulation Check


• Connect the HV generator to the mains input connector according to the diagram below:

- Apply 1.8 kV for 5 seconds;
- The leakage current must not exceed 5 mA.

4.5.2.4 A5: Measurement Setup in the Anechoic Room

- Setup the loudspeaker;
- Setup the measurement microphone:
 - Distance to the baffle 1 m,
 - Equidistant from the two vertical edges,
 - Equidistant from the centers of mid-range and tweeter units (i.e., h = 45 cm), and
 - Perpendicular to the baffle;
- Connect your unit to the mains, set power switch to ON, check the current consumption (< 95 mA_{AC} for 230 V);
- Connect generator G1 with correct signal polarity.



Note: For more information on frequency response measurements, please refer to section 4.6.

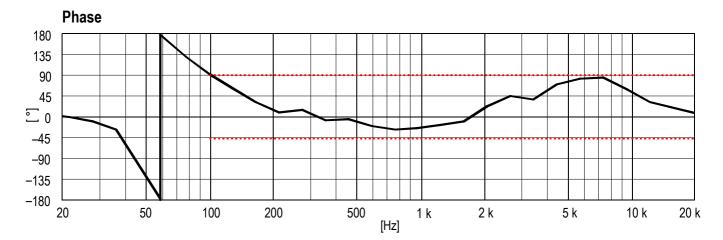
4.5.2.5 A5: SPL and EQ Fine-Adjustment


- Set balanced generator to 250 mVRMS (i.e. -12.0 dBV or -9.8 dBu);
- Plot frequency response sweep @ 1 m: tolerance according to the graph below;
- EQ fine-adjustment possibilities:
 - 1. Overall tweeter level (3...20 kHz) with trimmer potentiometer RT300
 - 2. Overall mid-range level (450 Hz...3 kHz) with trimmer pot RT200
 - 3. Tweeter level @ 6.8 kHz with trimmer potentiometer RT1
 - 4. Tweeter level @ 8.8 kHz with trimmer potentiometer RT2
 - 5. Tweeter level @ 14.7 kHz with trimmer potentiometer RT3
 - 6. Tweeter level @ 22.0 kHz with trimmer potentiometer RT4.

Note: Basic setting of RT1 through RT4: refer to section 4.5.1.5.

4.5.2.6 A5: Distortion Check

- Set balanced generator to 250 mVRMS (i.e. -12.0 dBV or -9.8 dBu);
- Plot a 20 Hz...20 kHz THD sweep @ 1 m: tolerance according to the graph below.


4.5.2.7 A5: Polarity Check

• Place the measurement microphone at a distance of 10 cm from the baffle and exactly in the center of the woofer.

Steps			Generator	Measure		urement	rement		
No. Description		ld	Value	Test pos.	Туре	Value	Limits		
1	System polarity	G1	–14 dBV (250 mV _{RMS})/120 Hz/sine wave	P1*	Phase	0°	±20°		
	*Note: Without compensation, the microphone Brüel & Kjær BK4133+2639 is inverting								

4.5.2.8 A5: Overall Phase Check

- Place the measurement microphone again on-axis, according to 4.5.2.4, distance 0.806 m;
- Set the phasemeter propagation delay time to 2.91 ms (corresponding to a distance of 1 m);
- Set balanced generator to 250 mVRMS (i.e. -12.0 dBV or -9.8 dBu);
- Plot a phase sweep 20 Hz...20 kHz according to the graph below;
- If the result is above the tolerance, increase the microphone distance, or if the result is below the tolerance, decrease the microphone distance, and repeat the phase sweep.

4.6 Appendix: Frequency Response Measurements

(Most parts of the following paragraphs are reprinted with kind permission of *Audio Precision, Inc.*, http://www.audioprecision.com)

4.6.1 General

Frequency response measurement of loudspeakers is a much more complex topic than response measurements on amplifiers or most other electronic audio products. Nearfield effects cause the response measured with close microphone spacing to vary from that with distant microphone placement. Loudspeakers are directional, so the response varies as the microphone is moved off the speaker axis. Unless the loudspeaker is being measured in an expensive anechoic chamber or in essentially free space outdoors, reflections of the sound waves will also arrive at the microphone and create standing wave patterns with cancellations and reinforcements. Multi-way loudspeaker systems, ported loudspeaker systems, and systems with some of the drivers facing the sides or rear of the cabinet all create a problem for measurement microphone placement - just where should the microphone be located so that it receives acoustical output which is a proper combination of the various drivers and ports? Furthermore, the end use of the speaker will not be in an anechoic chamber or laying on its back outdoors with listeners suspended above it – so what is the proper environment in which to measure it?

4.6.2 Standing Waves, Reflections, and Smoothing

Neither an anechoic chamber nor outdoor free-space testing are practical for production testing. In most test locations, acoustical reflections and ambient acoustical noise are facts of life. Particularly at the higher frequencies, the acoustical energy arriving at the microphone is a combination of the direct signal from speaker to microphone plus a large number of reflections from walls, ceiling, floor, human operators, etc. In a typical office or laboratory environment when using high-frequency sinewave signals (10 kHz, for example), movement of a human being several feet away from the microphone can cause several dB change in the measured value. Changes in the order of a few inches in microphone or loudspeaker placement can cause response curve variations of many dB at high frequencies. Even at fixed speaker and microphone locations and with no people moving within a reasonable distance, a response curve may show individual sharp peaks and dips of 10...20 dB due to standing wave effects.

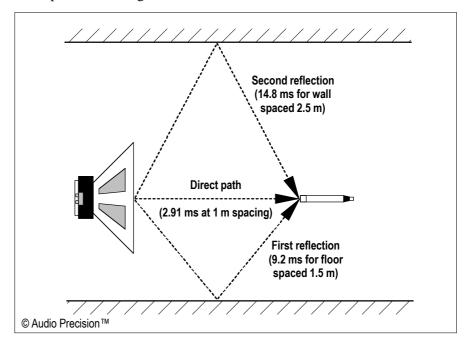
For reasonable results, some degree of acoustical treatment of the measurement location should be done. Commercially-available sound absorption materials should be applied to wall, ceiling, and floor surfaces. It may be effective to design the shape of the test chamber as something other than a rectangle to avoid high-intensity single-bounce reflections from the back wall into the measurement microphone.

Since it is not economically practical to provide a true anechoic chamber for most testing, speaker measurements in a reflective space are almost invariably smoothed by one technique or another to improve measurement repeatability and reduce the visible effect of reflections to a value more consistent with a human's ability to hear them. Even simple analog measurement techniques, where no "smoother" appears as such on a block diagram, do in fact typically smooth due to the sweep rates and measurement response times used. Measurement instruments have some finite time constant or response time; they cannot instantaneously follow a rapidly-changing signal amplitude. If the measurement instrument has frequency selectivity (spectrum analyzer or tracking filter), the response time is even slower due to the energy storage or ringing effect of the tuned filter. When the stimulus signal is swept rapidly, the measurement instrument simply cannot follow the more rapid, extreme variations and the displayed result is smoothed – peaks are reduced and dips are filled in.

4.6.3 MLS Technology for Frequency Response Measurements

Loudspeaker frequency response measurement under free-space conditions without requiring an anechoic room is an important application of Maximum Length Sequence (MLS) test systems (such as *Audio Precision*TM *System One* + *DSP*TM or *System One Dual Domain*TM, both using the MLS.TST program, or *MLSSA*TM, a PC-based audio test system).

Nevertheless, the setup dimensions given in sections 4.3.2.2, 4.4.2.2, and 4.5.2.2 must be strictly followed.


MLS testing permits time-selective measurements in which one signal, such as the direct sound from a loudspeaker, may be separated from another similar signal, such as a room reflection. The time window may be adjusted to allow measurement of any arrival in a complex reverberation pattern. These signals may be examined in the time domain (showing "energy" as a function of time) or in the frequency domain (amplitude and phase vs frequency). Impulse responses may be saved for further analysis.

A Maximum Length Sequence (MLS) is a special digital noise signal. For typical loudspeaker measurement applications, this digital signal is converted to the analog domain in the D/A converter and fed to a power amplifier which drives the loudspeaker under test. A measurement microphone is used to pick up the acoustical signal and return it to the analog input. The MLS system then performs a cross-correlation between the received and transmitted signals to obtain the impulse response which is stored in memory. The impulse response may be displayed on the computer, permitting the user to select the portion of impulse response of interest. This portion may be transformed into the frequency domain to study both magnitude and phase response versus frequency.

These properties are of obvious use when measurement loudspeakers or other electroacoustic devices. The time-selective capability permits separating the device-under-test response from that of the room in which the measurements are made. Alternately, the room itself may be measured, studying the reflection characteristics of each surface in the room or of the room taken as a whole.

4.6.4 Quasi-Anechoic Measurements and Low-Frequency Limitations

Other techniques exist which provide measurement capability similar to maximum length sequence analysis. These include Time Delay Spectrometry (TDS) and impulse testing. They all provide quasi-anechoic frequency response measurements of the loudspeaker alone, unaffected by room reflections. All share the limitation that this anechoic response is useful only above a critical frequency determined by the physical dimensions of the test environment. In the illustration below, for example, the direct signal arrives 2.91 ms after it leaves the loudspeaker and the first reflection arrives 9.2 ms after leaving the speaker. An anechoic measurement, by any of these techniques, must ignore reflections and therefore can only look at about 6.3 ms of pure first-arrival signal before the first reflection. Meaningful amplitude measurements cannot be made without acquiring at least one full cycle of signal, and accurate measurements require several cycles. For the 6.3 ms example, the frequency corresponding to this time span is about 160 Hz. If useful frequency response is desired down to 35 Hz, for example, then the portion of signal to be converted must be a minimum of 1/35 s (28 ms) and ideally closer to 1/10 s (100 ms). In the example as well as in most realistic actual rooms, this longer time necessarily includes several reflections and the response is no longer anechoic.

True anechoic response with even moderate accuracy down to 35 Hz would require that the first reflection path to be at least 28 ms longer than the direct signal path. This requires a room with the nearest reflecting surface at least 5 m away. This calls for a room with a 10 m high ceiling with the speaker and microphone on 5 m tall stands!

4.6.5 MLS Advantages

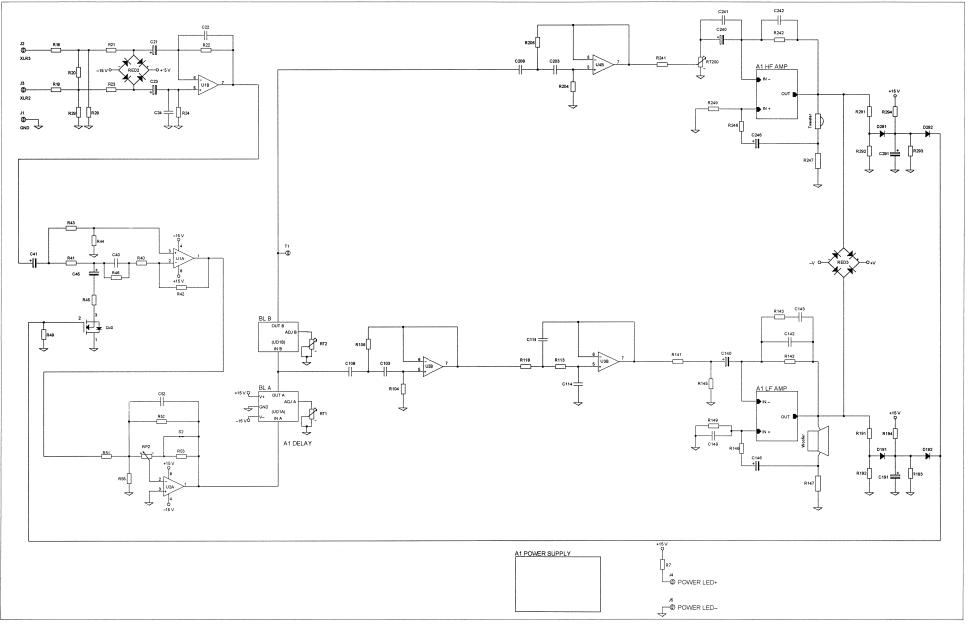
The maximum-length-sequence (MLS) test signal is a pseudo-random noise with special properties which allow analysis of response without the variability commonly associated with noise-based measurements. The analysis technique provides a high degree of immunity from interfering noise, allowing accurate measurements when the interference actually exceeds the test signal level. The MLS signal more closely resembles program material than does a sinewave and will therefore measure under conditions approximating normal use.

The MLS technique has several significant advantages over either basic impulse testing or the TDS technique. The principal advantage of MLS over impulse testing is in signal-to-noise ratio improvement. Compared to the TDS technique, MLS testing has a number of advantages. To obtain lowfrequency response data, TDS must sweep very slowly. MLS has the same testing time whether evaluating only the anechoic portion (first arrival) or a longer portion of the signal for accurate bass response. With MLS, one acquisition and correlation produces an impulse response which may then be evaluated over and over to look at anechoic response, response of any selected reflection, integrated room response, etc. The TDS technique requires that the generator-to-bandpass filter frequency offset (delay time) be reset to equal the acoustical propagation delay for each acoustical path to be measured. Sweep speed is critical for the TDS technique, and an operator may easily select a speed which produces erroneous data without knowing he is making an error. Ambient acoustic noise tends to be greatest at low frequencies due to heating and air conditioning systems, traffic noise, etc. To improve signal-to-noise ratios under these typical conditions, MLS testing is normally used with pink spectral shaping (high-frequency attenuation) of the generated pseudo-random noise. A complementary filter in the analysis process produces overall flat response.

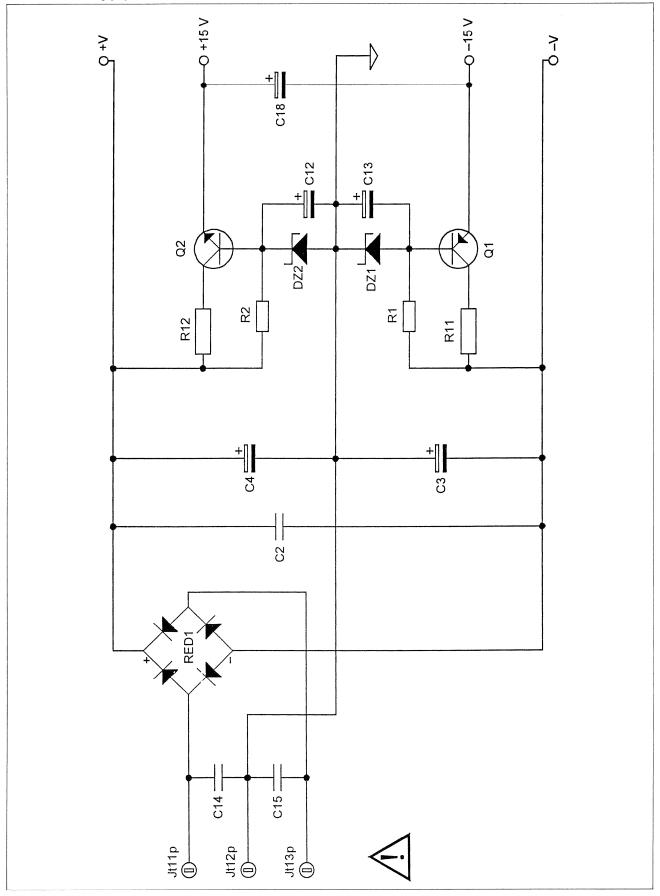
To accomplish the equivalent function in the TDS technique would require logarithmic sweeps and a variable-bandwidth filter, which is more complex and not done in available TDS instruments. Additionally, pink noise is similar in spectral distribution to voice and music, so the heating effect on individual loudspeakers of a multi-way loudspeaker system with pink MLS noise is similar to that which occurs during normal operation. The TDS technique (or any swept-sine method) concentrates all the input energy into a single loudspeaker driver at any single moment during the sweep, which can change driver characteristics during the test.

CONTENTS DIAGRAM SECTION

A1

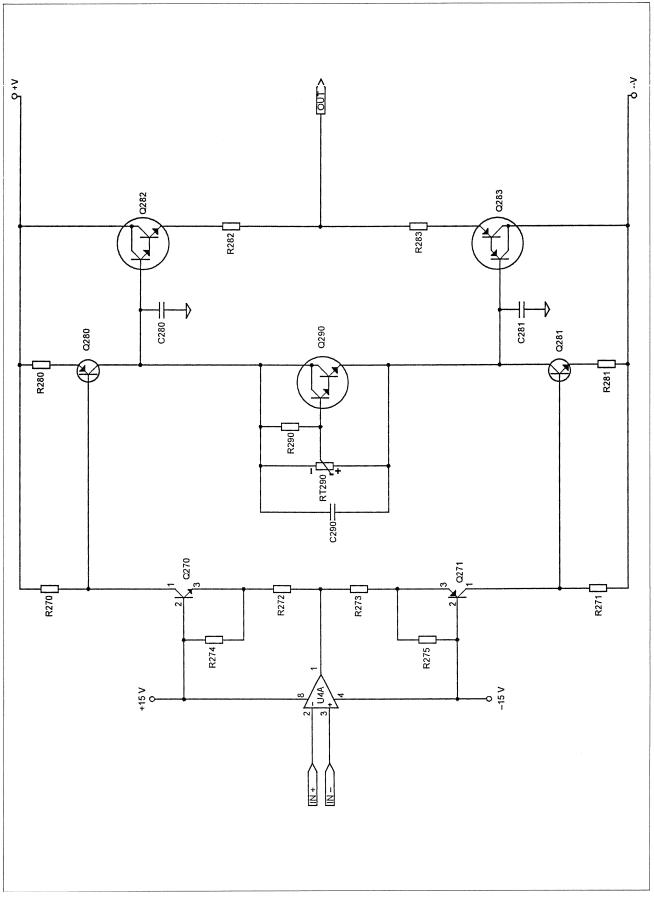

Overall Diagram Power Supply Delay HF Amp LF Amp Layout Parts List

A3


Overall Diagram Power Supply Delay HF Amp LF Amp Multipin Connector Layout Parts List A5

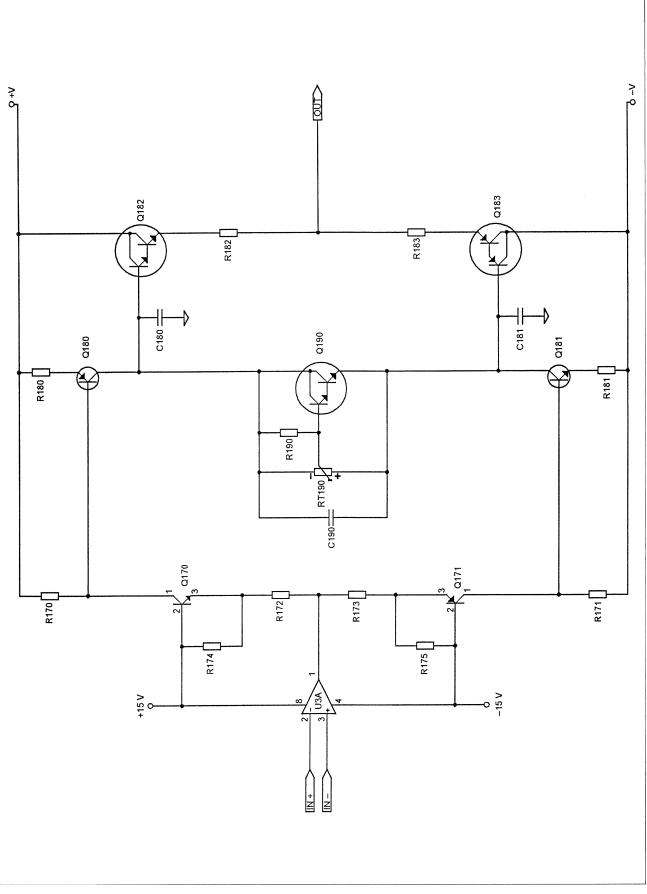
Overall Diagram Power Supply Delay HF Amp MF Amp LF Amp Layout Parts List A Series Active Monitor Speakers

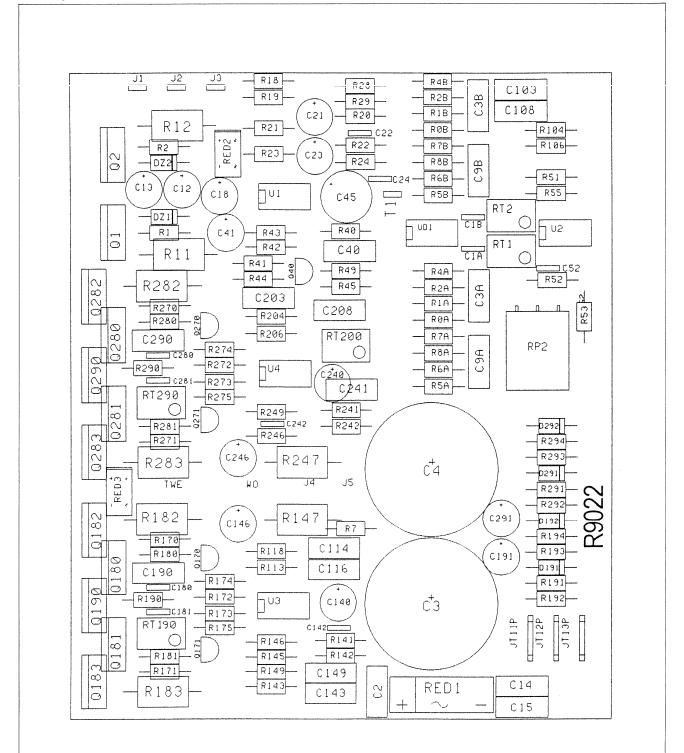
AI Power Supply


STUDER

AI Delay

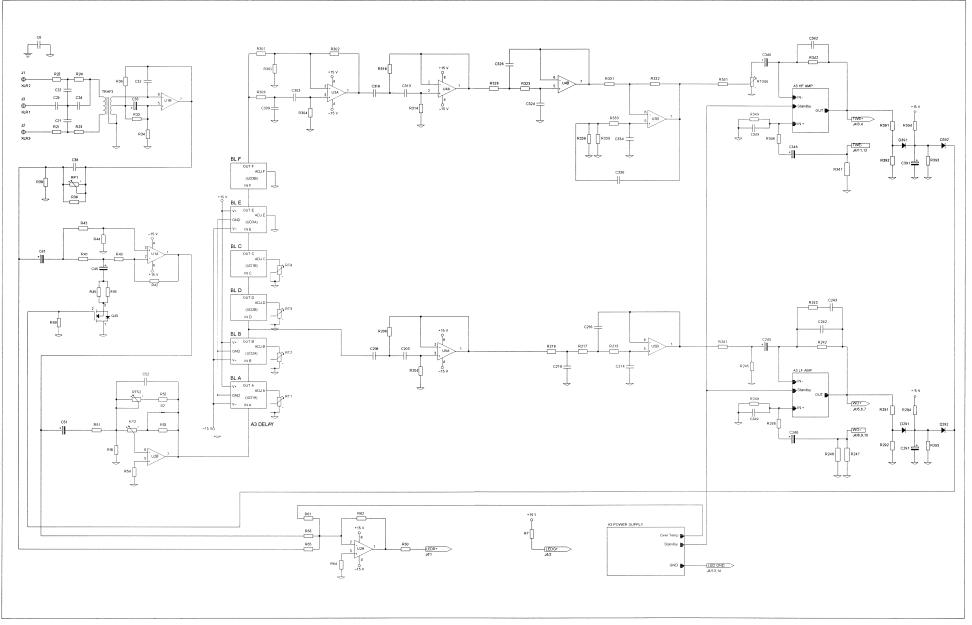
STUDER


AI HF AMP

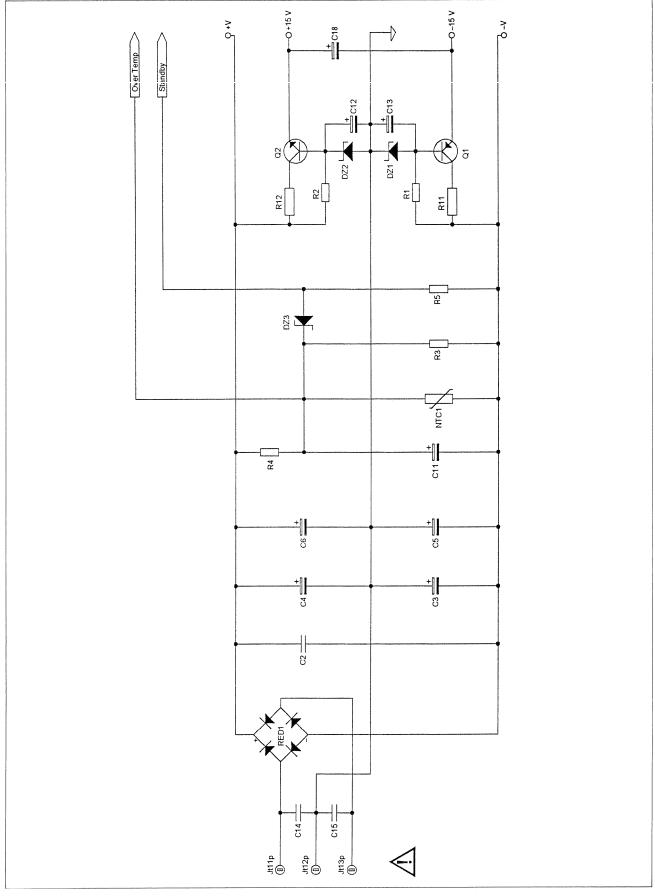

A Series Active Monitor Speakers

STUDER

AI Layout

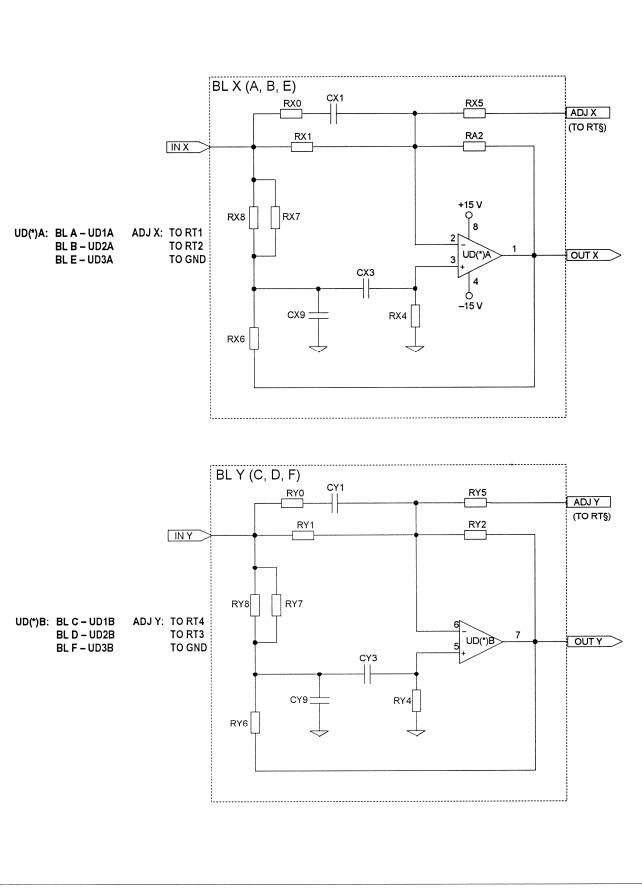


٦

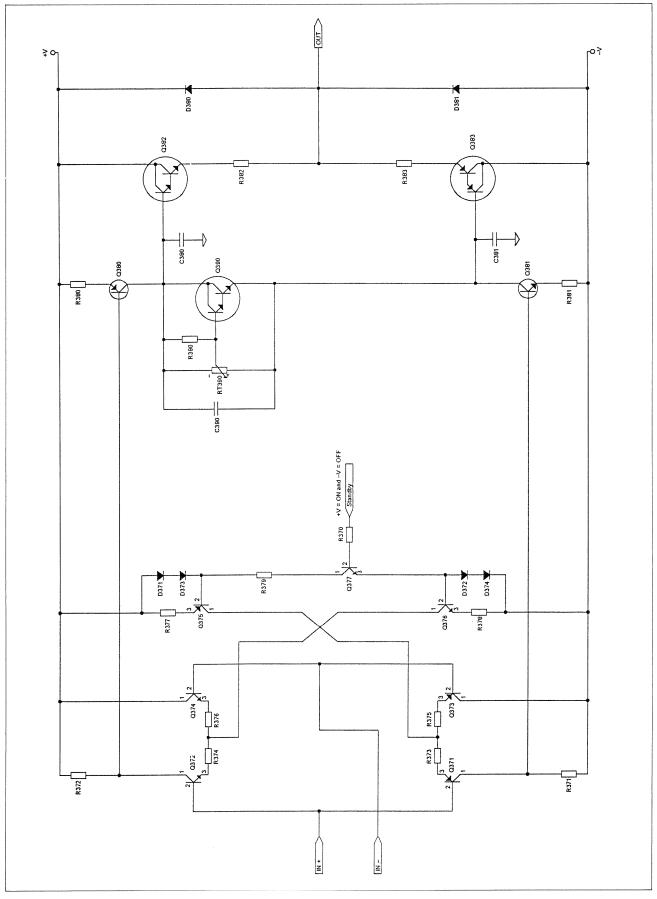

Al Parts List

Ref.	Value	Ref.	Value	Ref.	Value
C2	Polyester, 7.5 mm, 100 nF / 100V	Q1	BD242C (PNP)	R182	1Ω/2W
C3	Electrolytic, radial, 3300 µF / 50 V	Q2	BD2420 (INN) BD241C (NPN)	R183	1Ω/2W
C4	Electrolytic, radial, 3300 µF / 50 V	Q40	BS170 (FET)	R190	10k / 0.5 W
C12	Electrolytic, radial, 22 µF / 63 V	Q170	BC546B (NPN)	R191	33k / 0.5 W
C13	Electrolytic, radial, 22 µF / 63 V	Q171	BC556B (PNP)	R192	8k2 / 0.5 W
C14	Polyester, 7.5 mm, 100 nF / 100 V	Q180	BD242C (PNP)	R193	22k / 0.5 W
C15	Polyester, 7.5 mm, 100 nF / 100 V	Q181	BD241C (NPN)	R194	220k / 0.5 W
C18	Electrolytic, radial, 22 µF / 63 V	Q182	TIP122 (NPN)	R204	3k9 / 0.5 W
C21	Electrolytic, radial, 22 µF / 63 V	Q183	TIP127 (PNP)	R206	12k / 0.5 W
C22	Ceramic, 47 pF	Q190	TIP122 (NPN)	R241	10k / 0.5 W
C23	Electrolytic, radial, 22 µF / €3 V	Q270	BC546B (NPN)	R242	68k / 0.5 W
C24	Ceramic, 47 pF	Q271	BC556B (PNP)	R246	Not used
C40	Polyester, 7.5 mm, 470 nF / 100 V	Q280	BD242C (PNP)	R247	Wire bridge 0.8 x 50 mm
C41	Electrolytic, radial, 22 µF / €3 V	Q281	BD241C (NPN)	R249	2k2 / 0.5 W
C45	Electrolytic, radial, 470 µF / 25 V	Q282	TIP122 (NPN)	R270	1k / 0.5 W
C52	Ceramic, 100 pF	Q283	TIP127 (PNP)	R271	1k / 0.5 W
C103	Polyester, 7.5 mm, 220 nF / 100 V	Q290	TIP122 (NPN)	R272	10k / 0.5 W
C108	Polyester, 7.5 mm, 220 nF / 100 V			R273	10k / 0.5 W
C114	Polyester, 7.5 mm, 1 nF / 650 V	R1	10k / 0.5 W	R274	1k / 0.5 W
C116	Polyester, 7.5 mm, 22 nF / 250 V	R2	10k / 0.5 W	R275	1k / 0.5 W
C140	Electrolytic, radial, 22 µF / 63 V	R7	5k6 / 0.5 W	R280	47Ω / 0.5 W
C142	Ceramic, 100 pF	R11	560Ω / 2 W	R281	47Ω / 0.5 W
C143	Polyester, 7.5 mm, 4.7 nF / 400 V	R12	560Ω / 2 W	R282	1Ω/2W
C146	Electrolytic, radial, 22 µF / 63 V	R18	470Ω / 0.5 W	R283	1Ω/2W
C180	Ceramic, 220 pF	R19	470Ω / 0.5 W	R290	10k / 0.5 W
C181	Ceramic, 220 pF	R20	4k7 / 0.5 W	R291	150Ω / 0.5 W
C190	Polyester, 7.5 mm, 220 nF / 100 V	R21	47k / 0.5 W	R292	100Ω / 0.5 W
C191	Electrolytic, radial, 22 µF / 63 V	R22	100k / 0.5 W	R293	10k / 0.5 W
C203	Polyester, 7.5 mm, 4.7 nF / 400 V	R23	47k / 0.5 W	R294	100k / 0.5 W
C208	Polyester, 7.5 mm, 4.7 nF / 400 V	R24	100k / 0.5 W		0001 40 5 14
C240	Electrolytic, radial, 22 µF / 63 V	R28	470k / 0.5 W	RA0	220k / 0.5 W
C241	Not used	R29	470k / 0.5 W	RA1	6k8 / 0.5 W
C242	Ceramic, 100 pF	R40	330Ω / 0.5 W	RA2	6k8 / 0.5 W
C246	Not used	R41	47k / 0.5 W	RA4	12k / 0.5 W
C280	Ceramic, 220 pF	R42	47k / 0.5 W	RA5	5k6 / 0.5 W
C281	Ceramic, 220 pF	R43	47k / 0.5 W	RA6	6k8 / 0.5 W
C290	Polyester, 7.5 mm, 220 nF / 100 V	R44	100Ω / 0.5 W	RA7	5k6 / 0.5 W
C291	Electrolytic, radial, 22 µF / 63 V	R45	100Ω / 0.5 W	RA8	47k / 0.5 W
0.11	0 · 100 F	R46	680Ω / 0.5 W	000	150k / 0.5 W
CA1	Ceramic, 100 pF	R49	100k / 0.5 W	RB0	150k / 0.5 W 6k8 / 0.5 W
CA3	Polyester, 7.5 mm, 2.2 nF / 630 V	R51 R52	1k8 / 0.5 W 10k / 0.5 W	RB1 RB2	6k8 / 0.5 W
CA9	Polyester, 7.5 mm, 2.2 nF / 630 V	R52 R53		RB4	15k / 0.5 W
CD1	Coronia 100 pF	R55	Bridge 8k2 / 0.5 W	RB5	5k6 / 0.5 W
CB1 CB3	Ceramic, 100 pF Polyester, 7.5 mm, 1 nF / 630 V	R104	47k / 0.5 W	RB6	8k2 / 0.5 W
CB3 CB9	Polyester, 7.5 mm, 1 nF / 630 V Polyester, 7.5 mm, 1 nF / 630 V	R104	3k3 / 0.5 W	RB7	8k2 / 0.5 W
005	Tolyester, 7.5 mm, Thi 7 050 V	R113	5k6 / 0.5 W	RB8	33k / 0.5 W
D191	1N4935, fast recovery	R118	33k / 0.5 W	T(DC	
D192	1N4935, fast recovery	R141	15k / 0.5 W	RED1	Rectifier B80C2300-1500
D291	1N4935, fast recovery	R142	68k / 0.5 W	RED2	Rectifier 1A 250 V DIL4
D292	1N4935, fast recovery	R143	18k / 0.5 W	RED3	Rectifier 1A 250 V DIL4
		R145	1k / 0.5 W		
DZ1	BZT03C, Z, 18 V	R146	33k / 0.5 W	RP2	Potentiometer 10k, horizontal, PCB mount
DZ2	BZT03C, Z, 18 V	R147	0Ω47 / 2 W	RT1	Trimmer potentiometer, 2k, vertical
		R149	1k / 0.5 W	RT2	Trimmer potentiometer, 2k, vertical
J1	Flat pin 2.8 mm	R170	1k / 0.5 W	RT190	Trimmer potentiometer, 10k, vertical
J2	Flat pin 2.8 mm	R171	1k / 0.5 W	RT200	Trimmer potentiometer, 2k, vertical
J3	Flat pin 2.8 mm	R172	10k / 0.5 W	RT290	Trimmer potentiometer, 10k vertical
J4,J5	LED grn + 30 cm wire	R173	10k / 0.5 W		
		R174	1k / 0.5 W	U1	TL072CP dual opamp
Jt11	Flat pin 4.8 mm	R175	1k / 0.5 W	U2	TL072CP dual opamp
Jt12	Flat pin 4.8 mm	R180	47Ω / 0.5 W	U3	TL072CP dual opamp
Jt13	Flat pin 4.8 mm	R181	47Ω / 0.5 W	U4	TL072CP dual opamp
					TL 072CP dual anoma
				UD1	TL072CP dual opamp

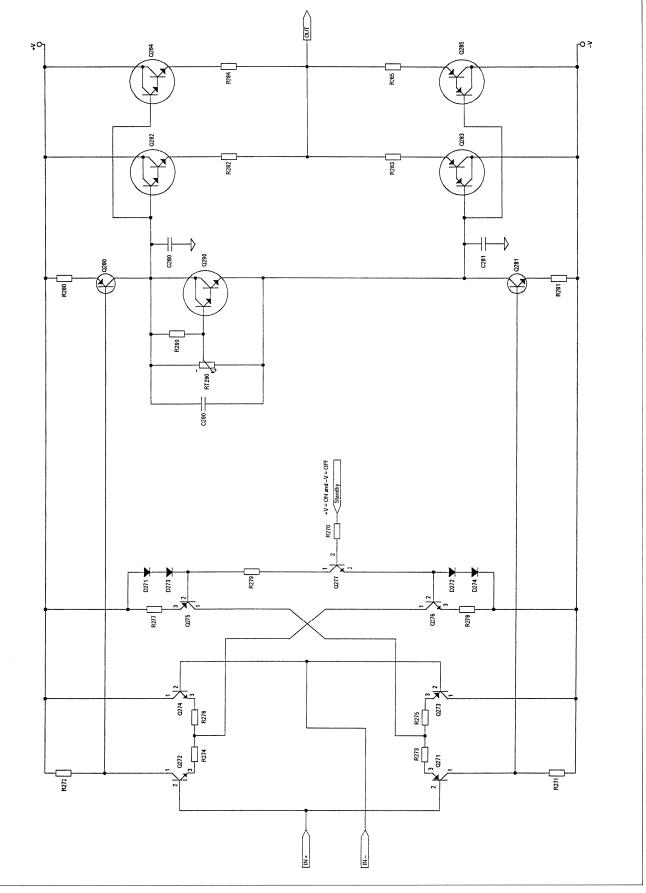
A3 Overall Diagram

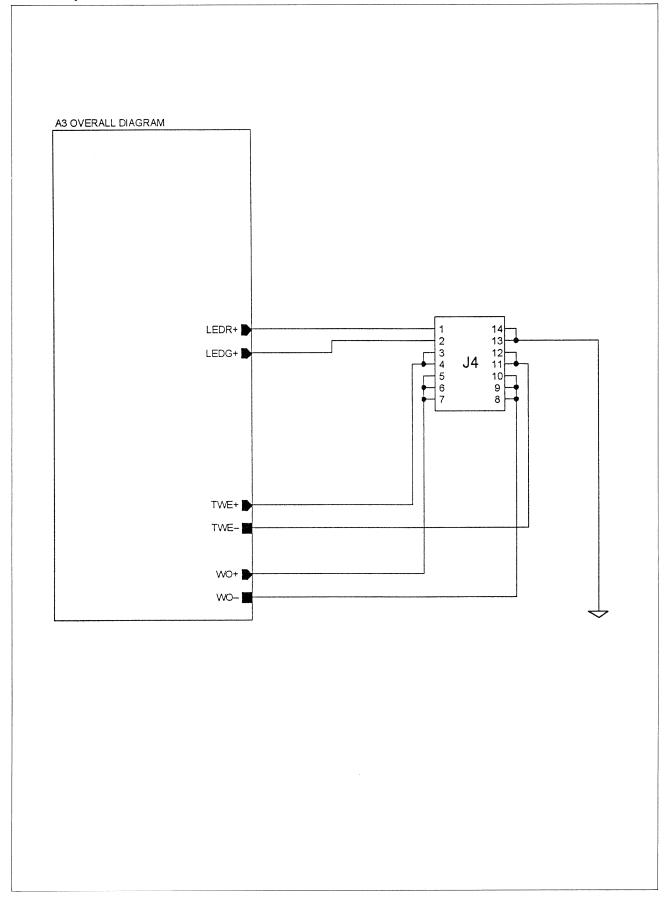


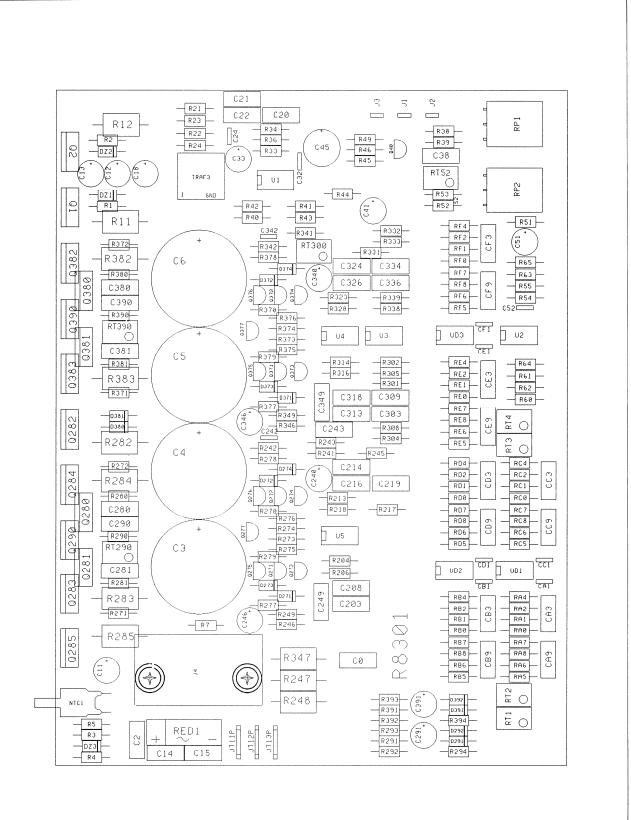
A3 Power Supply



STUDER




A3 HF AMP


A3 LF AMP

A3 Multipin Connector

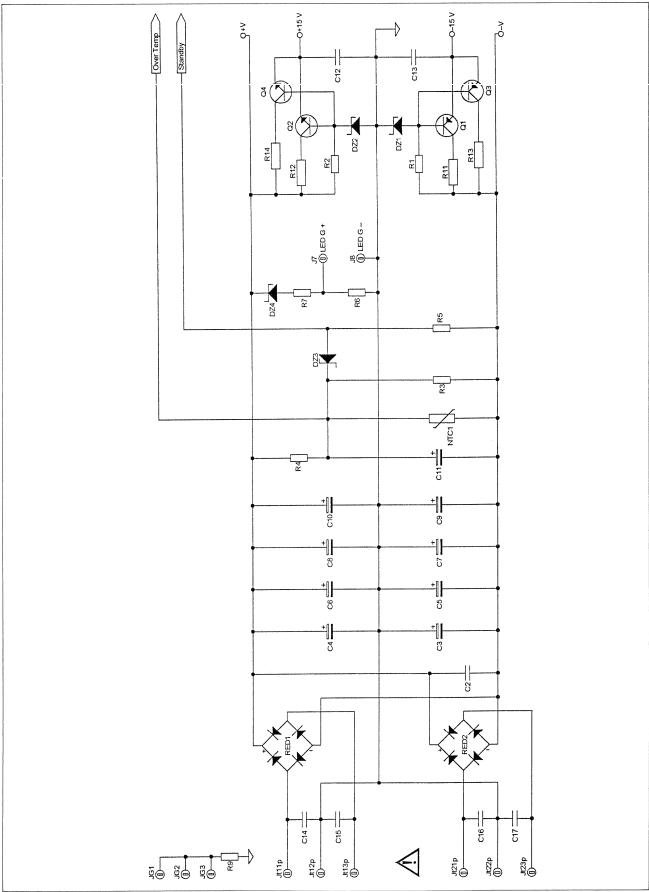
A3 Layout

A3 Parts List

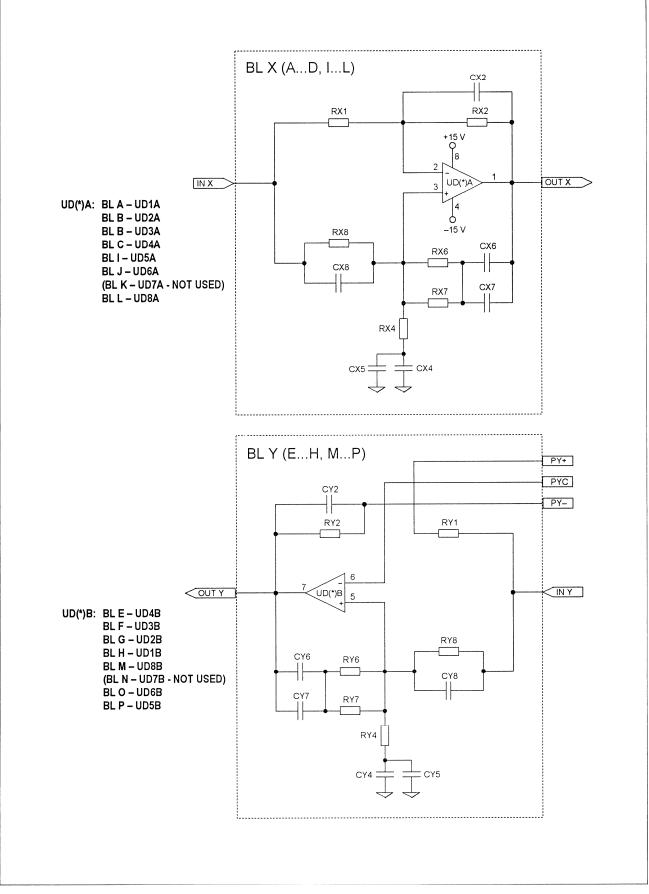
Ref.	Value	Ref.	Value	Ref.	Value
C0	not used	CE1	Ceramic, 100 pF	R1	10k / 0.5 W
C2	Polyester, 7.5 mm, 220 nF / 100 V	CE3	Polyester, 7.5 mm, 2.2 nF / 630 V	R2	10k / 0.5 W
C3	Electrolytic, radial, 3300 µF / 50 V	CE9	Polyester, 7.5 mm, 2.2 nF / 630 V	R3	100k / 0.5 W
C4	Electrolytic, radial, 3300 µF / 50 V	054	0 1 100 5	R4	39k / 0.5 W
C5	Electrolytic, radial, 3300 µF / 50 V	CF1	Ceramic, 100 pF	R5	100k / 0.5 W
C6	Electrolytic, radial, 3300 µF / 50 V	CF3 CF9	Polyester, 7.5 mm, 1 nF / 630 V	R7 R11	5k6 / 0.5 W
C11 C12	Electrolytic, radial, 22 µF / 63 V Electrolytic, radial, 22 µF / 63 V	CF9	Polyester, 7.5 mm, 1 nF / 630 V	R12	560Ω / 2 W
C12 C13	Electrolytic, radial, 22 µF / 63 V	D271	1N4935, fast recovery	R21	560Ω / 2 W 1k / 0.5 W
C14	Polyester, 7.5 mm, 100 nF / 100 V	D272	1N4935, fast recovery	R22	1k / 0.5 W
C15	Polyester, 7.5 mm, 100 nF / 100 V	D273	1N4935, fast recovery	R23	1k / 0.5 W
C18	Electrolytic, radial, 22 µF / 63 V	D274	1N4935, fast recovery	R24	1k / 0.5 W
C20	Polyester, 7.5 mm, 1 nF / 630 V	D291	1N4935, fast recovery	R33	4k7 / 0.5 W
C21	Polyester, 7.5 mm, 1 nF / 630 V	D292	1N4935, fast recovery	R34	4k7 / 0.5 W
C22	Polyester, 7.5 mm, 1 nF / 630 V	D371	1N4935, fast recovery	R36	2k2 / 0.5 W
C24	not used	D372	1N4935, fast recovery	R38	not used
C32	Ceramic, 220 pF	D373	1N4935, fast recovery	R39	10k / 0.5 W
C33	Electrolytic, radial, 22 µF / 63 V	D374	1N4935, fast recovery	R40	220Ω / 0.5 W
C38	Polyester, 7.5 mm, 220 nF / 100 V	D380	not used	R41 R42	33k / 0.5 W
C41 C45	Electrolytic, radial, 22 µF / 63 V	D381 D391	not used	R42 R43	33k / 0.5 W
C45 C51	Electrolytic, radial, 470 µF / 25 V Electrolytic, radial, 22 µF / 63 V	D391 D392	1N4935, fast recovery 1N4935, fast recovery	R43 R44	33k / 0.5 W 47Ω / 0.5 W
C52	Ceramic, 220 pF	0002	IN4000, last recovery	R45	47Ω / 0.5 W
C203	Polyester, 7.5 mm, 220 nF / 100 V	DZ1	BZT03C, Z, 18 V	R46	1k / 0.5 W
C208	Polyester, 7.5 mm, 220 nF / 100 V	DZ2	BZT03C, Z, 18 V	R49	100k / 0.5 W
C214	Polyester, 7.5 mm, 2.2 nF / 630 V	DZ3	BZX85C, Z, 27 V	R51	2k2 / 0.5 W
C216	Polyester, 7.5 mm, 10 nF / 250 V			R52	4k7 / 0.5 W
C219	Polyester, 7.5 mm, 22 nF / 250 V	J1	Flat pin, 2.8 mm	R53	not used
C240	Electrolytic, radial, 22 µF / 63 V	J2	Flat pin, 2.8 mm	R54	1k / 0.5 W
C242	Ceramic, 100 pF	J3	Flat pin, 2.8 mm	R55	4k7 / 0.5 W
C243	Polyester, 7.5 mm, 47 nF / 100 V	J4	Connector 36 pin, m, right	R60	4k7 / 0.5 W
C246	Electrolytic, radial, 22 µF / 63 V			R61	220k / 0.5 W
C249	not used	Jt11	Flat pin, 4.8 mm	R62 R63	47k / 0.5 W 10k / 0.5 W
C280 C281	Polyester, 7.5 mm, 1 nF / 600 V	Jt12 Jt13	Flat pin, 4.8 mm	R64	10k / 0.5 W
C290	Polyester, 7.5 mm, 1 nF / 630 V Polyester, 7.5 mm, 220 nF / 100 V	5115	Flat pin, 4.8 mm	R65	10k / 0.5 W
C291	Electrolytic, radial, 22 μ F / 63 V	NTC1	150k, thread M3	R204	82k / 0.5 W
C303	Polyester, 7.5 mm, 4.7 nF / 400 V	inter		R206	3k3 / 0.5 W
C309	Polyester, 7.5 mm, 4.7 nF / 400 V	Q1	TIP127 (PNP)	R213	15k / 0.5 W
C313	Polyester, 7.5 mm, 4.7 nF / 400 V	Q2	TIP122 (NPN)	R217	22k / 0.5 W
C318	Polyester, 7.5 mm, 4.7 nF / 400 V	Q40	BS170 (FET)	R218	2k2 / 0.5 W
C324	Polyester, 7.5 mm, 1 nF / 630 V	Q271	BC556B (PNP)	R241	4k7 / 0.5 W
C326	Polyester, 7.5 mm, 22 nF / 250 V	Q272	BC546B (NPN)	R242	18k / 0.5 W
C334 C336	Polyester, 7.5 mm, 4.7 nF / 400 V	Q273 Q274	BC556B (PNP)	R243 R245	15k / 0.5 W
C340	Polyester, 7.5 mm, 4.7 nF / 400 V Electrolytic, radial, 22 µF / 63 V	Q274 Q275	BC546B (NPN) BC556B (PNP)	R246	1k / 0.5 W 1k / 0.5 W2
C342	Ceramic, 100 pF	Q276	BC546B (NPN)	R240	0Ω47/2W
C346	Electrolytic, radial, 22 µF / 63 V	Q277	BC546B (NPN)	R248	0Ω47/2W
C349	not used	Q280	BD242C (PNP)	R249	1k / 0.5 W5
C380	Polyester, 7.5 mm, 1 nF / 630 V	Q281	BD241C (NPN)	R270	220k / 0.5 W
C381	Polyester, 7.5 mm, 1 nF / 630 V	Q282	TIP122 (NPN)	R271	1k / 0.5 W
C390	Polyester, 7.5 mm, 220 nF / 100 V	Q283	TIP127 (PNP)	R272	1k / 0.5 W
C391	Electrolytic, radial, 22 µF / 63 V	Q284	TIP122 (NPN)	R273	47Ω / 0.5 W
CA1	Coromia 100 pE	Q285	TIP127 (PNP)	R274 R275	47Ω / 0.5 W
CA1 CA3	Ceramic, 100 pF Polyester, 7.5 mm, 3.3 nF / 400 V	Q290 Q371	TIP122 (NPN) BC556B (PNP)	R275 R276	47Ω / 0.5 W 47Ω / 0.5 W
CA9	Polyester, 7.5 mm, 3.3 nF / 400 V	Q372	BC556B (PNP) BC546B (NPN)	R277	47Ω70.5W 330Ω/0.5W
0,10		Q373	BC556B (PNP)	R278	330Ω / 0.5 W
CB1	Ceramic, 100 pF	Q374	BC546B (NPN)	R279	22k / 0.5 W
CB3	Polyester, 7.5 mm, 3.3 nF / 400 V	Q375	BC556B (PNP)	R280	100Ω / 0.5 W
CB9	Polyester, 7.5 mm, 3.3 nF / 400 V	Q376	BC546B (NPN)	R281	100Ω / 0.5 W
061	0 100 -	Q377	BC546B (NPN)	R282	1Ω/2W
CC1	Ceramic, 100 pF	Q380	BD242C (PNP)	R283	1Ω/2W
CC3 CC9	Polyester, 7.5 mm, 1 nF / 630 V	Q381		R284 R285	1Ω/2W 1Ω/2W
009	Polyester, 7.5 mm, 1 nF / 630 V	Q382 Q383	TIP122 (NPN) TIP127 (PNP)	R285 R290	1Ω / 2 W 10k / 0.5 W
CD1	Ceramic, 100 pF	Q390	TIP127 (FNP) TIP122 (NPN)	R291	10k / 0.5 W
CD3	Polyester, 7.5 mm, 2.2 nF / 630 V	4000		R292	1k / 0.5 W2
CD9	Polyester, 7.5 mm, 2.2 nF / 630 V			R293	10k / 0.5 W
				R294	100k / 0.5 W
				R301 R302	10k / 0.5 W 10k / 0.5 W

A3 Parts List

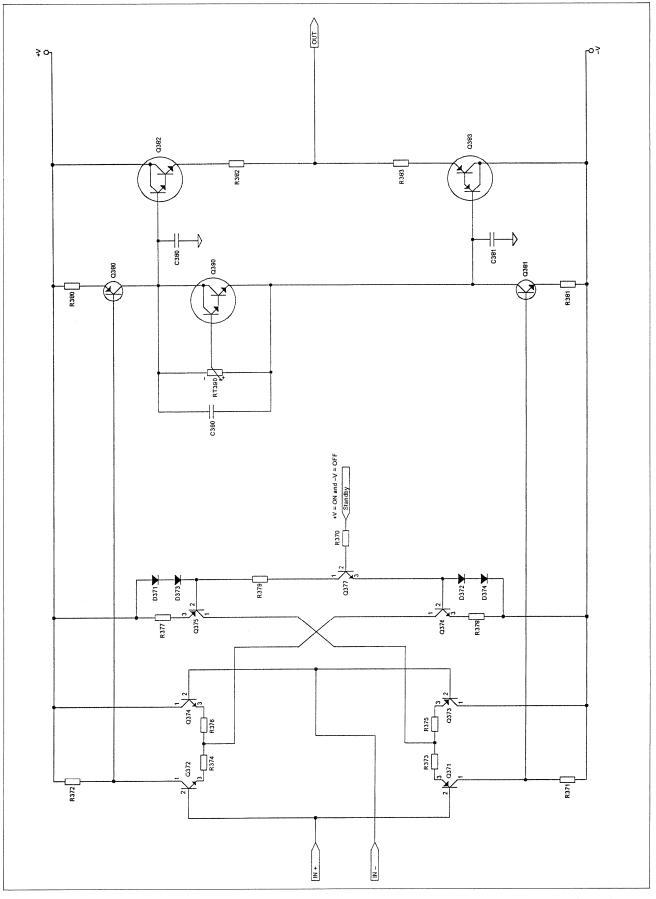
Ref.	Value	Ref.	Value
	Value	1/61.	Yalud
0004	10k / 0.5 W	DEO	220k / 0.5 W
R304		RE0	
R305	18k / 0.5 W	RE1	6K8 / 0.5 W
R308°	10k / 0.5 W	RE2	6K8 / 0.5 W
R314	56K / 0.5 W	RE4	10k / 0.5 W
R316	2k7 / 0.5 W	RE5	5k6 / 0.5 W
R323	1k / 0.5 W5	RE6	6K8 / 0.5 W
R328	1k / 0.5 W5	RE7	5k6 / 0.5 W
R331	10k / 0.5 W	RE8	47k / 0.5 W
R332	10k / 0.5 W		
R333	8k2 / 0.5 W	RF0	150k / 0.5 W
R338	5k6 / 0.5 W	RF1	6K8 / 0.5 W
R339	not used	RF2	6K8 / 0.5 W
R341	8k2 / 0.5 W	RF4	15k / 0.5 W
R342	22k / 0.5 W	RF5	5k6 / 0.5 W
R346	10k / 0.5 W	RF6	10k / 0.5 W
R347	0Ω47/2W	RF7	10k / 0.5 W
R349	1k / 0.5 W5	RF8	33k / 0.5 W
R370	220k / 0.5 W		
R371	1k / 0.5 W	RP1	Potentiometer 10k, horizontal, PCB mount
R372	1k / 0.5 W	RP2	Potentiometer 10k, horizontal, PCB mount
R373	47Ω / 0.5 W	–	
R374	47Ω / 0.5 W	RT1	Trimmer potentiometer, 2k, vertical
R375	47Ω / 0.5 W	RT2	Trimmer potentiometer, 2k, vertical
R375 R376	47Ω / 0.5 W	RT3	Trimmer potentiometer, 2k, vertical
		RT4	Trimmer potentiometer, 2k, vertical
R377	330Ω / 0.5 W	RT52	
R378	330Q / 0.5 W		Trimmer potentiometer, 10k, vertical
R379	22k / 0.5 W	RT290	Trimmer potentiometer, 10k vertical
R380	100Ω / 0.5 W	RT300	Trimmer potentiometer, 2k, vertical
R381	100Ω / 0.5 W	RT390	Trimmer potentiometer, 10k, vertical
R382	1Ω/2W		
R383	1Ω/2W	RED1	Rectifier B 80C2300-1500
R390	10k / 0.5 W		
R391	220Ω / 0.5 W	TRA3	Line input transformer Studer (426.00)
R392	100Ω / 0.5 W		
R393	10k / 0.5 W	U1	TL072CP dual opamp
R394	100k / 0.5 W	U2	TL072CP dual opamp
		U3	TL072CP dual opamp
RA0	470k / 0.5 W	U4	TL072CP dual opamp
RA1	6K8 / 0.5 W	U5	TL072CP dual opamp
RA2	6K8 / 0.5 W	00	
RA4	15k / 0.5 W	UD1	TL072CP dual opamp
RA5	4k7 / 0.5 W	UD2	TL072CP dual opamp
RA6	12k / 0.5 W	UD3	TL072CP dual opamp
RA7	8k2 / 0.5 W	000	
RA8	100k / 0.5 W		
1110	100K / 0.5 W		
RB0	220k / 0.5 W		
RB1	6K8 / 0.5 W		
RB2	6K8 / 0.5 W		
RB4	10k / 0.5 W 4k7 / 0.5 W		
RB5 RB6	4K770.5W 6K870.5W		
	4k7 / 0.5 W		
RB7			
RB8	not used		
DC0	150K / 0 5 W		
RC0 RC1	150k / 0.5 W 6K8 / 0.5 W		
RC1 RC2	6K8 / 0.5 W		
RC4	15k / 0.5 W		
RC5	4k7 / 0.5 W		
RC6	10k / 0.5 W		
RC7	10k / 0.5 W		
RC8	33k / 0.5 W		
000	2201-10.5.14		
RD0	220k / 0.5 W		
RD1	6K8 / 0.5 W		
RD2	6K8 / 0.5 W		
RD4	10k / 0.5 W		
RD5	4k7 / 0.5 W		
RD6	6K8 / 0.5 W		
RD7	5k6 / 0.5 W		
RD8	47k / 0.5 W		


STUDER

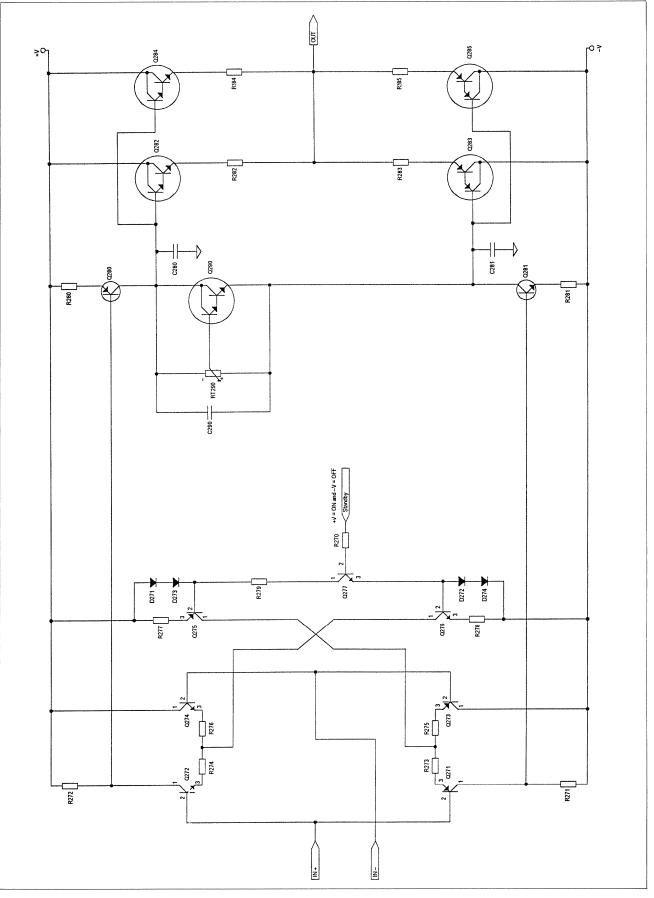
A5 Overall Diagram

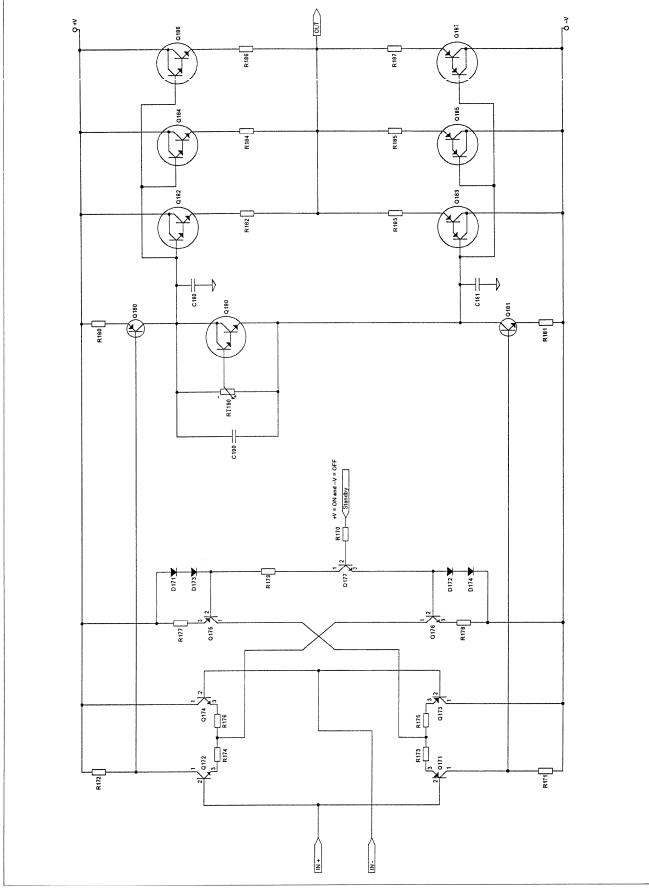


A5 Power Supply

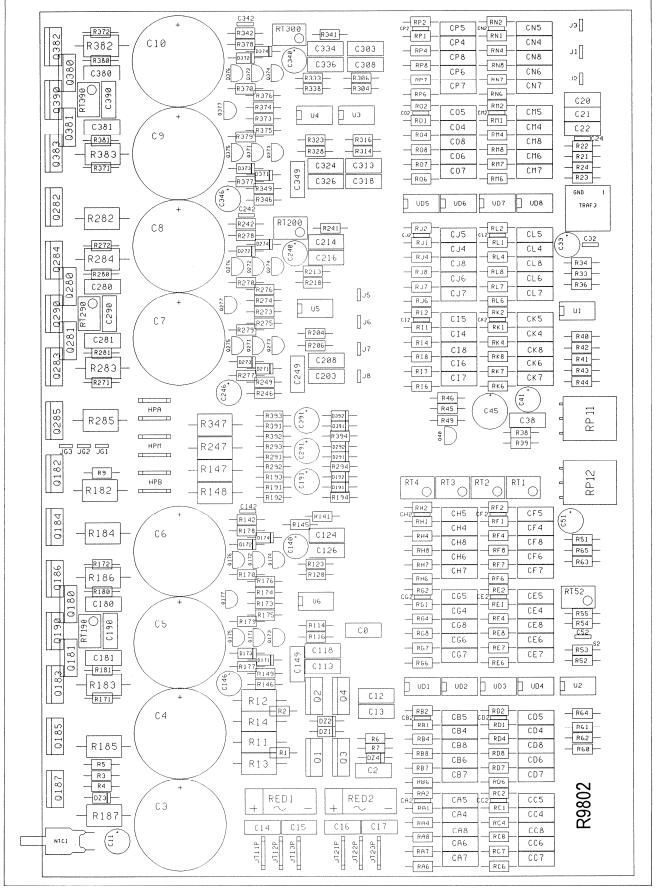


STUDER




A5 HF AMP

A5 MF AMP



A5 LF AMP

STUDER

A5 Layout

SECTION 5

A5 Parts List

Ref.	Value	Ref.	Value	Ref.	Value
C0	not used	CA2	Ceramic, 100 pF	CK2	not used
C2	Polyester, 7.5 mm, 220 nF / 100V	CA4	not used	CK4	not used
C3	Electrolytic, radial, 3300 µF / 50V	CA5	Polyester, 7.5 mm, 10 nF / 250 V	CK5	not used
C4	Electrolytic, radial, 3300 µF / 50V	CA6	Polyester, 7.5 mm, 10 nF / 250 V	CK6	not used
C5	Electrolytic, radial, 3300 µF / 50V	CA7	Polyester, 7.5 mm, 10 nF / 250 V	CK7	not used
C6	Electrolytic, radial, 3300 µF / 50V	CA8	Polyester, 7.5 mm, 10 nF / 250 V	CK8	not used
C7	Electrolytic, radial, 3300 µF / 50V	0,10			
C8	Electrolytic, radial, 3300 µF / 50V	CB2	Ceramic, 100 pF	CL2	Ceramic, 100 pF
C9	Electrolytic, radial, 3300 µF / 50V	CB4	not used	CL4	not used
C10	Electrolytic, radial, 3300 µF / 50V	CB5	Polyester, 7.5 mm, 1 nF / 630 V	CL5	Polyester, 7.5 mm, 1 nF / 630 V
C11	Electrolytic, radial, 22 µF / 63V	CB6	Polyester, 7.5 mm, 2.2 nF / 630 V	CL6	Polyester, 7.5 mm, 2.2 nF / 630 V
C12	Polyester, 7.5 mm, 220 nF / 100V	CB7	Polyester, 7.5 mm, 2.2 nF / 630 V	CL7	Polyester, 7.5 mm, 2.2 nF / 030 V
C13	Polyester, 7.5 mm, 220 nF / 100V	CB8	Polyester, 7.5 mm, 2.2 nF / 630 V	CL8	Polyester, 7.5 mm, 2.2 nF / 630 V
C14	Polyester, 7.5 mm, 100 nF / 100V	020			·
C15	Polyester, 7.5 mm, 100 nF / 100V	CC2	Ceramic, 100 pF	CM2	Ceramic, 100 pF
C16	Polyester, 7.5 mm, 100 nF / 100V	CC4	not used	CM4	not used
C17	Polyester, 7.5 mm, 100 nF / 100V	CC5	Polyester, 7.5 mm, 2.2 nF / 630 V	CM5	Polyester, 7.5 mm, 1 nF / 630 V
C20	Polyester, 7.5 mm, 1 nF / 630V	CC6	Polyester, 7.5 mm, 4.7 nF / 400 V	CM6	Polyester, 7.5 mm, 2.2 nF / 630 V
C21	Polyester, 7.5 mm, 1 nF / 630V	CC7	Polyester, 7.5 mm, 4.7 nF / 400 V	CM7	Polyester, 7.5 mm, 2.2 nF / 630 V
C22	Polyester, 7.5 mm, 1 nF / 630V	CC8	Polyester, 7.5 mm, 4.7 nF / 400 V	CM8	Polyester, 7.5 mm, 2.2 nF / 630 V
C24	not used		· •.,••••••		·
C32	Ceramic, 220 pF	CD2	Ceramic, 100 pF	CN2	not used
C33	Electrolytic, radial, 22 µF / 63V	CD4	not used	CN4	not used
C38	Polyester, 7.5 mm, 220 nF / 100V	CD5	Polyester, 7.5 mm, 1 nF / 630 V	CN5	not used
C41	Electrolytic, radial, 22 µF / 63V	CD6	Polyester, 7.5 mm, 2.2 nF / 630 V	CN6	not used
C45	Electrolytic, radial, 470 µF / 25V	CD7	Polyester, 7.5 mm, 2.2 nF / 630 V	CN7	not used
C51	Electrolytic, radial, 22 µF / 63V	CD8	Polyester, 7.5 mm, 2.2 nF / 630 V	CN8	not used
C52	Ceramic, 220 pF		·		
C113	Polyester, 7.5 mm, 220 nF / 100 V	CE2	Ceramic, 100 pF	CO2	Ceramic, 100 pF
C118	Polyester, 7.5 mm, 220 nF / 100 V	CE4	not used	CO4	not used
C124	Polyester, 7.5 mm, 100 nF / 100 V	CE5	Polyester, 7.5 mm, 2.2 nF / 630 V	CO5	Polyester, 7.5 mm, 1 nF / 630 V
C126	Polyester, 7.5 mm, 47 nF / 00 V	CE6	Polyester, 7.5 mm, 4.7 nF / 400 V	CO6	Polyester, 7.5 mm, 2.2 nF / 630 V
C140	Electrolytic, radial, 22 µF / 63 V	CE7	Polyester, 7.5 mm, 4.7 nF / 400 V	CO7	Polyester, 7.5 mm, 2.2 nF / 630 V
C142	Ceramic, 100 pF	CE8	Polyester, 7.5 mm, 4.7 nF / 400 V	CO8	Polyester, 7.5 mm, 2.2 nF / 630 V
C146	Electrolytic, radial, 22 µF / €3 V				
C149	not used	CF2	Ceramic, 100 pF	CP2	Ceramic, 100 pF
C180	Polyester, 7.5 mm, 1 nF / 630 V	CF4	not used	CP4	not used
C181	Polyester, 7.5 mm, 1 nF / 630 V	CF5	Polyester, 7.5 mm, 2.2 nF / 630 V	CP5	Polyester, 7.5 mm, 1 nF / 630 V
C190	Polyester, 7.5 mm, 220 nF / 100 V	CF6	Polyester, 7.5 mm, 4.7 nF / 400 V	CP6	Polyester, 7.5 mm, 2.2 nF / 630 V
C191	Electrolytic, radial, 22 µF / 63 V	CF7	Polyester, 7.5 mm, 4.7 nF / 400 V	CP7	Polyester, 7.5 mm, 2.2 nF / 630 V
C203	Polyester, 7.5 mm, 100 nF / 100 V	CF8	Polyester, 7.5 mm, 4.7 nF / 400 V	CP8	Polyester, 7.5 mm, 2.2 nF / 630 V
C208	Polyester, 7.5 mm, 100 nF / 100 V	0.00	0	D171	1N1402E foot many and
C214	Polyester, 7.5 mm, 2.2 nF / 630 V	CG2	Ceramic, 100 pF	D171	1N4935, fast recovery
C216	Polyester, 7.5 mm, 22 nF / 250 V	CG4	not used	D172 D173	1N4935, fast recovery 1N4935, fast recovery
C240	Electrolytic, radial, 22 µF / 63 V	CG5	Polyester, 7.5 mm, 1 nF / 630 V	D173 D174	1N4935, fast recovery
C242 C246	Ceramic, 100 pF Electrolytic, radial, 22 µF / €3 V	CG6 CG7	Polyester, 7.5 mm, 2.2 nF / 630 V Polyester, 7.5 mm, 2.2 nF / 630 V	D191	1N4935, fast recovery
C240 C249	not used	CG8	Polyester, 7.5 mm, 2.2 nF / 630 V Polyester, 7.5 mm, 2.2 nF / 630 V	D192	1N4935, fast recovery
C280	Polyester, 7.5 mm, 1 nF / 630 V	000	1 olyester, 1.5 mm, 2.2 m 7 000 V	D271	1N4935, fast recovery
C280	Polyester, 7.5 mm, 1 nF / 630 V	CH2	Ceramic, 100 pF	D272	1N4935, fast recovery
C290	Polyester, 7.5 mm, 220 nF / 100 V	CH4	not used	D273	1N4935, fast recovery
C291	Electrolytic, radial, 22 µF / 63 V	CH5	Polyester, 7.5 mm, 1 nF / 630 V	D274	1N4935, fast recovery
C303	Polyester, 7.5 mm, 10 nF / 250 V	CH6	Polyester, 7.5 mm, 2.2 nF / 630 V	D291	1N4935, fast recovery
C308	Polyester, 7.5 mm, 10 nF / 250 V	CH7	Polyester, 7.5 mm, 2.2 nF / 630 V	D292	1N4935, fast recovery
C313	Polyester, 7.5 mm, 10 nF / 250 V	CH8	Polyester, 7.5 mm, 2.2 nF / 630 V	D371	1N4935, fast recovery
C318	Polyester, 7.5 mm, 10 nF / 250 V			D372	1N4935, fast recovery
C324	Polyester, 7.5 mm, 1 nF / 630 V	CI2	Ceramic, 100 pF	D373	1N4935, fast recovery
C326	Polyester, 7.5 mm, 10 nF / 250 V	C14	not used	D374	1N4935, fast recovery
C334	Polyester, 7.5 mm, 1 nF / 630 V	CI5	Polyester, 7.5 mm, 1 nF / 630 V	D391	1N4935, fast recovery
C336	Polyester, 7.5 mm, 4.7 nF / 100 V	CI6	Polyester, 7.5 mm, 1 nF / 630 V	D392	1N4935, fast recovery
C340	Electrolytic, radial, 22 µF / 63 V	CI7	Polyester, 7.5 mm, 1 nF / 630 V	074	
C342	Ceramic, 100 pF	CI8	Polyester, 7.5 mm, 1 nF / 630 V	DZ1	BZT03C, Z, 18 V
C346	Electrolytic, radial, 22 µF / 63 V	0.10	0	DZ2	BZT03C, Z, 18 V
C349	not used	CJ2	Ceramic, 100 pF	DZ3 DZ4	BZX85C, Z, 27 V BZX85C, Z, 27 V
C380	Polyester, 7.5 mm, 1 nF / 630 V	CJ4	not used Rolycotor 7.5 mm 1 nF / 630 V	UZ4	DZA0JU, Z, ZI V
C381 C390	Polyester, 7.5 mm, 1 nF / 630 V	CJ5 CJ6	Polyester, 7.5 mm, 1 nF / 630 V Polyester, 7.5 mm, 2.2 nF / 630 V		
C390	Polyester, 7.5 mm, 220 nF / 100 V Electrolytic, radial, 22 µF / 63 V	CJ8 CJ7	Polyester, 7.5 mm, 2.2 nF / 630 V Polyester, 7.5 mm, 2.2 nF / 630 V		
0001	Electrolytic, radial, $22 \ \mu\text{F} / 03 \ v$	CJ8	Polyester, 7.5 mm, 2.2 nF / 630 V		
			· · · · · · · · · · · · · · · · · · ·		

A5 Parts List

Ref.	Value	Ref.	Value	Ref.	Value
1	Flat pin, 2.8 mm	R1	10k / 0.5 W	R192	1k / 0.5 W2
2	Flat pin, 2.8 mm	R2	10k / 0.5 W	R193	10k / 0.5 W
3	Flat pin, 2.8 mm	R3	not used	R194	100k / 0.5 W
				R204	4k7 / 0.5 W
5	Flat pin, 2.8 mm	R4	47k / 0.5 W		
6	Flat pin, 2.8 mm	R5	100k / 0.5 W	R206	3k9 / 0.5 W
7	Flat pin, 2.8 mm	R6	not used	R213	12k / 0.5 W
8	Flat pin, 2.8 mm	R7	5k6 / 0.5 W	R218	10k / 0.5 W
		R9	1k / 0.5 W	R241	4k7 / 0.5 W
G1	Flat pin, 2.8 mm	R11	560Ω / 2 W	R242	22k / 0.5 W
G2	Flat pin, 2.8 mm	R12	560Ω / 2 W	R246	33k / 0.5 W
				R247	0Ω47/2W
G3	Flat pin, 2.8 mm	R13	560Ω / 2 W		
		R14	560Ω/2W	R249	3k3 / 0.5 W
t11	Flat pin, 4.8 mm	R21	1k / 0.5 W	R270	220k / 0.5 W
t12	Flat pin, 4.8 mm	R22	1k / 0.5 W	R271	1k / 0.5 W
t13	Flat pin, 4.8 mm	R23	1k / 0.5 W	R272	1k / 0.5 W
t21	Flat pin, 4.8 mm	R24	1k / 0.5 W	R273	47Ω / 0.5 W
t22	Flat pin, 4.8 mm	R33	2k2 / 0.5 W	R274	47Ω / 0.5 W
t23	Flat pin, 4.8 mm	R34	10k / 0.5 W	R275	47Ω / 0.5 W
120	Flat pin, 4.0 min	R36		R276	
			2k2 / 0.5 W		47Ω / 0.5 W
ITC1	150k, thread M3	R38	not used	R277	330Ω / 0.5 W
		R39	10k / 0.5 W	R278	330Ω / 0.5 W
)1	TIP127 (PNP)	R40	220Ω / 0.5 W	R279	22k / 0.5 W
2	TIP122 (NPN)	R41	33k / 0.5 W	R280	100Ω / 0.5 W
13	TIP127 (PNP)	R42	33k / 0.5 W	R281	100Ω / 0.5 W
24 24	TIP122 (NPN)	R43	33k / 0.5 W	R282	1Ω/2W
24 240		R44	47Ω / 0.5 W	R283	1 <u>Ω</u> /2W
	BS170 (FET)			N203	
171	BC556B (PNP)	R45	47Ω/0.5W	R284	1Ω/2W
172	BC546B (NPN)	R46	1k / 0.5 W	R285	1Ω/2W
173	BC556B (PNP)	R49	100k / 0.5 W	R291	1k / 0.5 W8
174	BC546B (NPN)	R51	2k2 / 0.5 W	R292	220Ω / 0.5 W
175	BC556B (PNP)	R52	4k7 / 0.5 W	R293	10k / 0.5 W
176	BC546B (NPN)	R53	not used	R294	100k / 0.5 W
177	BC546B (NPN)	R54	1k / 0.5 W	R304	5k6 / 0.5 W
		R55			
180	BD242C (PNP)	ROD	4k7 / 0.5 W	R306	3k3 / 0.5 W
2181	BD241C (NPN)	R60	4k7 / 0.5 W	R314	12k / 0.5 W
2182	TIP122 (NPN)	R61	100k / 0.5 W	R316	4k7 / 0.5 W
183	TIP127 (PNP)	R62	47k / 0.5 W	R323	1k / 0.5 W8
184	TIP122 (NPN)	R63	10k / 0.5 W	R328	1k / 0.5 W8
185	TIP127 (PNP)	R64	10k / 0.5 W	R333	1k / 0.5 W8
186	TIP122 (NPN)	R65	10k / 0.5 W	R338	1k / 0.5 W8
		R114	56k / 0.5 W	R341	6k8 / 0.5 W
187	TIP127 (PNP)	R114	5k6 / 0.5 W	R341 R342	
190	TIP122 (NPN)				22k / 0.5 W
271	BC556B (PNP)	R123	8k2 / 0.5 W	R346	22k / 0.5 W
272	BC546B (NPN)	R128	8k2 / 0.5 W	R347	0Ω47 / 2 W
273	BC556B (PNP)	R141	3k9 / 0.5 W	R349	3k3 / 0.5 W
274	BC546B (NPN)	R142	22k / 0.5 W	R370	220k / 0.5 W
275	BC556B (PNP)	R145	1k / 0.5 W	R371	1k / 0.5 W
276	BC546B (NPN)	R146	12k / 0.5 W	R372	1k / 0.5 W
277	BC546B (NPN)	R140	0Ω47 / 2 W	R373	47Ω / 0.5 W
		R147		R374	
280	BD242C (PNP)		0Ω47/2W	K3/4	47Ω / 0.5 W
281	BD241C (NPN)	R149	3k3 / 0.5 W	R375	47Ω / 0.5 W
282	TIP122 (NPN)	R170	220k / 0.5 W	R376	47Ω / 0.5 W
283	TIP127 (PNP)	R171	1k / 0.5 W	R377	330Ω / 0.5 W
284	TIP122 (NPN)	R172	1k / 0.5 W	R378	330Ω / 0.5 W
285	TIP127 (PNP)	R173	47Ω/0.5W	R379	22k / 0.5 W
290	TIP122 (NPN)	R174	47Ω / 0.5 W	R380	100Ω / 0.5 W
		R175	47Ω/0.5W	R381	100Ω / 0.5 W
074		R176		R382	
371	BC556B (PNP)		47Ω / 0.5 W		1Ω/2W
372	BC546B (NPN)	R177	330Ω / 0.5 W	R383	1Ω/2W
373	BC556B (PNP)	R178	330Ω / 0.5 W	R391	330Ω / 0.5 W
374	BC546B (NPN)	R179	22k / 0.5 W	R392	100Ω / 0.5 W
375	BC556B (PNP)	R180	100Ω / 0.5 W	R393	10k / 0.5 W
376	BC546B (NPN)	R181	100Ω / 0.5 W	R394	100k / 0.5 W
377	BC546B (NPN)	R182	1Ω/2W	1,001	
		R183		RA1	4k7 / 0.5 W
380	BD242C (PNP)		1Ω/2W		
381	BD241C (NPN)	R184	1Ω/2W	RA2	4k7 / 0.5 W
1382	TIP122 (NPN)	R185	1Ω/2W	RA4	4k7 / 0.5 W
383	TIP127 (PNP)	R186	1Ω/2W	RA6	3k9 / 0.5 W
				0 4 7	
390	TIP122 (NPN)	R187	1Ω/2W	RA7	5k6 / 0.5 W

STUDER

A5 Parts List

Г

Ref.	Value	Ref.	Value
RB1	4k7 / 0.5 W	RL1	4k7 / 0.5 W
RB2	4k7 / 0.5 W	RL2	4k7 / 0.5 W
RB4	12k / 0.5 W	RL4	8k2 / 0.5 W
RB6	5k6 / 0.5 W	RL6	2k2 / 0.5 W
RB7	5k6 / 0.5 W	RL7	15k / 0.5 W
RB8	5k6 / 0.5 W	RL8	3k9 / 0.5 W
RC1	4k7 / 0.5 W	RM1	4k7 / 0.5 W
RC2	4k7 / 0.5 W	RM2	4k7 / 0.5 W
RC4	8k2 / 0.5 W	RM4	8k2 / 0.5 W
RC6	3k9 / 0.5 W	RM6	2k2 / 0.5 W
RC7	3k9 / 0.5 W	RM7	15k / 0.5 W
RC8	3k9 / 0.5 W	RM8	3k9 / 0.5 W
RD1	4k7 / 0.5 W	RN1	not used
RD2	4k7 / 0.5 W	RN2	not used
RD4	12k / 0.5 W	RN4	not used
RD6	5k6 / 0.5 W	RN6	not used
RD7	5k6 / 0.5 W	RN7	not used
RD8	5k6 / 0.5 W	RN8	not used
RE1	4k7 / 0.5 W	RO1	4k7 / 0.5 W
RE2	4k7 / 0.5 W	RO2	4k7 / 0.5 W
RE4	12k / 0.5 W	RO4	8k2 / 0.5 W
RE6	5k6 / 0.5 W	RO6	2k2 / 0.5 W
RE7	5k6 / 0.5 W	RO7	15k / 0.5 W
RE8	5k6 / 0.5 W	RO8	3k9 / 0.5 W
RF1	4k7 / 0.5 W	RP1	4k7 / 0.5 W
RF2	4k7 / 0.5 W	RP2	4k7 / 0.5 W
RF4 RF6	8k2 / 0.5 W 12k / 0.5 W	RP4 RP6	8k2 / 0.5 W 2k2 / 0.5 W
RF0 RF7	2k2 / 0.5 W	RP7	15k / 0.5 W
RF8	3k9 / 0.5 W	RP8	3k9 / 0.5 W
	36370.3 W		5K37 0.0 W
RG1	4k7 / 0.5 W	RP11	Potentiometer 10k, horizontal, PCB mount
RG2	4k7 / 0.5 W	RP12	Potentiometer 10k, horizontal, PCB mount
RG4	12k / 0.5 W	DT4	
RG6 RG7	not used 2k7 / 0.5 W	RT1 RT2	Trimmer potentiometer, 1k, vertical Trimmer potentiometer, 1k, vertical
RG8	5k6 / 0.5 W	RT3	Trimmer potentiometer, 1k, vertical
1100		RT4	Trimmer potentiometer, 1k, vertical
RH1	4k7 / 0.5 W	RT52	Trimmer potentiometer, 10k, vertical
RH2	4k7 / 0.5 W	RT190	Trimmer potentiometer, 10k, vertical
RH4	6k8 / 0.5 W	RT200	Trimmer potentiometer, 1k, vertical
RH6	3k3 / 0.5 W	RT290	Trimmer potentiometer, 10k, vertical
RH7	3k3 / 0.5 W	RT300	Trimmer potentiometer, 1k, vertical
RH8	3k3 / 0.5 W	RT390	Trimmer potentiometer, 10k, vertical
RI1	4k7 / 0.5 W	RED1	Rectifier B 80C2300-1500
RI2	4k7 / 0.5 W	RED2	Rectifier B 80C2300-1500
RI4	8k2 / 0.5 W		1 in a invest to an effective of the day (126 00)
RI6 RI7	8k2 / 0.5 W 8k2 / 0.5 W	TRA3	Line input transformer Studer (426.00)
RI8	8k2 / 0.5 W	U1	TL072CP dual opamp
RJ1	4k7 / 0.5 W	U2	TL072CP dual opamp
RJ2	4k7 / 0.5 W	U3	TL072CP dual opamp
RJ4	8k2 / 0.5 W	U4	TL072CP dual opamp
RJ6	2k2 / 0.5 W	U5	TL072CP dual opamp
RJ7 RJ8	15k / 0.5 W 3k9 / 0.5 W	U6	TL072CP dual opamp
		UD1	TL072CP dual opamp
RK1	not used	UD2	TL072CP dual opamp
RK2	not used	UD3	TL072CP dual opamp
RK4	not used	UD4	TL072CP dual opamp
RK6	not used	UD5	TL072CP dual opamp
RK7 RK8	not used not used	UD6 UD7	TL072CP dual opamp not used
1110	HUL USED	UD8	TL072CP dual opamp